ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/analysis.tex
Revision: 695
Committed: Wed Aug 13 21:22:44 2003 UTC (21 years, 8 months ago) by mmeineke
Content type: application/x-tex
File size: 3802 byte(s)
Log Message:
added text to the analysis code.

File Contents

# Content
1 \section{Analysis Code}
2
3 \subsection{Static Property Analysis}
4 The static properties of the trajectories are analyzed with the
5 program staticProps. The code is capable of calculating the following
6 pair correlations between species A and B:
7 \begin{itemize}
8 \item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr}
9 \item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta}
10 \item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega}
11 \item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ}
12 \item $\langle \cos \omega \rangle_{\text{AB}}(r)$:
13 Eq.~\ref{eq:cosOmegaOfR}
14 \end{itemize}
15
16 The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
17 \begin{equation}
18 g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
19 \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
20 \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
21 \end{equation}
22 Where $\mathbf{r}_{ij}$ is the vector
23 \begin{equation*}
24 \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
25 \end{equation*}
26 and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
27 the expected pair density at a given $r$.
28
29 The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
30 $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
31 dimensional histograms. Both use $r$ for the primary axis then a
32 $\cos$ for the secondary axis ($\cos \theta$ for
33 Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
34 Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
35 correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
36 \theta)$ is defined as follows:
37 \begin{multline}
38 g_{\text{AB}}(r, \cos \theta) = \\
39 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
40 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
41 \delta( \cos \theta - \cos \theta_{ij})
42 \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosTheta}
43 \end{multline}
44 Where
45 \begin{equation*}
46 \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
47 \end{equation*}
48 Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
49 and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
50 $\mathbf{r}_{ij}$.
51
52 The second two dimensional histogram is of the form:
53 \begin{multline}
54 g_{\text{AB}}(r, \cos \omega) = \\
55 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
56 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
57 \delta( \cos \omega - \cos \omega_{ij})
58 \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
59 \end{multline}
60 Here
61 \begin{equation*}
62 \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
63 \end{equation*}
64 Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
65 directional vectors of species $i$ and $j$.
66
67 The static analysis code is also cable of calculating a three
68 dimensional pair correlation of the form:
69 \begin{multline}\label{eq:gofrXYZ}
70 g_{\text{AB}}(x, y, z) = \\
71 \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
72 \sum_{i \in \text{A}} \sum_{j \in \text{B}}
73 \delta( x - x_{ij})
74 \delta( y - y_{ij})
75 \delta( z - z_{ij}) \rangle
76 \end{multline}
77 Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
78 components respectively of vector $\mathbf{r}_{ij}$.
79
80 The final pair correlation is similar to
81 Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
82 \rangle_{\text{AB}}(r)$ is calculated in the following way:
83 \begin{equation}\label{eq:cosOmegaOfR}
84 \langle \cos \omega \rangle_{\text{AB}}(r) =
85 \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
86 (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
87 \end{equation}
88 Here $\cos \omega_{ij}$ is defined in the same way as in
89 Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
90 correlation that gives the average correlation of two directional
91 entities as a function of their distance from each other.
92
93 \subsection{Dynamic Property Analysis}
94 The dynamic properties of a trajectory are calculated with the program
95 dynamicProps.