ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/oopsePaper.tex
(Generate patch)

Comparing trunk/oopsePaper/oopsePaper.tex (file contents):
Revision 1123 by mmeineke, Mon Apr 19 21:25:23 2004 UTC vs.
Revision 1155 by mmeineke, Tue May 11 19:36:28 2004 UTC

# Line 2 | Line 2
2   \usepackage{amsmath}
3   \usepackage{amssymb}
4   \usepackage{endfloat}
5 %\usepackage{berkeley}
5   \usepackage{listings}
6 + \usepackage{palatino}
7   \usepackage{graphicx}
8   \usepackage[ref]{overcite}
9   \usepackage{setspace}
# Line 25 | Line 25 | Engine for Molecular Dynamics}
25   \title{{\sc oopse}: An Open Source Object-Oriented Parallel Simulation
26   Engine for Molecular Dynamics}
27  
28 < \author{Matthew A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher J. Fennell and J. Daniel Gezelter\\
28 > \author{Matthew A. Meineke, Charles F. Vardeman II, Teng Lin,\\
29 > Christopher J. Fennell and J. Daniel Gezelter\\
30   Department of Chemistry and Biochemistry\\
31   University of Notre Dame\\
32   Notre Dame, Indiana 46556}
# Line 35 | Line 36 | We detail the capabilities of a new open-source parall
36  
37   \begin{abstract}
38   We detail the capabilities of a new open-source parallel simulation
39 < package ({\sc oopse}) that can perform molecular dynamics simulations
40 < on atom types that are missing from other popular packages.  In
41 < particular, {\sc oopse} is capable of performing orientational
41 < dynamics on dipolar systems, and it can handle simulations of metallic
39 > progrm for MD ({\sc oopse}) that can work with  atom types that are missing from other popular packages.  In
40 > particular, {\sc oopse} is capable of performing efficient orientational
41 > dynamics on dipolar or rigid body systems, and it can handle simulations of metallic
42   systems using the embedded atom method ({\sc eam}).
43   \end{abstract}
44  
# Line 77 | Line 77 | project.
77   those of the community of scientists who contribute back to the
78   project.
79  
80 < We have structured this chapter to first discuss the empirical energy
80 > We have structured this paper to first discuss the empirical energy
81   functions that {\sc oopse } implements in
82   Sec.~\ref{oopseSec:empiricalEnergy}. Following that is a discussion of
83   the various input and output files associated with the package
84   (Sec.~\ref{oopseSec:IOfiles}). Sec.~\ref{oopseSec:mechanics}
85   elucidates the various Molecular Dynamics algorithms {\sc oopse}
86   implements in the integration of the Newtonian equations of
87 < motion. Basic analysis of the trajectories obtained from the
88 < simulation is discussed in Sec.~\ref{oopseSec:props}. Program design
87 > motion.  Program design
88   considerations are presented in Sec.~\ref{oopseSec:design}. And
89   lastly, Sec.~\ref{oopseSec:conclusion} concludes the chapter.
90  
91 < \section{\label{oopseSec:empiricalEnergy}The Empirical Energy Functions}
91 > \section{\label{oopseSec:IOfiles}Concepts \& Files}
92 >
93 > \subsection{{\sc bass} and Model Files}
94 >
95 > Every {\sc oopse} simulation begins with a Bizarre Atom Simulation
96 > Syntax ({\sc bass}) file. {\sc bass} is a script syntax that is parsed
97 > by {\sc oopse} at runtime. The {\sc bass} file allows for the user to
98 > completely describe the system they wish to simulate, as well as tailor
99 > {\sc oopse}'s behavior during the simulation. {\sc bass} files are
100 > denoted with the extension
101 > \texttt{.bass}, an example file is shown in
102 > Scheme~\ref{sch:bassExample}.
103 >
104 > \begin{lstlisting}[float,caption={[An example of a complete {\sc bass} file] An example showing a complete {\sc bass} file.},label={sch:bassExample}]
105 >
106 > molecule{
107 >  name = "Ar";
108 >  nAtoms = 1;
109 >  atom[0]{
110 >    type="Ar";
111 >    position( 0.0, 0.0, 0.0 );
112 >  }
113 > }
114 >
115 > nComponents = 1;
116 > component{
117 >  type = "Ar";
118 >  nMol = 108;
119 > }
120 >
121 > initialConfig = "./argon.init";
122 >
123 > forceField = "LJ";
124 > ensemble = "NVE"; // specify the simulation ensemble
125 > dt = 1.0;         // the time step for integration
126 > runTime = 1e3;    // the total simulation run time
127 > sampleTime = 100; // trajectory file frequency
128 > statusTime = 50;  // statistics file frequency
129 >
130 > \end{lstlisting}
131 >
132 > Within the \texttt{.bass} file it is necessary to provide a complete
133 > description of the molecule before it is actually placed in the
134 > simulation. The {\sc bass} syntax was originally developed with this
135 > goal in mind, and allows for the specification of all the atoms in a
136 > molecular prototype, as well as any bonds, bends, or torsions. These
137 > descriptions can become lengthy for complex molecules, and it would be
138 > inconvenient to duplicate the simulation at the beginning of each {\sc
139 > bass} script. Addressing this issue {\sc bass} allows for the
140 > inclusion of model files at the top of a \texttt{.bass} file. These
141 > model files, denoted with the \texttt{.mdl} extension, allow the user
142 > to describe a molecular prototype once, then simply include it into
143 > each simulation containing that molecule. Returning to the example in
144 > Scheme~\ref{sch:bassExample}, the \texttt{.mdl} file's contents would
145 > be Scheme~\ref{sch:mdlExample}, and the new \texttt{.bass} file would
146 > become Scheme~\ref{sch:bassExPrime}.
147 >
148 > \begin{lstlisting}[float,caption={An example \texttt{.mdl} file.},label={sch:mdlExample}]
149 >
150 > molecule{
151 >  name = "Ar";
152 >  nAtoms = 1;
153 >  atom[0]{
154 >    type="Ar";
155 >    position( 0.0, 0.0, 0.0 );
156 >  }
157 > }
158 >
159 > \end{lstlisting}
160 >
161 > \begin{lstlisting}[float,caption={Revised {\sc bass} example.},label={sch:bassExPrime}]
162 >
163 > #include "argon.mdl"
164 >
165 > nComponents = 1;
166 > component{
167 >  type = "Ar";
168 >  nMol = 108;
169 > }
170 >
171 > initialConfig = "./argon.init";
172 >
173 > forceField = "LJ";
174 > ensemble = "NVE";
175 > dt = 1.0;
176 > runTime = 1e3;
177 > sampleTime = 100;
178 > statusTime = 50;
179  
180 + \end{lstlisting}
181 +
182   \subsection{\label{oopseSec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
183  
184   The basic unit of an {\sc oopse} simulation is the atom. The
# Line 201 | Line 289 | molecule{
289      nMembers = 3;
290      members(0, 1, 2);
291    }
292 + }
293 + \end{lstlisting}
294 +
295 + \subsection{\label{sec:miscConcepts}Putting a Script Together}
296 +
297 + The actual creation of a {\sc bass} script requires several key components. The first  part of the script needs to be the declaration of all of the molecule prototypes used in the simulation. This is typically done through the inclusion of {\tt .mdl} files. Only the molecules actually present in the simulation need to be declared, however {\sc bass} allows for the declaration of more molecules than are needed. This gives the user the ability to build up a library of commonly used molecules into a single {\tt .mdl} file.
298 +
299 + Once all prototypes are declared, the ordering of the rest of the script is less stringent. Typically, the next to follow the molecular prototypes are the component statements. These statements specify which molecules are present within the simulation. The number of components must first be declared before the first component block statement (an example is seen in Sch.~\ref{sch:bassExPrime}).
300 +
301 + \subsection{\label{oopseSec:coordFiles}Coordinate Files}
302 +
303 + The standard format for storage of a systems coordinates is a modified
304 + xyz-file syntax, the exact details of which can be seen in
305 + Scheme~\ref{sch:dumpFormat}. As all bonding and molecular information
306 + is stored in the \texttt{.bass} and \texttt{.mdl} files, the
307 + coordinate files are simply the complete set of coordinates for each
308 + atom at a given simulation time. One important note, although the
309 + simulation propagates the complete rotation matrix, directional
310 + entities are written out using quanternions, to save space in the
311 + output files.
312 +
313 + \begin{lstlisting}[float,caption={[The format of the coordinate files]Shows the format of the coordinate files. The fist line is the number of atoms. The second line begins with the time stamp followed by the three $\mathsf{H}$ column vectors. It is important to note, that for extended system ensembles, additional information pertinent to the integrators may be stored on this line as well. The next lines are the atomic coordinates for all atoms in the system. First is the name followed by position, velocity, quanternions, and lastly, body fixed angular momentum.},label=sch:dumpFormat]
314 +
315 + nAtoms
316 + time; Hxx Hyx Hzx; Hxy Hyy Hzy; Hxz Hyz Hzz;
317 + Name1 x y z vx vy vz q0 q1 q2 q3 jx jy jz
318 + Name2 x y z vx vy vz q0 q1 q2 q3 jx jy jz
319 + etc...
320 +
321 + \end{lstlisting}
322 +
323 +
324 + There are three major files used by {\sc oopse} written in the
325 + coordinate format, they are as follows: the initialization file
326 + (\texttt{.init}), the simulation trajectory file (\texttt{.dump}), and
327 + the final coordinates of the simulation (\texttt{.eor}). The initialization file is
328 + necessary for {\sc oopse} to start the simulation with the proper
329 + coordinates, and is generated before the simulation run. The
330 + trajectory file is created at the beginning of the simulation, and is
331 + used to store snapshots of the simulation at regular intervals. The
332 + first frame is a duplication of the
333 + \texttt{.init} file, and each subsequent frame is appended to the file
334 + at an interval specified in the \texttt{.bass} file with the
335 + \texttt{sampleTime} flag. The final coordinate file is the end of run file. The
336 + \texttt{.eor} file stores the final configuration of the system for a
337 + given simulation. The file is updated at the same time as the
338 + \texttt{.dump} file, however, it only contains the most recent
339 + frame. In this way, an \texttt{.eor} file may be used as the
340 + initialization file to a second simulation in order to continue a
341 + simulation or recover one from a processor that has crashed during the
342 + course of the run.
343 +
344 + \subsection{\label{oopseSec:initCoords}Generation of Initial Coordinates}
345 +
346 + As was stated in Sec.~\ref{oopseSec:coordFiles}, an initialization
347 + file is needed to provide the starting coordinates for a
348 + simulation.  Several helper programs are provided with {\sc oopse} to illustrate possible build routes. However, as each simulation is different, system creation is left to the end user. The {\tt .init} file must list the atoms in the correct order or {\sc oopse} will give an atom mismatch error.
349 +
350 + The correct ordering of the atoms relies on the ordering of atoms and molecules within the model and {\sc bass} scripts. {\sc oopse} expects the order to comply with the following guidelines:
351 + \begin{enumerate}
352 + \item All of the molecules of the first declared component are given before proceeding to the molecules of the second component, and so on for all declared components.
353 + \item The ordering of the atoms for each molecule follows the order declared in the molecule's declaration within the model file.
354 + \end{enumerate}
355 + An example is given in Scheme~\ref{sch:initEx1} resulting in the {\tt .init} file shown in Scheme~\ref{sch:initEx2}.
356 +
357 + \begin{lstlisting}[float,caption={This scheme illustrates the declaration of the $\text{I}_2$ molecule and the HCl molecule. The two molecules are then included into a simulation.}, label=sch:initEx1]
358 +
359 + molecule{
360 +  name = "I2";
361 +  nAtoms = 2;
362 +  atom[0]{
363 +    type = "I";
364 +  }
365 +  atom[1]{
366 +    type = "I";
367 +  }
368 +  nBonds = 1;
369 +  bond[0]{
370 +    members( 0, 1);
371 +  }
372 + }
373 +
374 + molecule{
375 +  name = "HCl"
376 +  nAtoms = 2;
377 +  atom[0]{
378 +    type = "H";
379 +  }
380 +  atom[1]{
381 +    type = "Cl";
382 +  }
383 +  nBonds = 1;
384 +  bond[0]{
385 +    members( 0, 1);
386 +  }
387 + }
388 +
389 + nComponents = 2;
390 + component{
391 +  type = "HCl";
392 +  nMol = 4;
393   }
394 + component{
395 +  type = "I2";
396 +  nMol = 1;
397 + }
398 +
399 + initialConfig = "mixture.init";
400 +
401   \end{lstlisting}
402  
403 + \begin{lstlisting}[float,caption={This is the contents of the {\tt mixture.init} file matching the declarations in Scheme~\ref{sch:initEx1}. Note that even though $\text{I}_2$ is declared before HCl, the {\tt .init} file follows the order in which the components were included.},label=sch:initEx2]
404 +
405 + 10
406 + 0.0;  10.0  0.0  0.0;  0.0  10.0  0.0;  0.0  0.0  10.0;
407 + H  ...
408 + Cl ...
409 + H  ...
410 + Cl ...
411 + H  ...
412 + Cl ...
413 + H  ...
414 + Cl ...
415 + I  ...
416 + I  ...
417 +
418 + \end{lstlisting}
419 +
420 +
421 + \subsection{The Statistics File}
422 +
423 + The last output file generated by {\sc oopse} is the statistics
424 + file. This file records such statistical quantities as the
425 + instantaneous temperature, volume, pressure, etc. It is written out
426 + with the frequency specified in the \texttt{.bass} file with the
427 + \texttt{statusTime} keyword. The file allows the user to observe the
428 + system variables as a function of simulation time while the simulation
429 + is in progress. One useful function the statistics file serves is to
430 + monitor the conserved quantity of a given simulation ensemble, this
431 + allows the user to observe the stability of the integrator. The
432 + statistics file is denoted with the \texttt{.stat} file extension.
433 +
434 +
435 + \section{\label{oopseSec:empiricalEnergy}The Empirical Energy Functions}
436 +
437 + \
438   \subsection{\label{sec:LJPot}The Lennard Jones Force Field}
439  
440   The most basic force field implemented in {\sc oopse} is the
# Line 691 | Line 922 | the inter-atomic forces.
922   In this way, particles are allowed to diffuse freely in $\mathbf{r}$,
923   but their minimum images, $\mathbf{r}^{\prime}$ are used to compute
924   the inter-atomic forces.
694
695
696 \section{\label{oopseSec:IOfiles}Input and Output Files}
697
698 \subsection{{\sc bass} and Model Files}
699
700 Every {\sc oopse} simulation begins with a Bizarre Atom Simulation
701 Syntax ({\sc bass}) file. {\sc bass} is a script syntax that is parsed
702 by {\sc oopse} at runtime. The {\sc bass} file allows for the user to
703 completely describe the system they wish to simulate, as well as tailor
704 {\sc oopse}'s behavior during the simulation. {\sc bass} files are
705 denoted with the extension
706 \texttt{.bass}, an example file is shown in
707 Scheme~\ref{sch:bassExample}.
925  
709 \begin{lstlisting}[float,caption={[An example of a complete {\sc bass} file] An example showing a complete {\sc bass} file.},label={sch:bassExample}]
926  
711 molecule{
712  name = "Ar";
713  nAtoms = 1;
714  atom[0]{
715    type="Ar";
716    position( 0.0, 0.0, 0.0 );
717  }
718 }
927  
720 nComponents = 1;
721 component{
722  type = "Ar";
723  nMol = 108;
724 }
725
726 initialConfig = "./argon.init";
727
728 forceField = "LJ";
729 ensemble = "NVE"; // specify the simulation ensemble
730 dt = 1.0;         // the time step for integration
731 runTime = 1e3;    // the total simulation run time
732 sampleTime = 100; // trajectory file frequency
733 statusTime = 50;  // statistics file frequency
734
735 \end{lstlisting}
736
737 Within the \texttt{.bass} file it is necessary to provide a complete
738 description of the molecule before it is actually placed in the
739 simulation. The {\sc bass} syntax was originally developed with this
740 goal in mind, and allows for the specification of all the atoms in a
741 molecular prototype, as well as any bonds, bends, or torsions. These
742 descriptions can become lengthy for complex molecules, and it would be
743 inconvenient to duplicate the simulation at the beginning of each {\sc
744 bass} script. Addressing this issue {\sc bass} allows for the
745 inclusion of model files at the top of a \texttt{.bass} file. These
746 model files, denoted with the \texttt{.mdl} extension, allow the user
747 to describe a molecular prototype once, then simply include it into
748 each simulation containing that molecule. Returning to the example in
749 Scheme~\ref{sch:bassExample}, the \texttt{.mdl} file's contents would
750 be Scheme~\ref{sch:mdlExample}, and the new \texttt{.bass} file would
751 become Scheme~\ref{sch:bassExPrime}.
752
753 \begin{lstlisting}[float,caption={An example \texttt{.mdl} file.},label={sch:mdlExample}]
754
755 molecule{
756  name = "Ar";
757  nAtoms = 1;
758  atom[0]{
759    type="Ar";
760    position( 0.0, 0.0, 0.0 );
761  }
762 }
763
764 \end{lstlisting}
765
766 \begin{lstlisting}[float,caption={Revised {\sc bass} example.},label={sch:bassExPrime}]
767
768 #include "argon.mdl"
769
770 nComponents = 1;
771 component{
772  type = "Ar";
773  nMol = 108;
774 }
775
776 initialConfig = "./argon.init";
777
778 forceField = "LJ";
779 ensemble = "NVE";
780 dt = 1.0;
781 runTime = 1e3;
782 sampleTime = 100;
783 statusTime = 50;
784
785 \end{lstlisting}
786
787 \subsection{\label{oopseSec:coordFiles}Coordinate Files}
788
789 The standard format for storage of a systems coordinates is a modified
790 xyz-file syntax, the exact details of which can be seen in
791 Scheme~\ref{sch:dumpFormat}. As all bonding and molecular information
792 is stored in the \texttt{.bass} and \texttt{.mdl} files, the
793 coordinate files are simply the complete set of coordinates for each
794 atom at a given simulation time. One important note, although the
795 simulation propagates the complete rotation matrix, directional
796 entities are written out using quanternions, to save space in the
797 output files.
798
799 \begin{lstlisting}[float,caption={[The format of the coordinate files]Shows the format of the coordinate files. The fist line is the number of atoms. The second line begins with the time stamp followed by the three $\mathsf{H}$ column vectors. It is important to note, that for extended system ensembles, additional information pertinent to the integrators may be stored on this line as well. The next lines are the atomic coordinates for all atoms in the system. First is the name followed by position, velocity, quanternions, and lastly angular velocities.},label=sch:dumpFormat]
800
801 nAtoms
802 time; Hxx Hyx Hzx; Hxy Hyy Hzy; Hxz Hyz Hzz;
803 Name1 x y z vx vy vz q0 q1 q2 q3 jx jy jz
804 Name2 x y z vx vy vz q0 q1 q2 q3 jx jy jz
805 etc...
806
807 \end{lstlisting}
808
809
810 There are three major files used by {\sc oopse} written in the
811 coordinate format, they are as follows: the initialization file
812 (\texttt{.init}), the simulation trajectory file (\texttt{.dump}), and
813 the final coordinates of the simulation. The initialization file is
814 necessary for {\sc oopse} to start the simulation with the proper
815 coordinates, and is generated before the simulation run. The
816 trajectory file is created at the beginning of the simulation, and is
817 used to store snapshots of the simulation at regular intervals. The
818 first frame is a duplication of the
819 \texttt{.init} file, and each subsequent frame is appended to the file
820 at an interval specified in the \texttt{.bass} file with the
821 \texttt{sampleTime} flag. The final coordinate file is the end of run file. The
822 \texttt{.eor} file stores the final configuration of the system for a
823 given simulation. The file is updated at the same time as the
824 \texttt{.dump} file, however, it only contains the most recent
825 frame. In this way, an \texttt{.eor} file may be used as the
826 initialization file to a second simulation in order to continue a
827 simulation or recover one from a processor that has crashed during the
828 course of the run.
829
830 \subsection{\label{oopseSec:initCoords}Generation of Initial Coordinates}
831
832 As was stated in Sec.~\ref{oopseSec:coordFiles}, an initialization
833 file is needed to provide the starting coordinates for a
834 simulation. The {\sc oopse} package provides several system building
835 programs to aid in the creation of the \texttt{.init}
836 file. The programs use {\sc bass}, and will recognize
837 arguments and parameters in the \texttt{.bass} file that would
838 otherwise be ignored by the simulation.
839
840 \subsection{The Statistics File}
841
842 The last output file generated by {\sc oopse} is the statistics
843 file. This file records such statistical quantities as the
844 instantaneous temperature, volume, pressure, etc. It is written out
845 with the frequency specified in the \texttt{.bass} file with the
846 \texttt{statusTime} keyword. The file allows the user to observe the
847 system variables as a function of simulation time while the simulation
848 is in progress. One useful function the statistics file serves is to
849 monitor the conserved quantity of a given simulation ensemble, this
850 allows the user to observe the stability of the integrator. The
851 statistics file is denoted with the \texttt{.stat} file extension.
852
928   \section{\label{oopseSec:mechanics}Mechanics}
929  
930   \subsection{\label{oopseSec:integrate}Integrating the Equations of Motion: the
# Line 1637 | Line 1712 | simulations).
1712   orientational anisotropy in the system (i.e. in lipid bilayer
1713   simulations).
1714  
1715 < \subsection{\label{oopseSec:rattle}The {\sc rattle} Method for Bond
1715 > \subsection{\label{sec:constraints}Constraint Methods}
1716 >
1717 > \subsubsection{\label{oopseSec:rattle}The {\sc rattle} Method for Bond
1718          Constraints}
1719  
1720   In order to satisfy the constraints of fixed bond lengths within {\sc
1721   oopse}, we have implemented the {\sc rattle} algorithm of
1722   Andersen.\cite{andersen83} The algorithm is a velocity verlet
1723   formulation of the {\sc shake} method\cite{ryckaert77} of iteratively
1724 < solving the Lagrange multipliers of constraint. The system of Lagrange
1648 < multipliers allows one to reformulate the equations of motion with
1649 < explicit constraint forces.\cite{fowles99:lagrange}
1724 > solving the Lagrange multipliers of constraint.
1725  
1726 < Consider a system described by coordinates $q_1$ and $q_2$ subject to an
1652 < equation of constraint:
1653 < \begin{equation}
1654 < \sigma(q_1, q_2,t) = 0
1655 < \label{oopseEq:lm1}
1656 < \end{equation}
1657 < The Lagrange formulation of the equations of motion can be written:
1658 < \begin{equation}
1659 < \delta\int_{t_1}^{t_2}L\, dt =
1660 <        \int_{t_1}^{t_2} \sum_i \biggl [ \frac{\partial L}{\partial q_i}
1661 <        - \frac{d}{dt}\biggl(\frac{\partial L}{\partial \dot{q}_i}
1662 <        \biggr ) \biggr] \delta q_i \, dt = 0.
1663 < \label{oopseEq:lm2}
1664 < \end{equation}
1665 < Here, $\delta q_i$ is not independent for each $q$, as $q_1$ and $q_2$
1666 < are linked by $\sigma$. However, $\sigma$ is fixed at any given
1667 < instant of time, giving:
1668 < \begin{align}
1669 < \delta\sigma &= \biggl( \frac{\partial\sigma}{\partial q_1} \delta q_1 %
1670 <        + \frac{\partial\sigma}{\partial q_2} \delta q_2 \biggr) = 0 ,\\
1671 < %
1672 < \frac{\partial\sigma}{\partial q_1} \delta q_1 &= %
1673 <        - \frac{\partial\sigma}{\partial q_2} \delta q_2, \\
1674 < %
1675 < \delta q_2 &= - \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1676 <        \frac{\partial\sigma}{\partial q_2} \biggr) \delta q_1.
1677 < \end{align}
1678 < Substituted back into Eq.~\ref{oopseEq:lm2},
1679 < \begin{equation}
1680 < \int_{t_1}^{t_2}\biggl [ \biggl(\frac{\partial L}{\partial q_1}
1681 <        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1682 <        \biggr)
1683 <        - \biggl( \frac{\partial L}{\partial q_1}
1684 <        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1685 <        \biggr) \biggl(\frac{\partial\sigma}{\partial q_1} \bigg / %
1686 <        \frac{\partial\sigma}{\partial q_2} \biggr)\biggr] \delta q_1 \, dt = 0.
1687 < \label{oopseEq:lm3}
1688 < \end{equation}
1689 < Leading to,
1690 < \begin{equation}
1691 < \frac{\biggl(\frac{\partial L}{\partial q_1}
1692 <        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1693 <        \biggr)}{\frac{\partial\sigma}{\partial q_1}} =
1694 < \frac{\biggl(\frac{\partial L}{\partial q_2}
1695 <        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_2}
1696 <        \biggr)}{\frac{\partial\sigma}{\partial q_2}}.
1697 < \label{oopseEq:lm4}
1698 < \end{equation}
1699 < This relation can only be statisfied, if both are equal to a single
1700 < function $-\lambda(t)$,
1701 < \begin{align}
1702 < \frac{\biggl(\frac{\partial L}{\partial q_1}
1703 <        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1704 <        \biggr)}{\frac{\partial\sigma}{\partial q_1}} &= -\lambda(t), \\
1705 < %
1706 < \frac{\partial L}{\partial q_1}
1707 <        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1} &=
1708 <         -\lambda(t)\,\frac{\partial\sigma}{\partial q_1} ,\\
1709 < %
1710 < \frac{\partial L}{\partial q_1}
1711 <        - \frac{d}{dt}\,\frac{\partial L}{\partial \dot{q}_1}
1712 <         + \mathcal{G}_i &= 0,
1713 < \end{align}
1714 < where $\mathcal{G}_i$, the force of constraint on $i$, is:
1715 < \begin{equation}
1716 < \mathcal{G}_i = \lambda(t)\,\frac{\partial\sigma}{\partial q_1}.
1717 < \label{oopseEq:lm5}
1718 < \end{equation}
1719 <
1720 < In a simulation, this would involve the solution of a set of $(m + n)$
1721 < number of equations. Where $m$ is the number of constraints, and $n$
1722 < is the number of constrained coordinates. In practice, this is not
1723 < done, as the matrix inversion necessary to solve the system of
1724 < equations would be very time consuming to solve. Additionally, the
1725 < numerical error in the solution of the set of $\lambda$'s would be
1726 < compounded by the error inherent in propagating by the Velocity Verlet
1727 < algorithm ($\Delta t^4$). The Verlet propagation error is negligible
1728 < in an unconstrained system, as one is interested in the statistics of
1729 < the run, and not that the run be numerically exact to the ``true''
1730 < integration. This relates back to the ergodic hypothesis that a time
1731 < integral of a valid trajectory will still give the correct ensemble
1732 < average. However, in the case of constraints, if the equations of
1733 < motion leave the ``true'' trajectory, they are departing from the
1734 < constrained surface. The method that is used, is to iteratively solve
1735 < for $\lambda(t)$ at each time step.
1736 <
1737 < In {\sc rattle} the equations of motion are modified subject to the
1738 < following two constraints:
1739 < \begin{align}
1740 < \sigma_{ij}[\mathbf{r}(t)] \equiv
1741 <        [ \mathbf{r}_i(t) - \mathbf{r}_j(t)]^2  - d_{ij}^2 &= 0 %
1742 <        \label{oopseEq:c1}, \\
1743 < %
1744 < [\mathbf{\dot{r}}_i(t) - \mathbf{\dot{r}}_j(t)] \cdot
1745 <        [\mathbf{r}_i(t) - \mathbf{r}_j(t)] &= 0 .\label{oopseEq:c2}
1746 < \end{align}
1747 < Eq.~\ref{oopseEq:c1} is the set of bond constraints, where $d_{ij}$ is
1748 < the constrained distance between atom $i$ and
1749 < $j$. Eq.~\ref{oopseEq:c2} constrains the velocities of $i$ and $j$ to
1750 < be perpendicular to the bond vector, so that the bond can neither grow
1751 < nor shrink. The constrained dynamics equations become:
1752 < \begin{equation}
1753 < m_i \mathbf{\ddot{r}}_i = \mathbf{F}_i + \mathbf{\mathcal{G}}_i,
1754 < \label{oopseEq:r1}
1755 < \end{equation}
1756 < where,$\mathbf{\mathcal{G}}_i$ are the forces of constraint on $i$,
1757 < and are defined:
1758 < \begin{equation}
1759 < \mathbf{\mathcal{G}}_i = - \sum_j \lambda_{ij}(t)\,\nabla \sigma_{ij}.
1760 < \label{oopseEq:r2}
1761 < \end{equation}
1762 <
1763 < In Velocity Verlet, if $\Delta t = h$, the propagation can be written:
1764 < \begin{align}
1765 < \mathbf{r}_i(t+h) &=
1766 <        \mathbf{r}_i(t) + h\mathbf{\dot{r}}(t) +
1767 <        \frac{h^2}{2m_i}\,\Bigl[ \mathbf{F}_i(t) +
1768 <        \mathbf{\mathcal{G}}_{Ri}(t) \Bigr] \label{oopseEq:vv1}, \\
1769 < %
1770 < \mathbf{\dot{r}}_i(t+h) &=
1771 <        \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i}
1772 <        \Bigl[ \mathbf{F}_i(t) + \mathbf{\mathcal{G}}_{Ri}(t) +
1773 <        \mathbf{F}_i(t+h) + \mathbf{\mathcal{G}}_{Vi}(t+h) \Bigr] ,%
1774 <        \label{oopseEq:vv2}
1775 < \end{align}
1776 < where:
1777 < \begin{align}
1778 < \mathbf{\mathcal{G}}_{Ri}(t) &=
1779 <        -2 \sum_j \lambda_{Rij}(t) \mathbf{r}_{ij}(t) ,\\
1780 < %
1781 < \mathbf{\mathcal{G}}_{Vi}(t+h) &=
1782 <        -2 \sum_j \lambda_{Vij}(t+h) \mathbf{r}(t+h).
1783 < \end{align}
1784 < Next, define:
1785 < \begin{align}
1786 < g_{ij} &= h \lambda_{Rij}(t) ,\\
1787 < k_{ij} &= h \lambda_{Vij}(t+h), \\
1788 < \mathbf{q}_i &= \mathbf{\dot{r}}_i(t) + \frac{h}{2m_i} \mathbf{F}_i(t)
1789 <        - \frac{1}{m_i}\sum_j g_{ij}\mathbf{r}_{ij}(t).
1790 < \end{align}
1791 < Using these definitions, Eq.~\ref{oopseEq:vv1} and \ref{oopseEq:vv2}
1792 < can be rewritten as,
1793 < \begin{align}
1794 < \mathbf{r}_i(t+h) &= \mathbf{r}_i(t) + h \mathbf{q}_i ,\\
1795 < %
1796 < \mathbf{\dot{r}}(t+h) &= \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h)
1797 <        -\frac{1}{m_i}\sum_j k_{ij} \mathbf{r}_{ij}(t+h).
1798 < \end{align}
1799 <
1800 < To integrate the equations of motion, the {\sc rattle} algorithm first
1801 < solves for $\mathbf{r}(t+h)$. Let,
1802 < \begin{equation}
1803 < \mathbf{q}_i = \mathbf{\dot{r}}(t) + \frac{h}{2m_i}\mathbf{F}_i(t).
1804 < \end{equation}
1805 < Here $\mathbf{q}_i$ corresponds to an initial unconstrained move. Next
1806 < pick a constraint $j$, and let,
1807 < \begin{equation}
1808 < \mathbf{s} = \mathbf{r}_i(t) + h\mathbf{q}_i(t)
1809 <        - \mathbf{r}_j(t) + h\mathbf{q}_j(t).
1810 < \label{oopseEq:ra1}
1811 < \end{equation}
1812 < If
1813 < \begin{equation}
1814 < \Big| |\mathbf{s}|^2 - d_{ij}^2 \Big| > \text{tolerance},
1815 < \end{equation}
1816 < then the constraint is unsatisfied, and corrections are made to the
1817 < positions. First we define a test corrected configuration as,
1818 < \begin{align}
1819 < \mathbf{r}_i^T(t+h) = \mathbf{r}_i(t) + h\biggl[\mathbf{q}_i -
1820 <        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_i} \biggr] ,\\
1821 < %
1822 < \mathbf{r}_j^T(t+h) = \mathbf{r}_j(t) + h\biggl[\mathbf{q}_j +
1823 <        g_{ij}\,\frac{\mathbf{r}_{ij}(t)}{m_j} \biggr].
1824 < \end{align}
1825 < And we chose $g_{ij}$ such that, $|\mathbf{r}_i^T - \mathbf{r}_j^T|^2
1826 < = d_{ij}^2$. Solving the quadratic for $g_{ij}$ we obtain the
1827 < approximation,
1828 < \begin{equation}
1829 < g_{ij} = \frac{(s^2 - d^2)}{2h[\mathbf{s}\cdot\mathbf{r}_{ij}(t)]
1830 <        (\frac{1}{m_i} + \frac{1}{m_j})}.
1831 < \end{equation}
1832 < Although not an exact solution for $g_{ij}$, as this is an iterative
1833 < scheme overall, the eventual solution will converge. With a trial
1834 < $g_{ij}$, the new $\mathbf{q}$'s become,
1835 < \begin{align}
1836 < \mathbf{q}_i &= \mathbf{q}^{\text{old}}_i - g_{ij}\,
1837 <        \frac{\mathbf{r}_{ij}(t)}{m_i} ,\\
1838 < %
1839 < \mathbf{q}_j &= \mathbf{q}^{\text{old}}_j + g_{ij}\,
1840 <        \frac{\mathbf{r}_{ij}(t)}{m_j} .
1841 < \end{align}
1842 < The whole algorithm is then repeated from Eq.~\ref{oopseEq:ra1} until
1843 < all constraints are satisfied.
1844 <
1845 < The second step of {\sc rattle}, is to then update the velocities. The
1846 < step starts with,
1847 < \begin{equation}
1848 < \mathbf{\dot{r}}_i(t+h) = \mathbf{q}_i + \frac{h}{2m_i}\mathbf{F}_i(t+h).
1849 < \end{equation}
1850 < Next we pick a constraint $j$, and calculate the dot product $\ell$.
1851 < \begin{equation}
1852 < \ell = \mathbf{r}_{ij}(t+h) \cdot \mathbf{\dot{r}}_{ij}(t+h).
1853 < \label{oopseEq:rv1}
1854 < \end{equation}
1855 < Here if constraint Eq.~\ref{oopseEq:c2} holds, $\ell$ should be
1856 < zero. Therefore if $\ell$ is greater than some tolerance, then
1857 < corrections are made to the $i$ and $j$ velocities.
1858 < \begin{align}
1859 < \mathbf{\dot{r}}_i^T &= \mathbf{\dot{r}}_i(t+h) - k_{ij}
1860 <        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_i}, \\
1861 < %
1862 < \mathbf{\dot{r}}_j^T &= \mathbf{\dot{r}}_j(t+h) + k_{ij}
1863 <        \frac{\mathbf{\dot{r}}_{ij}(t+h)}{m_j}.
1864 < \end{align}
1865 < Like in the previous step, we select a value for $k_{ij}$ such that
1866 < $\ell$ is zero.
1867 < \begin{equation}
1868 < k_{ij} = \frac{\ell}{d^2_{ij}(\frac{1}{m_i} + \frac{1}{m_j})}.
1869 < \end{equation}
1870 < The test velocities, $\mathbf{\dot{r}}^T_i$ and
1871 < $\mathbf{\dot{r}}^T_j$, then replace their respective velocities, and
1872 < the algorithm is iterated from Eq.~\ref{oopseEq:rv1} until all
1873 < constraints are satisfied.
1726 > \subsubsection{\label{oopseSec:zcons}Z-Constraint Method}
1727  
1875
1876 \subsection{\label{oopseSec:zcons}Z-Constraint Method}
1877
1728   Based on the fluctuation-dissipation theorem, a force auto-correlation
1729   method was developed by Roux and Karplus to investigate the dynamics
1730   of ions inside ion channels.\cite{Roux91} The time-dependent friction
# Line 1959 | Line 1809 | F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\part
1809   \begin{equation}
1810   F_{z_{\text{Harmonic}}}(t)=-\frac{\partial U(t)}{\partial z(t)}=
1811          -k_{\text{Harmonic}}(z(t)-z_{\text{cons}}).
1962 \end{equation}
1963
1964 \section{\label{oopseSec:props}Trajectory Analysis}
1965
1966 \subsection{\label{oopseSec:staticProps}Static Property Analysis}
1967
1968 The static properties of the trajectories are analyzed with the
1969 program \texttt{staticProps}. The code is capable of calculating a
1970 number of pair correlations between species A and B. Some of which
1971 only apply to directional entities. The summary of pair correlations
1972 can be found in Table~\ref{oopseTb:gofrs}
1973
1974 \begin{table}
1975 \caption{THE DIFFERENT PAIR CORRELATIONS IN \texttt{staticProps}}
1976 \label{oopseTb:gofrs}
1977 \begin{center}
1978 \begin{tabular}{|l|c|c|}
1979 \hline
1980 Name      & Equation & Directional Atom \\ \hline
1981 $g_{\text{AB}}(r)$              & Eq.~\ref{eq:gofr}         & neither \\ \hline
1982 $g_{\text{AB}}(r, \cos \theta)$ & Eq.~\ref{eq:gofrCosTheta} & A \\ \hline
1983 $g_{\text{AB}}(r, \cos \omega)$ & Eq.~\ref{eq:gofrCosOmega} & both \\ \hline
1984 $g_{\text{AB}}(x, y, z)$        & Eq.~\ref{eq:gofrXYZ}      & neither \\ \hline
1985 $\langle \cos \omega \rangle_{\text{AB}}(r)$ & Eq.~\ref{eq:cosOmegaOfR} &%
1986        both \\ \hline
1987 \end{tabular}
1988 \begin{minipage}{\linewidth}
1989 \centering
1990 \vspace{2mm}
1991 The third column specifies which atom, if any, need be a directional entity.
1992 \end{minipage}
1993 \end{center}
1994 \end{table}
1995
1996 The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
1997 \begin{equation}
1998 g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
1999        \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
2000        \delta( r - |\mathbf{r}_{ij}|) \rangle, \label{eq:gofr}
2001 \end{equation}
2002 where $\mathbf{r}_{ij}$ is the vector
2003 \begin{equation*}
2004 \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i, \notag
2005 \end{equation*}
2006 and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
2007 the expected pair density at a given $r$.
2008
2009 The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
2010 $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
2011 dimensional histograms. Both use $r$ for the primary axis then a
2012 $\cos$ for the secondary axis ($\cos \theta$ for
2013 Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
2014 Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
2015 correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
2016 \theta)$ is defined as follows:
2017 \begin{equation}
2018 g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle  
2019 \sum_{i \in \text{A}} \sum_{j \in \text{B}}  
2020 \delta( \cos \theta - \cos \theta_{ij})
2021 \delta( r - |\mathbf{r}_{ij}|) \rangle.
2022 \label{eq:gofrCosTheta}
2023 \end{equation}
2024 Here
2025 \begin{equation*}
2026 \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij},
2027 \end{equation*}
2028 where $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
2029 and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
2030 $\mathbf{r}_{ij}$.
2031
2032 The second two dimensional histogram is of the form:
2033 \begin{equation}
2034 g_{\text{AB}}(r, \cos \omega) =
2035        \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2036        \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2037        \delta( \cos \omega - \cos \omega_{ij})
2038        \delta( r - |\mathbf{r}_{ij}|) \rangle. \label{eq:gofrCosOmega}
2039 \end{equation}
2040 Here
2041 \begin{equation*}
2042 \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}.
2043 \end{equation*}
2044 Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
2045 directional vectors of species $i$ and $j$.
2046
2047 The static analysis code is also cable of calculating a three
2048 dimensional pair correlation of the form:
2049 \begin{equation}\label{eq:gofrXYZ}
2050 g_{\text{AB}}(x, y, z) =
2051        \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
2052        \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2053        \delta( x - x_{ij})
2054        \delta( y - y_{ij})
2055        \delta( z - z_{ij}) \rangle,
1812   \end{equation}
2057 where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
2058 components respectively of vector $\mathbf{r}_{ij}$.
1813  
2060 The final pair correlation is similar to
2061 Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
2062 \rangle_{\text{AB}}(r)$ is calculated in the following way:
2063 \begin{equation}\label{eq:cosOmegaOfR}
2064 \langle \cos \omega \rangle_{\text{AB}}(r)  =
2065        \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
2066        (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle.
2067 \end{equation}
2068 Here $\cos \omega_{ij}$ is defined in the same way as in
2069 Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
2070 correlation that gives the average correlation of two directional
2071 entities as a function of their distance from each other.
2072
2073 \subsection{\label{dynamicProps}Dynamic Property Analysis}
2074
2075 The dynamic properties of a trajectory are calculated with the program
2076 \texttt{dynamicProps}. The program calculates the following properties:
2077 \begin{gather}
2078 \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle, \label{eq:rms}\\
2079 \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle, \label{eq:velCorr} \\
2080 \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle. \label{eq:angularVelCorr}
2081 \end{gather}
2082
2083 Eq.~\ref{eq:rms} is the root mean square displacement function. Which
2084 allows one to observe the average displacement of an atom as a
2085 function of time. The quantity is useful when calculating diffusion
2086 coefficients because of the Einstein Relation, which is valid at long
2087 times.\cite{allen87:csl}
2088 \begin{equation}
2089 2tD = \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle.
2090 \label{oopseEq:einstein}
2091 \end{equation}
2092
2093 Eq.~\ref{eq:velCorr} and \ref{eq:angularVelCorr} are the translational
2094 velocity and angular velocity correlation functions respectively. The
2095 latter is only applicable to directional species in the
2096 simulation. The velocity autocorrelation functions are useful when
2097 determining vibrational information about the system of interest.
2098
1814   \section{\label{oopseSec:design}Program Design}
1815  
1816   \subsection{\label{sec:architecture} {\sc oopse} Architecture}
# Line 2193 | Line 1908 | atoms.\cite{plimpton95}
1908   and favorably compete with spatial methods up to 100,000
1909   atoms.\cite{plimpton95}
1910  
2196 \subsection{\label{oopseSec:memAlloc}Memory Issues in Trajectory Analysis}
2197
2198 For large simulations, the trajectory files can sometimes reach sizes
2199 in excess of several gigabytes. In order to effectively analyze that
2200 amount of data, two memory management schemes have been devised for
2201 \texttt{staticProps} and for \texttt{dynamicProps}. The first scheme,
2202 developed for \texttt{staticProps}, is the simplest. As each frame's
2203 statistics are calculated independent of each other, memory is
2204 allocated for each frame, then freed once correlation calculations are
2205 complete for the snapshot. To prevent multiple passes through a
2206 potentially large file, \texttt{staticProps} is capable of calculating
2207 all requested correlations per frame with only a single pair loop in
2208 each frame and a single read of the file.
2209
2210 The second, more advanced memory scheme, is used by
2211 \texttt{dynamicProps}. Here, the program must have multiple frames in
2212 memory to calculate time dependent correlations. In order to prevent a
2213 situation where the program runs out of memory due to large
2214 trajectories, the user is able to specify that the trajectory be read
2215 in blocks. The number of frames in each block is specified by the
2216 user, and upon reading a block of the trajectory,
2217 \texttt{dynamicProps} will calculate all of the time correlation frame
2218 pairs within the block. After in-block correlations are complete, a
2219 second block of the trajectory is read, and the cross correlations are
2220 calculated between the two blocks. This second block is then freed and
2221 then incremented and the process repeated until the end of the
2222 trajectory. Once the end is reached, the first block is freed then
2223 incremented, and the again the internal time correlations are
2224 calculated. The algorithm with the second block is then repeated with
2225 the new origin block, until all frame pairs have been correlated in
2226 time. This process is illustrated in
2227 Fig.~\ref{oopseFig:dynamicPropsMemory}.
2228
2229 %\begin{figure}
2230 %\centering
2231 %\includegraphics[width=\linewidth]{dynamicPropsMem.eps}
2232 %\caption[A representation of the block correlations in \texttt{dynamicProps}]{This diagram illustrates the memory management used by \texttt{dynamicProps}, which follows the scheme: $\sum^{N_{\text{memory blocks}}}_{i=1}[ \operatorname{self}(i) + \sum^{N_{\text{memory blocks}}}_{j>i} \operatorname{cross}(i,j)]$. The shaded region represents the self correlation of the memory block, and the open blocks are read one at a time and the cross correlations between blocks are calculated.}
2233 %\label{oopseFig:dynamicPropsMemory}
2234 %\end{figure}
2235
1911   \section{\label{oopseSec:conclusion}Conclusion}
1912  
1913   We have presented the design and implementation of our open source
# Line 2254 | Line 1929 | well.
1929  
1930   \newpage
1931   \section{Acknowledgments}
1932 < The authors would like to thank espresso for fueling this work, and
2258 < would also like to send a special acknowledgement to single malt
2259 < scotch for its wonderful calming effects and its ability to make the
2260 < troubles of the world float away.
1932 > The authors would like to thank the Notre Dame BoB computer cluster where much of this project was tested. Additionally, the authors would like to acknowledge their funding from {\LARGE FIX ME}.
1933  
1934   \bibliographystyle{achemso}
1935   \bibliography{oopsePaper}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines