ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/pbc.tex
Revision: 904
Committed: Wed Jan 7 15:21:00 2004 UTC (21 years, 4 months ago) by tim
Content type: application/x-tex
File size: 3836 byte(s)
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 tim 903 \documentclass{article}%
2     \usepackage{amsfonts}
3     \usepackage{amsmath}
4     \usepackage{amssymb}
5     \usepackage{graphicx}%
6     \setcounter{MaxMatrixCols}{30}
7     %TCIDATA{OutputFilter=latex2.dll}
8     %TCIDATA{Version=5.00.0.2552}
9     %TCIDATA{CSTFile=40 LaTeX article.cst}
10     %TCIDATA{Created=Friday, September 19, 2003 08:29:53}
11 tim 904 %TCIDATA{LastRevised=Wednesday, January 07, 2004 10:20:42}
12 tim 903 %TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
13     %TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
14     %TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Standard LaTeX Article">}
15     %TCIDATA{ComputeDefs=
16     %$H$
17     %}
18     \newtheorem{theorem}{Theorem}
19     \newtheorem{acknowledgement}[theorem]{Acknowledgement}
20     \newtheorem{algorithm}[theorem]{Algorithm}
21     \newtheorem{axiom}[theorem]{Axiom}
22     \newtheorem{case}[theorem]{Case}
23     \newtheorem{claim}[theorem]{Claim}
24     \newtheorem{conclusion}[theorem]{Conclusion}
25     \newtheorem{condition}[theorem]{Condition}
26     \newtheorem{conjecture}[theorem]{Conjecture}
27     \newtheorem{corollary}[theorem]{Corollary}
28     \newtheorem{criterion}[theorem]{Criterion}
29     \newtheorem{definition}[theorem]{Definition}
30     \newtheorem{example}[theorem]{Example}
31     \newtheorem{exercise}[theorem]{Exercise}
32     \newtheorem{lemma}[theorem]{Lemma}
33     \newtheorem{notation}[theorem]{Notation}
34     \newtheorem{problem}[theorem]{Problem}
35     \newtheorem{proposition}[theorem]{Proposition}
36     \newtheorem{remark}[theorem]{Remark}
37     \newtheorem{solution}[theorem]{Solution}
38     \newtheorem{summary}[theorem]{Summary}
39     \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
40     \begin{document}
41     \section{\label{Sec:pbc}Periodic Boundary Conditions}
42    
43 tim 904 \textit{Periodic boundary conditions} are widely used to simulate truly
44     macroscopic systems with a relatively small number of particles. Simulation
45     box is replicated throughout space to form an infinite lattice. During the
46     simulation, when a particle moves in the primary cell, its periodic image
47     particles in other boxes move in exactly the same direction with exactly the
48     same orientation.Thus, as a particle leaves the primary cell, one of its
49     images will enter through the opposite face.If the simulation box is large
50     enough to avoid "feeling" the symmetric of the periodic lattice,the surface
51     effect could be ignored. Cubic and parallelepiped are the available periodic
52     cells. \bigskip In OOPSE, we use the matrix instead of the vector to describe
53     the property of the simulation box. Therefore, not only the size of the
54     simulation box could be changed during the simulation, but also the shape of
55     it. The transformation from box space vector $\overrightarrow{s}$ to its
56     corresponding real space vector $\overrightarrow{r}$ is defined by
57 tim 903 \begin{equation}
58     \overrightarrow{r}=H\overrightarrow{s}%
59     \end{equation}
60    
61    
62 tim 904 where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
63     box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the sides of the
64     simulation box respectively.
65 tim 903
66 tim 904 To find the minimum image, we need to convert the real vector to its
67     corresponding vector in box space first, \bigskip%
68 tim 903 \begin{equation}
69     \overrightarrow{s}=H^{-1}\overrightarrow{r}%
70     \end{equation}
71 tim 904 And then, each element of $\overrightarrow{s}$ is casted to lie between -0.5
72     to 0.5,
73 tim 903 \begin{equation}
74 tim 904 s_{i}^{\prime}=s_{i}-round(s_{i})
75 tim 903 \end{equation}
76 tim 904 where%
77    
78 tim 903 \begin{equation}
79 tim 904 round(x)=\lfloor{x+0.5}\rfloor\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{
80     }x\geqslant0
81 tim 903 \end{equation}
82 tim 904 %
83 tim 903
84 tim 904 \begin{equation}
85     round(x)=\lceil{x-0.5}\rceil\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{ }x<0
86     \end{equation}
87 tim 903
88 tim 904
89     For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
90    
91     Finally, we could get the minimum image by transforming back to real space,%
92    
93 tim 903 \begin{equation}
94 tim 904 \overrightarrow{r^{\prime}}=H^{-1}\overrightarrow{s^{\prime}}%
95 tim 903 \end{equation}
96    
97    
98    
99 tim 904 \end{document}

Properties

Name Value
svn:executable *