1 |
\section{Analysis Code} |
2 |
|
3 |
\subsection{Static Property Analysis} |
4 |
The static properties of the trajectories are analyzed with the |
5 |
program staticProps. The code is capable of calculating the following |
6 |
pair correlations between species A and B: |
7 |
\begin{itemize} |
8 |
\item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr} |
9 |
\item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta} |
10 |
\item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega} |
11 |
\item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ} |
12 |
\item $\langle \cos \omega \rangle_{\text{AB}}(r)$: |
13 |
Eq.~\ref{eq:cosOmegaOfR} |
14 |
\end{itemize} |
15 |
|
16 |
The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows: |
17 |
\begin{equation} |
18 |
g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %% |
19 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} %% |
20 |
\delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr} |
21 |
\end{equation} |
22 |
Where $\mathbf{r}_{ij}$ is the vector |
23 |
\begin{equation*} |
24 |
\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag |
25 |
\end{equation*} |
26 |
and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over |
27 |
the expected pair density at a given $r$. |
28 |
|
29 |
The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and |
30 |
$g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two |
31 |
dimensional histograms. Both use $r$ for the primary axis then a |
32 |
$\cos$ for the secondary axis ($\cos \theta$ for |
33 |
Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for |
34 |
Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to |
35 |
correlate alignment on directional entities. $g_{\text{AB}}(r, \cos |
36 |
\theta)$ is defined as follows: |
37 |
\begin{multline} |
38 |
g_{\text{AB}}(r, \cos \theta) = \\ |
39 |
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
40 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
41 |
\delta( \cos \theta - \cos \theta_{ij}) |
42 |
\delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosTheta} |
43 |
\end{multline} |
44 |
Where |
45 |
\begin{equation*} |
46 |
\cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij} |
47 |
\end{equation*} |
48 |
Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$ |
49 |
and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector |
50 |
$\mathbf{r}_{ij}$. |
51 |
|
52 |
The second two dimensional histogram is of the form: |
53 |
\begin{multline} |
54 |
g_{\text{AB}}(r, \cos \omega) = \\ |
55 |
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
56 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
57 |
\delta( \cos \omega - \cos \omega_{ij}) |
58 |
\delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega} |
59 |
\end{multline} |
60 |
Here |
61 |
\begin{equation*} |
62 |
\cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}} |
63 |
\end{equation*} |
64 |
Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit |
65 |
directional vectors of species $i$ and $j$. |
66 |
|
67 |
The static analysis code is also cable of calculating a three |
68 |
dimensional pair correlation of the form: |
69 |
\begin{multline}\label{eq:gofrXYZ} |
70 |
g_{\text{AB}}(x, y, z) = \\ |
71 |
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
72 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
73 |
\delta( x - x_{ij}) |
74 |
\delta( y - y_{ij}) |
75 |
\delta( z - z_{ij}) \rangle |
76 |
\end{multline} |
77 |
Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$ |
78 |
components respectively of vector $\mathbf{r}_{ij}$. |
79 |
|
80 |
The final pair correlation is similar to |
81 |
Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega |
82 |
\rangle_{\text{AB}}(r)$ is calculated in the following way: |
83 |
\begin{equation}\label{eq:cosOmegaOfR} |
84 |
\langle \cos \omega \rangle_{\text{AB}}(r) = |
85 |
\langle \sum_{i \in \text{A}} \sum_{j \in \text{B}} |
86 |
(\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle |
87 |
\end{equation} |
88 |
Here $\cos \omega_{ij}$ is defined in the same way as in |
89 |
Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair |
90 |
correlation that gives the average correlation of two directional |
91 |
entities as a function of their distance from each other. |
92 |
|
93 |
\subsection{Dynamic Property Analysis} |
94 |
The dynamic properties of a trajectory are calculated with the program |
95 |
dynamicProps. |