ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/pbc.tex
Revision: 928
Committed: Tue Jan 13 15:24:22 2004 UTC (21 years, 3 months ago) by tim
Content type: application/x-tex
File size: 3745 byte(s)
Log Message:
revision

File Contents

# User Rev Content
1 tim 903 \documentclass{article}%
2     \usepackage{amsfonts}
3     \usepackage{amsmath}
4     \usepackage{amssymb}
5     \usepackage{graphicx}%
6     \setcounter{MaxMatrixCols}{30}
7     %TCIDATA{OutputFilter=latex2.dll}
8     %TCIDATA{Version=5.00.0.2552}
9     %TCIDATA{CSTFile=40 LaTeX article.cst}
10     %TCIDATA{Created=Friday, September 19, 2003 08:29:53}
11 tim 928 %TCIDATA{LastRevised=Tuesday, January 13, 2004 10:22:03}
12 tim 903 %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
13     %TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
14     %TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Standard LaTeX Article">}
15     %TCIDATA{ComputeDefs=
16     %$H$
17     %}
18     \newtheorem{theorem}{Theorem}
19     \newtheorem{acknowledgement}[theorem]{Acknowledgement}
20     \newtheorem{algorithm}[theorem]{Algorithm}
21     \newtheorem{axiom}[theorem]{Axiom}
22     \newtheorem{case}[theorem]{Case}
23     \newtheorem{claim}[theorem]{Claim}
24     \newtheorem{conclusion}[theorem]{Conclusion}
25     \newtheorem{condition}[theorem]{Condition}
26     \newtheorem{conjecture}[theorem]{Conjecture}
27     \newtheorem{corollary}[theorem]{Corollary}
28     \newtheorem{criterion}[theorem]{Criterion}
29     \newtheorem{definition}[theorem]{Definition}
30     \newtheorem{example}[theorem]{Example}
31     \newtheorem{exercise}[theorem]{Exercise}
32     \newtheorem{lemma}[theorem]{Lemma}
33     \newtheorem{notation}[theorem]{Notation}
34     \newtheorem{problem}[theorem]{Problem}
35     \newtheorem{proposition}[theorem]{Proposition}
36     \newtheorem{remark}[theorem]{Remark}
37     \newtheorem{solution}[theorem]{Solution}
38     \newtheorem{summary}[theorem]{Summary}
39     \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
40     \begin{document}
41     \section{\label{Sec:pbc}Periodic Boundary Conditions}
42    
43 tim 904 \textit{Periodic boundary conditions} are widely used to simulate truly
44 tim 928 macroscopic systems with a relatively small number of particles. The
45     simulation box is replicated throughout space to form an infinite lattice.
46     During the simulation, when a particle moves in the primary cell, its image in
47     other boxes move in exactly the same direction with exactly the same
48     orientation.Thus, as a particle leaves the primary cell, one of its images
49     will enter through the opposite face.If the simulation box is large enough to
50     avoid "feeling" the symmetries of the periodic lattice, surface effects can be
51     ignored. Cubic, orthorhombic and parallelepiped are the available periodic
52     cells In OOPSE. We use a matrix to describe the property of the simulation
53     box. Therefore, both the size and shape of the simulation box can be changed
54     during the simulation. The transformation from box space vector $\mathbf{s}$
55     to its corresponding real space vector $\mathbf{r}$ is defined by
56 tim 903 \begin{equation}
57 tim 928 \mathbf{r}=\underline{\underline{H}}\cdot\mathbf{s}%
58 tim 903 \end{equation}
59    
60    
61 tim 904 where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
62 tim 928 box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the three sides of the
63 tim 904 simulation box respectively.
64 tim 903
65 tim 928 To find the minimum image, we convert the real vector to its corresponding
66     vector in box space first, \bigskip%
67 tim 903 \begin{equation}
68 tim 928 \mathbf{s}=\underline{\underline{H}}^{-1}\cdot\mathbf{r}%
69 tim 903 \end{equation}
70 tim 928 And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5,
71 tim 903 \begin{equation}
72 tim 904 s_{i}^{\prime}=s_{i}-round(s_{i})
73 tim 903 \end{equation}
74 tim 928 where
75 tim 904
76     %
77 tim 903
78 tim 904 \begin{equation}
79 tim 928 round(x)=\left\{
80     \begin{array}
81     [c]{c}%
82     \lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\
83     \lceil{x-0.5}\rceil & \text{otherwise}%
84     \end{array}
85     \right.
86 tim 904 \end{equation}
87 tim 903
88 tim 904
89     For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
90    
91 tim 928 Finally, we obtain the minimum image coordinates by transforming back to real space,%
92 tim 904
93 tim 903 \begin{equation}
94 tim 928 \mathbf{r}^{\prime}=\underline{\underline{H}}^{-1}\cdot\mathbf{s}^{\prime}%
95 tim 903 \end{equation}
96    
97    
98    
99 tim 904 \end{document}

Properties

Name Value
svn:executable *