ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/oopsePaper.tex
(Generate patch)

Comparing trunk/oopsePaper/oopsePaper.tex (file contents):
Revision 1155 by mmeineke, Tue May 11 19:36:28 2004 UTC vs.
Revision 1179 by mmeineke, Fri May 14 15:50:27 2004 UTC

# Line 190 | Line 190 | a given atom type are set in the force field parameter
190   dipoles). Charges, permanent dipoles, and Lennard-Jones parameters for
191   a given atom type are set in the force field parameter files.
192  
193 \begin{lstlisting}[float,caption={[Specifier for molecules and atoms] A sample specification of an Ar molecule},label=sch:AtmMole]
194 molecule{
195  name = "Ar";
196  nAtoms = 1;
197  atom[0]{
198    type="Ar";
199    position( 0.0, 0.0, 0.0 );
200  }
201 }
202 \end{lstlisting}
203
204
193   Atoms can be collected into secondary structures such as rigid bodies
194   or molecules. The molecule is a way for {\sc oopse} to keep track of
195   the atoms in a simulation in logical manner. Molecular units store the
196   identities of all the atoms and rigid bodies associated with
197   themselves, and are responsible for the evaluation of their own
198   internal interactions (\emph{i.e.}~bonds, bends, and torsions). Scheme
199 < \ref{sch:AtmMole} shows how one creates a molecule in a ``model'' or
199 > \ref{sch:mdlExample} shows how one creates a molecule in a ``model'' or
200   \texttt{.mdl} file. The position of the atoms given in the
201   declaration are relative to the origin of the molecule, and is used
202   when creating a system containing the molecule.
# Line 221 | Line 209 | freedom. Until recently, integrators which propagate o
209   included in most simulation packages because of the algorithmic
210   complexity involved in propagating orientational degrees of
211   freedom. Until recently, integrators which propagate orientational
212 < motion have been much worse than those available for translational
212 > motion have had energy conservation problems when compared to  those available for translational
213   motion.
214  
215   Moving a rigid body involves determination of both the force and
# Line 263 | Line 251 | definition of a rigid body can be seen in Scheme
251   entire nine parameter rotation matrix. Further discussion
252   on this choice can be found in Sec.~\ref{oopseSec:integrate}. An example
253   definition of a rigid body can be seen in Scheme
254 < \ref{sch:rigidBody}. The positions in the atom definitions are the
267 < placements of the atoms relative to the origin of the rigid body,
268 < which itself has a position relative to the origin of the molecule.
254 > \ref{sch:rigidBody}.
255  
256 < \begin{lstlisting}[float,caption={[Defining rigid bodies]A sample definition of a rigid body},label={sch:rigidBody}]
256 > \begin{lstlisting}[float,caption={[Defining rigid bodies]A sample definition of a molecule containing a rigid body},label={sch:rigidBody}]
257   molecule{
258    name = "TIP3P";
259    nAtoms = 3;
# Line 296 | Line 282 | The actual creation of a {\sc bass} script requires se
282  
283   The actual creation of a {\sc bass} script requires several key components. The first  part of the script needs to be the declaration of all of the molecule prototypes used in the simulation. This is typically done through the inclusion of {\tt .mdl} files. Only the molecules actually present in the simulation need to be declared, however {\sc bass} allows for the declaration of more molecules than are needed. This gives the user the ability to build up a library of commonly used molecules into a single {\tt .mdl} file.
284  
285 < Once all prototypes are declared, the ordering of the rest of the script is less stringent. Typically, the next to follow the molecular prototypes are the component statements. These statements specify which molecules are present within the simulation. The number of components must first be declared before the first component block statement (an example is seen in Sch.~\ref{sch:bassExPrime}).
285 > Once all prototypes are declared, the ordering of the rest of the script is less stringent. Typically, the next to follow the molecular prototypes are the component statements. These statements specify which molecules are present within the simulation. The number of components must first be declared before the first component block statement (an example is seen in Sch.~\ref{sch:bassExPrime}).  The component blocks tell {\sc oopse} the number of molecules that will be in the simulation, and the order in which the components blocks are declared sets the ordering of the real atoms within the simulation as well as in the output files.
286 >
287 > The remainder of the script then sets the various simulation parameters for the system of interest. The required set of parameters that must be present in all simulations is given in Table~\ref{table:reqParams}.  The {\tt ensemble} statement is responsible for selecting the integration method used for the calculation of the equations of motion. An in depth discussion of the various methods available in {\sc oopse} can be found in Sec.~\ref{oopseSec:mechanics}. The {\tt forceField} statement is important for the selection of which forces will be used in the course of the simulation. {\sc oopse} supports several force fields, as outlined in Sec.~\ref{oopseSec:empericalEnergy}. The force fields are interchangeable between simulations, with the only requirement being that all atoms needed by the simulation are defined within the selected force field. The time step between force evaluations is set with the {\tt dt} parameter, and {\tt runTime} will set the time length of the simulation. Note, that {\tt runTime} is an absolute time, meaning if the simulation is started at t = 10.0~ns with a {\tt runTime} of 25.0~ns, the simulation will only run for an additional 15.0~ns. The final required parameter, is the {\tt initialConfig} statement. This will set the initial coordinates for the system, as well as the initial time if the {\tt useInitalTime = true;} flag is given. The format of the file specified in {\tt initialConfig}, is given in Sec.~\ref{oopseSec:coordFiles}. Additional parameters are summarized in Table~\ref{table:genParams}.
288 >
289 > \begin{table}
290 > \caption{The Global Keywords: Required Parameters}
291 > \label{table:reqParams}
292 > \begin{center}
293 > % Note when adding or removing columns, the \hsize numbers must add up to the total number
294 > % of columns.
295 > \begin{tabularx}{\linewidth}%
296 >  {>{\setlength{\hsize}{1.00\hsize}}X%
297 >  >{\setlength{\hsize}{0.4\hsize}}X%
298 >  >{\setlength{\hsize}{1.2\hsize}}X%
299 >  >{\setlength{\hsize}{1.4\hsize}}X}
300 >
301 > {\bf keyword} & {\bf units} & {\bf use} & {\bf remarks} \\ \hline
302 >
303 > {\tt forceField} & string & Sets the force field. & Possible force fields are "DUFF", "LJ", and "EAM". \\
304 > {\tt ensemble} & string & Sets the ensemble. & Possible ensembles are "NVE", "NVT", "NPTi", "NPTf", and "NPTxyz".\\
305 > {\tt dt} & fs & Sets the time step. & Selection of {\tt dt} should be small enough to sample the fastest motion of the simulation. \\
306 > {\tt nComponents} & integer & Sets the number of components. & Needs to appear before the first {\tt Component} block. \\
307 > {\tt initialConfig} & string & Sets the file containing the initial configuration. & Can point to any file containing the configuration in the correct order. \\
308 > {\tt runTime} & fs & Sets the time at which the simulation should end. & This is an absolute time, and will end the simulation when the current time meets or exceeds the {\tt runTime}. \\
309 >
310 >
311 > \end{tabularx}
312 > \end{center}
313 > \end{table}
314 >
315 > \begin{table}
316 > \caption{The Global Keywords: General Parameters}
317 > \label{table:genParams}
318 > \begin{center}
319 > % Note when adding or removing columns, the \hsize numbers must add up to the total number
320 > % of columns.
321 > \begin{tabularx}{\linewidth}%
322 >  {>{\setlength{\hsize}{1.00\hsize}}X%
323 >  >{\setlength{\hsize}{0.4\hsize}}X%
324 >  >{\setlength{\hsize}{1.2\hsize}}X%
325 >  >{\setlength{\hsize}{1.4\hsize}}X}
326 >
327 > {\bf keyword} & {\bf units} & {\bf use} & {\bf remarks} \\ \hline
328 >
329 > {\tt finalConfig} & string & Option to set the name of the final output file. & Useful when stringing simulations together. Defaults to the {\tt .bass} file with an {\tt .eor} extension. \\
330 > {\tt useInitialTime} & logical & Sets whether the initial time is taken from the {\tt .init} file. & Useful when recovering a simulation from a crashed processor. Default is false. \\
331 > {\tt sampleTime} & fs & Sets the frequency at which the {\tt .dump} file is written. & Default sets the frequency to the {\tt runTime}. \\
332 > {\tt statusTime} & fs & Sets the frequency at which the {\tt .stat} file is written. & Defaults sets the frequency to the {\tt sampleTime}. \\
333 > {\tt LJrcut} & $\mbox{\AA}$ & Manually sets the Lennard-Jones cutoff. & Defaults to $2.5\sigma_L$, where $\sigma_L$ is the largest LJ $\sigma$ in the simulation. \\
334 > {\tt electrostaticCutoffRadius}& & & \\
335 >      & $\mbox{\AA}$ & Manually sets the cutoff used by the electrostatic potentials. & Defaults to $15\mbox{\AA}$ \\
336 > {\tt electrostaticSkinThickness} & & & \\
337 >     & $\mbox{\AA}$  & Manually sets the skin thickness for the electrostatic switching function. & Defaults to 5~\% of the {\tt electrostaticSkinThickness}. \\
338 > {\tt useReactionField} & logical & Turns the reaction field correction on/off. & Default is "false". \\
339 > {\tt dielectric} & unitless & Sets the dielectric constant for reaction field. & If {\tt useReactionField} is true, then {\tt dielectric} must be set. \\
340 > {\tt usePeriodicBoundaryConditions} & & & \\
341 >        & logical & Turns periodic boundary conditions on/off. & Default is "true". \\
342 > {\tt seed } & integer & Sets the seed value for the random number generator. & The seed needs to be at least 9 digits long. The default is to take the seed from the CPU clock.
343  
344 + \end{tabularx}
345 + \end{center}
346 + \end{table}
347 +
348 +
349 +
350   \subsection{\label{oopseSec:coordFiles}Coordinate Files}
351  
352   The standard format for storage of a systems coordinates is a modified
# Line 512 | Line 561 | interaction sites. This simplification cuts the length
561   charges. Charge-neutral distributions were replaced with dipoles,
562   while most atoms and groups of atoms were reduced to Lennard-Jones
563   interaction sites. This simplification cuts the length scale of long
564 < range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$, and allows
516 < us to avoid the computationally expensive Ewald sum. Instead, we can
517 < use neighbor-lists and cutoff radii for the dipolar interactions, or
518 < include a reaction field to mimic larger range interactions.
564 > range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$, removing the need for the computationally expensive Ewald sum. Instead, we Verlet neighbor-lists and cutoff radii are used for the dipolar interactions, or a reaction field is added to mimic longer range interactions.
565  
566   As an example, lipid head-groups in {\sc duff} are represented as
567   point dipole interaction sites. By placing a dipole at the head
# Line 525 | Line 571 | water model we use to complement the dipoles of the li
571   site is located at the pseudoatom's center of mass. The model is
572   illustrated by the red atom in Fig.~\ref{oopseFig:lipidModel}. The
573   water model we use to complement the dipoles of the lipids is our
574 < reparameterization of the soft sticky dipole (SSD) model of Ichiye
574 > reparameterization\cite{fennell04} of the soft sticky dipole (SSD) model of Ichiye
575   \emph{et al.}\cite{liu96:new_model}
576  
577   \begin{figure}
# Line 548 | Line 594 | it.
594   $\text{CH}_2$ do not change depending on what species are bonded to
595   it.
596  
597 < TraPPE also constrains all bonds to be of fixed length. Typically,
597 > TraPPE and {\sc duff} also constrain all bonds to be of fixed length. Typically,
598   bond vibrations are the fastest motions in a molecular dynamic
599   simulation. Small time steps between force evaluations must be used to
600   ensure adequate energy conservation in the bond degrees of freedom. By
# Line 578 | Line 624 | forceField = "DUFF";
624  
625   \end{lstlisting}
626  
627 < \subsection{\label{oopseSec:energyFunctions}{\sc duff} Energy Functions}
627 > \subsubsection{\label{oopseSec:energyFunctions}{\sc duff} Energy Functions}
628  
629   The total potential energy function in {\sc duff} is
630   \begin{equation}
# Line 707 | Line 753 | cutoff. The switching thickness can be set in the \tex
753   is the taper radius some given thickness less than the electrostatic
754   cutoff. The switching thickness can be set in the \texttt{.bass} file.
755  
756 < \subsection{\label{oopseSec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF}
756 > \subsubsection{\label{oopseSec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF}
757  
758   In the interest of computational efficiency, the default solvent used
759   by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water
# Line 825 | Line 871 | electrostaticSkinThickness = 1.38;
871  
872   \subsection{\label{oopseSec:eam}Embedded Atom Method}
873  
874 < There are Molecular Dynamics packages which have the
875 < capacity to simulate metallic systems, including some that have
876 < parallel computational abilities\cite{plimpton93}. Potentials that
831 < describe bonding transition metal
832 < systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have an
833 < attractive interaction which models  ``Embedding''
874 > {\sc oopse} implements a potential that
875 > describes bonding transition metal
876 > systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} and has attractive interaction which models  ``Embedding''
877   a positively charged metal ion in the electron density due to the
878   free valance ``sea'' of electrons created by the surrounding atoms in
879   the system. A mostly-repulsive pairwise part of the potential
# Line 1389 | Line 1432 | implements the Melchionna modifications to the Nos\'e-
1432  
1433   To carry out isobaric-isothermal ensemble calculations {\sc oopse}
1434   implements the Melchionna modifications to the Nos\'e-Hoover-Andersen
1435 < equations of motion,\cite{melchionna93}
1435 > equations of motion.\cite{melchionna93} The equations of motion are the same as NVT with the following exceptions:
1436  
1437   \begin{eqnarray}
1438   \dot{{\bf r}} & = & {\bf v} + \eta \left( {\bf r} - {\bf R}_0 \right), \\
1439   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\eta + \chi) {\bf v}, \\
1397 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1398 \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right),\\
1399 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1400 \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1401 V}{\partial \mathsf{A}} \right) - \chi {\bf j}, \\
1402 \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1403 \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1440   \dot{\eta} & = & \frac{1}{\tau_{B}^2 f k_B T_{\mathrm{target}}} V \left( P -
1441   P_{\mathrm{target}} \right), \\
1442   \dot{\mathcal{V}} & = & 3 \mathcal{V} \eta .
# Line 1449 | Line 1485 | integration of the equations of motion is carried out
1485   file.  The units for {\tt tauBarostat} are fs, and the units for the
1486   {\tt targetPressure} are atmospheres.  Like in the NVT integrator, the
1487   integration of the equations of motion is carried out in a
1488 < velocity-Verlet style 2 part algorithm:
1488 > velocity-Verlet style 2 part algorithm with only the following differences:
1489  
1490   {\tt moveA:}
1491   \begin{align*}
1456 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1457 %
1492   P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\bf v}(t)\right\} ,\\
1493   %
1494   {\bf v}\left(t + h / 2\right)  &\leftarrow {\bf v}(t)
1495          + \frac{h}{2} \left( \frac{{\bf f}(t)}{m} - {\bf v}(t)
1496          \left(\chi(t) + \eta(t) \right) \right), \\
1497   %
1464 {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1465        + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1466        \chi(t) \right), \\
1467 %
1468 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1469        {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1470        \right) ,\\
1471 %
1472 \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1473        \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}} - 1
1474        \right) ,\\
1475 %
1498   \eta(t + h / 2) &\leftarrow \eta(t) + \frac{h
1499          \mathcal{V}(t)}{2 N k_B T(t) \tau_B^2} \left( P(t)
1500          - P_{\mathrm{target}} \right), \\
# Line 1486 | Line 1508 | P(t) &\leftarrow \left\{{\bf r}(t)\right\}, \left\{{\b
1508          \mathsf{H}(t).
1509   \end{align*}
1510  
1511 < Most of these equations are identical to their counterparts in the NVT
1490 < integrator, but the propagation of positions to time $t + h$
1511 > The propagation of positions to time $t + h$
1512   depends on the positions at the same time.  {\sc oopse} carries out
1513   this step iteratively (with a limit of 5 passes through the iterative
1514   loop).  Also, the simulation box $\mathsf{H}$ is scaled uniformly for
# Line 1507 | Line 1528 | the same time value.
1528  
1529   {\tt moveB:}
1530   \begin{align*}
1510 T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1511        \left\{{\bf j}(t + h)\right\} ,\\
1512 %
1531   P(t + h) &\leftarrow  \left\{{\bf r}(t + h)\right\},
1532          \left\{{\bf v}(t + h)\right\}, \\
1515 %
1516 \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1517        2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+h)}
1518        {T_{\mathrm{target}}} - 1 \right), \\
1533   %
1534   \eta(t + h) &\leftarrow \eta(t + h / 2) +
1535          \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
# Line 1573 | Line 1587 | extended variables ($\overleftrightarrow{\eta}$) to co
1587   {\it shape} as well as in the volume of the box.  This method utilizes
1588   the full $3 \times 3$ pressure tensor and introduces a tensor of
1589   extended variables ($\overleftrightarrow{\eta}$) to control changes to
1590 < the box shape.  The equations of motion for this method are
1590 > the box shape.  The equations of motion for this method differ from those of NPTi as follows:
1591   \begin{eqnarray}
1592   \dot{{\bf r}} & = & {\bf v} + \overleftrightarrow{\eta} \cdot \left( {\bf r} - {\bf R}_0 \right), \\
1593   \dot{{\bf v}} & = & \frac{{\bf f}}{m} - (\overleftrightarrow{\eta} +
1594   \chi \cdot \mathsf{1}) {\bf v}, \\
1581 \dot{\mathsf{A}} & = & \mathsf{A} \cdot
1582 \mbox{ skew}\left(\overleftrightarrow{I}^{-1} \cdot {\bf j}\right) ,\\
1583 \dot{{\bf j}} & = & {\bf j} \times \left( \overleftrightarrow{I}^{-1}
1584 \cdot {\bf j} \right) - \mbox{ rot}\left(\mathsf{A}^{T} \cdot \frac{\partial
1585 V}{\partial \mathsf{A}} \right) - \chi {\bf j} ,\\
1586 \dot{\chi} & = & \frac{1}{\tau_{T}^2} \left(
1587 \frac{T}{T_{\mathrm{target}}} - 1 \right) ,\\
1595   \dot{\overleftrightarrow{\eta}} & = & \frac{1}{\tau_{B}^2 f k_B
1596   T_{\mathrm{target}}} V \left( \overleftrightarrow{\mathsf{P}} - P_{\mathrm{target}}\mathsf{1} \right) ,\\
1597   \dot{\mathsf{H}} & = &  \overleftrightarrow{\eta} \cdot \mathsf{H} .
# Line 1600 | Line 1607 | NPTi integration:
1607  
1608   {\tt moveA:}
1609   \begin{align*}
1603 T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\bf j}(t)\right\} ,\\
1604 %
1610   \overleftrightarrow{\mathsf{P}}(t) &\leftarrow \left\{{\bf r}(t)\right\},
1611          \left\{{\bf v}(t)\right\} ,\\
1612   %
# Line 1610 | Line 1615 | T(t) &\leftarrow \left\{{\bf v}(t)\right\}, \left\{{\b
1615          \left(\chi(t)\mathsf{1} + \overleftrightarrow{\eta}(t) \right) \cdot
1616          {\bf v}(t) \right), \\
1617   %
1613 {\bf j}\left(t + h / 2 \right)  &\leftarrow {\bf j}(t)
1614        + \frac{h}{2} \left( {\bf \tau}^b(t) - {\bf j}(t)
1615        \chi(t) \right), \\
1616 %
1617 \mathsf{A}(t + h) &\leftarrow \mathrm{rotate}\left(h *
1618        {\bf j}(t + h / 2) \overleftrightarrow{\mathsf{I}}^{-1}
1619        \right), \\
1620 %
1621 \chi\left(t + h / 2 \right) &\leftarrow \chi(t) +
1622        \frac{h}{2 \tau_T^2} \left( \frac{T(t)}{T_{\mathrm{target}}}
1623        - 1 \right), \\
1624 %
1618   \overleftrightarrow{\eta}(t + h / 2) &\leftarrow
1619          \overleftrightarrow{\eta}(t) + \frac{h \mathcal{V}(t)}{2 N k_B
1620          T(t) \tau_B^2} \left( \overleftrightarrow{\mathsf{P}}(t)
# Line 1643 | Line 1636 | NPTi integrator:
1636  
1637   {\tt moveB:}
1638   \begin{align*}
1646 T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1647        \left\{{\bf j}(t + h)\right\}, \\
1648 %
1639   \overleftrightarrow{\mathsf{P}}(t + h) &\leftarrow \left\{{\bf r}
1640          (t + h)\right\}, \left\{{\bf v}(t
1641          + h)\right\}, \left\{{\bf f}(t + h)\right\} ,\\
1642   %
1653 \chi\left(t + h \right) &\leftarrow \chi\left(t + h /
1654        2 \right) + \frac{h}{2 \tau_T^2} \left( \frac{T(t+
1655        h)}{T_{\mathrm{target}}} - 1 \right), \\
1656 %
1643   \overleftrightarrow{\eta}(t + h) &\leftarrow
1644          \overleftrightarrow{\eta}(t + h / 2) +
1645          \frac{h \mathcal{V}(t + h)}{2 N k_B T(t + h)
# Line 1665 | Line 1651 | T(t + h) &\leftarrow \left\{{\bf v}(t + h)\right\},
1651          \frac{{\bf f}(t + h)}{m} -
1652          (\chi(t + h)\mathsf{1} + \overleftrightarrow{\eta}(t
1653          + h)) \right) \cdot {\bf v}(t + h), \\
1668 %
1669 {\bf j}\left(t + h \right)  &\leftarrow {\bf j}\left(t
1670        + h / 2 \right) + \frac{h}{2} \left( {\bf \tau}^b(t
1671        + h) - {\bf j}(t + h) \chi(t + h) \right) .
1654   \end{align*}
1655  
1656   The iterative schemes for both {\tt moveA} and {\tt moveB} are
# Line 1809 | Line 1791 | F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\part
1791   \begin{equation}
1792   F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
1793          -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
1794 + \end{equation}
1795 + Parameters concerning the z-constraint method are summarized in Table~\ref{table:zconParams}.
1796 +
1797 + \begin{table}
1798 + \caption{The Global Keywords: Z-Constraint Parameters}
1799 + \label{table:zconParams}
1800 + \begin{center}
1801 + % Note when adding or removing columns, the \hsize numbers must add up to the total number
1802 + % of columns.
1803 + \begin{tabularx}{\linewidth}%
1804 +  {>{\setlength{\hsize}{1.00\hsize}}X%
1805 +  >{\setlength{\hsize}{0.4\hsize}}X%
1806 +  >{\setlength{\hsize}{1.2\hsize}}X%
1807 +  >{\setlength{\hsize}{1.4\hsize}}X}
1808 +
1809 + {\bf keyword} & {\bf units} & {\bf use} & {\bf remarks} \\ \hline
1810 +
1811 + {\tt zconsTime} & fs & Sets the frequency at which the {\tt .fz} file is written. & Default sets the frequency to the {\tt runTime} \\
1812 + {\tt nZconstraints} & integer &  The number of zconstraint molecules& If using zconstraint method, {\tt nZconstraints} must be set \\
1813 + {\tt zconsForcePolicy} & string& The strategy of subtracting zconstraint force from  unconstraint molecules & Possible strategies are BYMASS and BYNUMBER. Default strategy is set to BYMASS\\
1814 + {\tt zconsGap} & \r(A) & Set the distance between two adjacent constraint positions& Used mainly in constraining molecules sequentially \\
1815 + {\tt zconsFixtime} & fs & Sets how long the zconstraint molecule is fixed & {\tt zconsGap} must be set if {\tt zconsGap} is already set.\\
1816 + {\tt zconsUsingSMD} &logical & Flag of using Steered Molecular Dynamics or Harmonic Force to move the molecule  & Using harmonic force by default\\
1817 +
1818 + \end{tabularx}
1819 + \end{center}
1820 + \end{table}
1821 +
1822 +
1823 +
1824 + \section{\label{sec:minimize}Energy Minimization}
1825 +
1826 +
1827 + As one of the basic procedures of molecular modeling, energy minimization
1828 + method is used to identify configurations that are stable points on the energy
1829 + surface by adjusting the atomic coordinates. Given a potential energy function
1830 + $V$ which depends on a set of coordinates, energy minimization algorithm is
1831 + developed to find its minimun value. Different from other packages, the
1832 + coordinates in OOPSE not only include cartesian coordinates but also euler
1833 + angle if directional atom or rigidbody is involved. Unfortunately, due to the
1834 + number of local minima and the cost of computation, in most cases, it is
1835 + always impossible to identify the global minimum. OOPSE provides two
1836 + frequently used first-derivative algorithms, steepest descents and conjugate
1837 + gradient, to find a reasonable local minima.
1838 +
1839 + Given a coordinate set $x_{k}$ and a search direction $d_{k}$, a line search
1840 + algorithm is performed along $d_{k}$ to produce $x_{k+1}=x_{k}+$ $\lambda
1841 + _{k}d_{k}$.
1842 +
1843 + In steepest descent algorithm,%
1844 +
1845 + \begin{equation}
1846 + d_{k}=-\nabla V(x_{k})
1847   \end{equation}
1848  
1849 +
1850 + Therefore, the gradient and the direction of next step are always orthogonal
1851 + which may causes oscillatory behavior in narrow valleys. To overcome this
1852 + problem, the Fletcher-Reeves variant of the conjugate algorithm generates
1853 + $d_{k+1}$ from the simple recursion%
1854 +
1855 + \begin{align}
1856 + d_{k+1}  &  =-\nabla V(x_{k+1})+\gamma_{k}d_{k}\\
1857 + \gamma_{k}  &  =\frac{\nabla V(x_{k+1})^{T}\nabla V(x_{k+1})}{\nabla
1858 + V(x_{k})^{T}\nabla V(x_{k})}%
1859 + \end{align}
1860 +
1861 +
1862 + The Polak-Ribiere variant of conjugate gradient defines as%
1863 +
1864 + \begin{equation}
1865 + \gamma_{k}=\frac{[\nabla V(x_{k+1})-\nabla V(x)]^{T}\nabla V(x_{k+1})}{\nabla
1866 + V(x_{k})^{T}\nabla V(x_{k})}%
1867 + \end{equation}
1868 +
1869 +
1870 + The conjugate gradient method assumes that the conformation is close enough to
1871 + a local minimum that the potential energy surface is very nearly quadratic.
1872 + When initial structure is far from the minimimum, the steepest descent method
1873 + can be superiror to conjugate gradient. Hence, steepest descents may generally
1874 + be used for the first 10-100 steps of minimization. Another useful feature of
1875 + minimization methods in OOPSE is that a modified SHAKE algorithm can be
1876 + applied duing the minimization to constraint the bond length. {\tt bass} parameters concerning the minimizer are given in Table~\ref{table:minimizeParams}
1877 +
1878 + \begin{table}
1879 + \caption{The Global Keywords: Energy Minimizer Parameters}
1880 + \label{table:minimizeParams}
1881 + \begin{center}
1882 + % Note when adding or removing columns, the \hsize numbers must add up to the total number
1883 + % of columns.
1884 + \begin{tabularx}{\linewidth}%
1885 +  {>{\setlength{\hsize}{1.00\hsize}}X%
1886 +  >{\setlength{\hsize}{0.4\hsize}}X%
1887 +  >{\setlength{\hsize}{1.2\hsize}}X%
1888 +  >{\setlength{\hsize}{1.4\hsize}}X}
1889 +
1890 + {\bf keyword} & {\bf units} & {\bf use} & {\bf remarks} \\ \hline
1891 +
1892 + {\tt minimizer} & &  & \\
1893 + {\tt minMaxIter} & integer & Sets the maximum iteration in energy minimization & Default value is 200\\
1894 + {\tt minWriteFreq} & interger & Sets the frequency at which the {\tt .dump} and {\tt .stat} files are writtern in energy minimization & \\
1895 + {\tt minStepSize} & double &  Set the step size of line search & Default value is 0.01\\
1896 + {\tt minFTol} & double & Sets energy tolerance  & Default value is $10^(-8)$\\
1897 + {\tt minGTol} & double & Sets gradient tolerance & Default value is $10^(-8)$\\
1898 + {\tt minLSTol} & double & Sets line search tolerance & Default value is $10^(-8)$\\
1899 + {\tt minLSMaxIter} & integer &  Sets the maximum iteration of line searching & Default value is 50\\
1900 +
1901 + \end{tabularx}
1902 + \end{center}
1903 + \end{table}
1904 +
1905 +
1906   \section{\label{oopseSec:design}Program Design}
1907  
1908   \subsection{\label{sec:architecture} {\sc oopse} Architecture}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines