ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/analysis.tex
(Generate patch)

Comparing trunk/oopsePaper/analysis.tex (file contents):
Revision 691 by mmeineke, Wed Aug 13 14:49:07 2003 UTC vs.
Revision 695 by mmeineke, Wed Aug 13 21:22:44 2003 UTC

# Line 3 | Line 3 | program staticProps. The code is capable of calculatin
3   \subsection{Static Property Analysis}
4   The static properties of the trajectories are analyzed with the
5   program staticProps. The code is capable of calculating the following
6 < properties:
6 > pair correlations between species A and B:
7   \begin{itemize}
8          \item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr}
9          \item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta}
# Line 13 | Line 13 | properties:
13                  Eq.~\ref{eq:cosOmegaOfR}
14   \end{itemize}
15  
16 + The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
17   \begin{equation}
18   g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
19          \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
20          \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
21   \end{equation}
22 + Where $\mathbf{r}_{ij}$ is the vector
23 + \begin{equation*}
24 + \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
25 + \end{equation*}
26 + and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
27 + the expected pair density at a given $r$.
28  
29 + The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
30 + $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
31 + dimensional histograms. Both use $r$ for the primary axis then a
32 + $\cos$ for the secondary axis ($\cos \theta$ for
33 + Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
34 + Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
35 + correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
36 + \theta)$ is defined as follows:
37   \begin{multline}
38   g_{\text{AB}}(r, \cos \theta) = \\
39          \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
40          \sum_{i \in \text{A}} \sum_{j \in \text{B}}
41          \delta( \cos \theta - \cos \theta_{ij})
42 <        \delta( r - |\mathbf{r}_{ij}|) \rangle
28 < \label{eq:gofrCosTheta}
42 >        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosTheta}
43   \end{multline}
44 + Where
45 + \begin{equation*}
46 + \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
47 + \end{equation*}
48 + Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
49 + and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
50 + $\mathbf{r}_{ij}$.
51  
52 < \begin{multline}\label{eq:gofrCosOmega}
52 > The second two dimensional histogram is of the form:
53 > \begin{multline}
54   g_{\text{AB}}(r, \cos \omega) = \\
55          \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
56          \sum_{i \in \text{A}} \sum_{j \in \text{B}}
57          \delta( \cos \omega - \cos \omega_{ij})
58 <        \delta( r - |\mathbf{r}_{ij}|) \rangle
58 >        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
59   \end{multline}
60 + Here
61 + \begin{equation*}
62 + \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
63 + \end{equation*}
64 + Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
65 + directional vectors of species $i$ and $j$.
66  
67 + The static analysis code is also cable of calculating a three
68 + dimensional pair correlation of the form:
69   \begin{multline}\label{eq:gofrXYZ}
70   g_{\text{AB}}(x, y, z) = \\
71          \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
# Line 44 | Line 74 | g_{\text{AB}}(x, y, z) = \\
74          \delta( y - y_{ij})
75          \delta( z - z_{ij}) \rangle
76   \end{multline}
77 + Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
78 + components respectively of vector $\mathbf{r}_{ij}$.
79  
80 + The final pair correlation is similar to
81 + Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
82 + \rangle_{\text{AB}}(r)$ is calculated in the following way:
83   \begin{equation}\label{eq:cosOmegaOfR}
84 < \langle \cos \omega \rangle_{\text{AB}}(r) =
84 > \langle \cos \omega \rangle_{\text{AB}}(r)  =
85          \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
86          (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
87   \end{equation}
88 + Here $\cos \omega_{ij}$ is defined in the same way as in
89 + Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
90 + correlation that gives the average correlation of two directional
91 + entities as a function of their distance from each other.
92 +
93 + \subsection{Dynamic Property Analysis}
94 + The dynamic properties of a trajectory are calculated with the program
95 + dynamicProps.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines