ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/analysis.tex
(Generate patch)

Comparing trunk/oopsePaper/analysis.tex (file contents):
Revision 663 by mmeineke, Fri Aug 1 20:22:36 2003 UTC vs.
Revision 695 by mmeineke, Wed Aug 13 21:22:44 2003 UTC

# Line 1 | Line 1
1   \section{Analysis Code}
2  
3 < We ran some numbers through some functions. Did that a couple of times
4 < in quick succession to obtain some lovely graphs.\cite{allen87:csl}
3 > \subsection{Static Property Analysis}
4 > The static properties of the trajectories are analyzed with the
5 > program staticProps. The code is capable of calculating the following
6 > pair correlations between species A and B:
7 > \begin{itemize}
8 >        \item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr}
9 >        \item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta}
10 >        \item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega}
11 >        \item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ}
12 >        \item $\langle \cos \omega \rangle_{\text{AB}}(r)$:
13 >                Eq.~\ref{eq:cosOmegaOfR}
14 > \end{itemize}
15  
16 + The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
17 + \begin{equation}
18 + g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
19 +        \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
20 +        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
21 + \end{equation}
22 + Where $\mathbf{r}_{ij}$ is the vector
23 + \begin{equation*}
24 + \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
25 + \end{equation*}
26 + and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
27 + the expected pair density at a given $r$.
28  
29 + The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
30 + $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
31 + dimensional histograms. Both use $r$ for the primary axis then a
32 + $\cos$ for the secondary axis ($\cos \theta$ for
33 + Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
34 + Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
35 + correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
36 + \theta)$ is defined as follows:
37 + \begin{multline}
38 + g_{\text{AB}}(r, \cos \theta) = \\
39 +        \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
40 +        \sum_{i \in \text{A}} \sum_{j \in \text{B}}
41 +        \delta( \cos \theta - \cos \theta_{ij})
42 +        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosTheta}
43 + \end{multline}
44 + Where
45 + \begin{equation*}
46 + \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
47 + \end{equation*}
48 + Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
49 + and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
50 + $\mathbf{r}_{ij}$.
51 +
52 + The second two dimensional histogram is of the form:
53 + \begin{multline}
54 + g_{\text{AB}}(r, \cos \omega) = \\
55 +        \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
56 +        \sum_{i \in \text{A}} \sum_{j \in \text{B}}
57 +        \delta( \cos \omega - \cos \omega_{ij})
58 +        \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
59 + \end{multline}
60 + Here
61 + \begin{equation*}
62 + \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
63 + \end{equation*}
64 + Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
65 + directional vectors of species $i$ and $j$.
66 +
67 + The static analysis code is also cable of calculating a three
68 + dimensional pair correlation of the form:
69 + \begin{multline}\label{eq:gofrXYZ}
70 + g_{\text{AB}}(x, y, z) = \\
71 +        \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
72 +        \sum_{i \in \text{A}} \sum_{j \in \text{B}}
73 +        \delta( x - x_{ij})
74 +        \delta( y - y_{ij})
75 +        \delta( z - z_{ij}) \rangle
76 + \end{multline}
77 + Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
78 + components respectively of vector $\mathbf{r}_{ij}$.
79 +
80 + The final pair correlation is similar to
81 + Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
82 + \rangle_{\text{AB}}(r)$ is calculated in the following way:
83 + \begin{equation}\label{eq:cosOmegaOfR}
84 + \langle \cos \omega \rangle_{\text{AB}}(r)  =
85 +        \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
86 +        (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
87 + \end{equation}
88 + Here $\cos \omega_{ij}$ is defined in the same way as in
89 + Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
90 + correlation that gives the average correlation of two directional
91 + entities as a function of their distance from each other.
92 +
93 + \subsection{Dynamic Property Analysis}
94 + The dynamic properties of a trajectory are calculated with the program
95 + dynamicProps.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines