| 1 |
tim |
903 |
\documentclass{article}%
|
| 2 |
|
|
\usepackage{amsfonts}
|
| 3 |
|
|
\usepackage{amsmath}
|
| 4 |
|
|
\usepackage{amssymb}
|
| 5 |
|
|
\usepackage{graphicx}%
|
| 6 |
|
|
\setcounter{MaxMatrixCols}{30}
|
| 7 |
|
|
%TCIDATA{OutputFilter=latex2.dll}
|
| 8 |
|
|
%TCIDATA{Version=5.00.0.2552}
|
| 9 |
|
|
%TCIDATA{CSTFile=40 LaTeX article.cst}
|
| 10 |
|
|
%TCIDATA{Created=Friday, September 19, 2003 08:29:53}
|
| 11 |
|
|
%TCIDATA{LastRevised=Tuesday, January 06, 2004 17:35:24}
|
| 12 |
|
|
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
|
| 13 |
|
|
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
|
| 14 |
|
|
%TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Standard LaTeX Article">}
|
| 15 |
|
|
%TCIDATA{ComputeDefs=
|
| 16 |
|
|
%$H$
|
| 17 |
|
|
%}
|
| 18 |
|
|
\newtheorem{theorem}{Theorem}
|
| 19 |
|
|
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
|
| 20 |
|
|
\newtheorem{algorithm}[theorem]{Algorithm}
|
| 21 |
|
|
\newtheorem{axiom}[theorem]{Axiom}
|
| 22 |
|
|
\newtheorem{case}[theorem]{Case}
|
| 23 |
|
|
\newtheorem{claim}[theorem]{Claim}
|
| 24 |
|
|
\newtheorem{conclusion}[theorem]{Conclusion}
|
| 25 |
|
|
\newtheorem{condition}[theorem]{Condition}
|
| 26 |
|
|
\newtheorem{conjecture}[theorem]{Conjecture}
|
| 27 |
|
|
\newtheorem{corollary}[theorem]{Corollary}
|
| 28 |
|
|
\newtheorem{criterion}[theorem]{Criterion}
|
| 29 |
|
|
\newtheorem{definition}[theorem]{Definition}
|
| 30 |
|
|
\newtheorem{example}[theorem]{Example}
|
| 31 |
|
|
\newtheorem{exercise}[theorem]{Exercise}
|
| 32 |
|
|
\newtheorem{lemma}[theorem]{Lemma}
|
| 33 |
|
|
\newtheorem{notation}[theorem]{Notation}
|
| 34 |
|
|
\newtheorem{problem}[theorem]{Problem}
|
| 35 |
|
|
\newtheorem{proposition}[theorem]{Proposition}
|
| 36 |
|
|
\newtheorem{remark}[theorem]{Remark}
|
| 37 |
|
|
\newtheorem{solution}[theorem]{Solution}
|
| 38 |
|
|
\newtheorem{summary}[theorem]{Summary}
|
| 39 |
|
|
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
|
| 40 |
|
|
\begin{document}
|
| 41 |
|
|
\section{\label{Sec:pbc}Periodic Boundary Conditions}
|
| 42 |
|
|
|
| 43 |
|
|
\textit{Periodic boundary conditions} are widely used to simulate
|
| 44 |
|
|
truly macroscopic systems with a relatively small number of
|
| 45 |
|
|
particles. Simulation box is replicated throughout space to form
|
| 46 |
|
|
an infinite lattice. During the simulation, when a particle moves
|
| 47 |
|
|
in the primary cell, its periodic image particles in other boxes
|
| 48 |
|
|
move in exactly the same direction with exactly the same
|
| 49 |
|
|
orientation.Thus, as a particle leaves the primary cell, one of
|
| 50 |
|
|
its images will enter through the opposite face.If the simulation
|
| 51 |
|
|
box is large enough to avoid "feeling" the symmetric of the
|
| 52 |
|
|
periodic lattice,the surface effect could be ignored. For the time
|
| 53 |
|
|
being, Cubic and parallelepiped are the available periodic cells
|
| 54 |
|
|
used in OOPSE.
|
| 55 |
|
|
\bigskip In OOPSE, we use the matrix instead of vector to describe the property
|
| 56 |
|
|
of the simulation box. Therefore, not only the size of the
|
| 57 |
|
|
simulation box could be changed during the simulation, but also
|
| 58 |
|
|
the shape of it.
|
| 59 |
|
|
The transformation from box space vector
|
| 60 |
|
|
$\overrightarrow{s}$to its corresponding real space vector
|
| 61 |
|
|
$\overrightarrow{r}$ is defined by
|
| 62 |
|
|
\begin{equation}
|
| 63 |
|
|
\overrightarrow{r}=H\overrightarrow{s}%
|
| 64 |
|
|
\end{equation}
|
| 65 |
|
|
|
| 66 |
|
|
where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up
|
| 67 |
|
|
of the three box axis vector. h_{x},h_{y} and h_{z} represent the
|
| 68 |
|
|
sides of the simulation box respectively. Thus H matrix becomes
|
| 69 |
|
|
|
| 70 |
|
|
|
| 71 |
|
|
To find the minimum image, we need to convert the real vector to
|
| 72 |
|
|
its corresponding vector in box space first,
|
| 73 |
|
|
\bigskip
|
| 74 |
|
|
\begin{equation}
|
| 75 |
|
|
\overrightarrow{s}=H^{-1}\overrightarrow{r}%
|
| 76 |
|
|
\end{equation}
|
| 77 |
|
|
And then, each element of \overrightarrow{s} is casted to lie
|
| 78 |
|
|
between -0.5 to 0.5
|
| 79 |
|
|
\begin{equation}
|
| 80 |
|
|
\s_{i}=s_{i}-round(s_{i})%
|
| 81 |
|
|
\end{equation}
|
| 82 |
|
|
where
|
| 83 |
|
|
\begin{equation}
|
| 84 |
|
|
\round(x)=(x+0.5)(x-0.5)%
|
| 85 |
|
|
\end{equation}
|
| 86 |
|
|
|
| 87 |
|
|
For example, round(3.6)=4, round(3.1) = 3, round(-3.6) = -4,
|
| 88 |
|
|
round(-3.1)=-3.
|
| 89 |
|
|
|
| 90 |
|
|
\begin{equation}
|
| 91 |
|
|
\overrightarrow{s}=H^{-1}\overrightarrow{r}%
|
| 92 |
|
|
\end{equation}
|
| 93 |
|
|
|
| 94 |
|
|
|
| 95 |
|
|
|
| 96 |
|
|
\end{document}
|