1 |
\section{Analysis Code} |
2 |
|
3 |
\subsection{Static Property Analysis} |
4 |
The static properties of the trajectories are analyzed with the |
5 |
program staticProps. The code is capable of calculating the following |
6 |
properties: |
7 |
\begin{itemize} |
8 |
\item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr} |
9 |
\item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta} |
10 |
\item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega} |
11 |
\item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ} |
12 |
\item $\langle \cos \omega \rangle_{\text{AB}}(r)$: |
13 |
Eq.~\ref{eq:cosOmegaOfR} |
14 |
\end{itemize} |
15 |
|
16 |
\begin{equation} |
17 |
g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %% |
18 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} %% |
19 |
\delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr} |
20 |
\end{equation} |
21 |
|
22 |
\begin{multline} |
23 |
g_{\text{AB}}(r, \cos \theta) = \\ |
24 |
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
25 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
26 |
\delta( \cos \theta - \cos \theta_{ij}) |
27 |
\delta( r - |\mathbf{r}_{ij}|) \rangle |
28 |
\label{eq:gofrCosTheta} |
29 |
\end{multline} |
30 |
|
31 |
\begin{multline}\label{eq:gofrCosOmega} |
32 |
g_{\text{AB}}(r, \cos \omega) = \\ |
33 |
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
34 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
35 |
\delta( \cos \omega - \cos \omega_{ij}) |
36 |
\delta( r - |\mathbf{r}_{ij}|) \rangle |
37 |
\end{multline} |
38 |
|
39 |
\begin{multline}\label{eq:gofrXYZ} |
40 |
g_{\text{AB}}(x, y, z) = \\ |
41 |
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
42 |
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
43 |
\delta( x - x_{ij}) |
44 |
\delta( y - y_{ij}) |
45 |
\delta( z - z_{ij}) \rangle |
46 |
\end{multline} |
47 |
|
48 |
\begin{equation}\label{eq:cosOmegaOfR} |
49 |
\langle \cos \omega \rangle_{\text{AB}}(r) = |
50 |
\langle \sum_{i \in \text{A}} \sum_{j \in \text{B}} |
51 |
(\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle |
52 |
\end{equation} |