| 1 |
mmeineke |
710 |
\section{\label{sec:analysis}Analysis Code} |
| 2 |
mmeineke |
662 |
|
| 3 |
mmeineke |
710 |
\subsection{\label{subSec:staticProbs}Static Property Analysis} |
| 4 |
mmeineke |
668 |
The static properties of the trajectories are analyzed with the |
| 5 |
mmeineke |
697 |
program \texttt{staticProps}. The code is capable of calculating the following |
| 6 |
mmeineke |
695 |
pair correlations between species A and B: |
| 7 |
mmeineke |
668 |
\begin{itemize} |
| 8 |
mmeineke |
691 |
\item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr} |
| 9 |
|
|
\item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta} |
| 10 |
|
|
\item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega} |
| 11 |
|
|
\item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ} |
| 12 |
mmeineke |
668 |
\item $\langle \cos \omega \rangle_{\text{AB}}(r)$: |
| 13 |
mmeineke |
691 |
Eq.~\ref{eq:cosOmegaOfR} |
| 14 |
mmeineke |
668 |
\end{itemize} |
| 15 |
mmeineke |
662 |
|
| 16 |
mmeineke |
695 |
The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows: |
| 17 |
mmeineke |
691 |
\begin{equation} |
| 18 |
|
|
g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %% |
| 19 |
|
|
\sum_{i \in \text{A}} \sum_{j \in \text{B}} %% |
| 20 |
|
|
\delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr} |
| 21 |
mmeineke |
668 |
\end{equation} |
| 22 |
mmeineke |
695 |
Where $\mathbf{r}_{ij}$ is the vector |
| 23 |
|
|
\begin{equation*} |
| 24 |
|
|
\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag |
| 25 |
|
|
\end{equation*} |
| 26 |
|
|
and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over |
| 27 |
|
|
the expected pair density at a given $r$. |
| 28 |
mmeineke |
662 |
|
| 29 |
mmeineke |
695 |
The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and |
| 30 |
|
|
$g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two |
| 31 |
|
|
dimensional histograms. Both use $r$ for the primary axis then a |
| 32 |
|
|
$\cos$ for the secondary axis ($\cos \theta$ for |
| 33 |
|
|
Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for |
| 34 |
|
|
Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to |
| 35 |
|
|
correlate alignment on directional entities. $g_{\text{AB}}(r, \cos |
| 36 |
|
|
\theta)$ is defined as follows: |
| 37 |
mmeineke |
691 |
\begin{multline} |
| 38 |
mmeineke |
668 |
g_{\text{AB}}(r, \cos \theta) = \\ |
| 39 |
|
|
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
| 40 |
|
|
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 41 |
|
|
\delta( \cos \theta - \cos \theta_{ij}) |
| 42 |
mmeineke |
695 |
\delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosTheta} |
| 43 |
mmeineke |
668 |
\end{multline} |
| 44 |
mmeineke |
695 |
Where |
| 45 |
|
|
\begin{equation*} |
| 46 |
|
|
\cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij} |
| 47 |
|
|
\end{equation*} |
| 48 |
|
|
Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$ |
| 49 |
|
|
and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector |
| 50 |
|
|
$\mathbf{r}_{ij}$. |
| 51 |
mmeineke |
668 |
|
| 52 |
mmeineke |
695 |
The second two dimensional histogram is of the form: |
| 53 |
|
|
\begin{multline} |
| 54 |
mmeineke |
668 |
g_{\text{AB}}(r, \cos \omega) = \\ |
| 55 |
|
|
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
| 56 |
|
|
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 57 |
|
|
\delta( \cos \omega - \cos \omega_{ij}) |
| 58 |
mmeineke |
695 |
\delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega} |
| 59 |
mmeineke |
668 |
\end{multline} |
| 60 |
mmeineke |
695 |
Here |
| 61 |
|
|
\begin{equation*} |
| 62 |
|
|
\cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}} |
| 63 |
|
|
\end{equation*} |
| 64 |
|
|
Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit |
| 65 |
|
|
directional vectors of species $i$ and $j$. |
| 66 |
mmeineke |
668 |
|
| 67 |
mmeineke |
695 |
The static analysis code is also cable of calculating a three |
| 68 |
|
|
dimensional pair correlation of the form: |
| 69 |
mmeineke |
668 |
\begin{multline}\label{eq:gofrXYZ} |
| 70 |
|
|
g_{\text{AB}}(x, y, z) = \\ |
| 71 |
|
|
\frac{V}{N_{\text{A}}N_{\text{B}}}\langle |
| 72 |
|
|
\sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 73 |
|
|
\delta( x - x_{ij}) |
| 74 |
|
|
\delta( y - y_{ij}) |
| 75 |
|
|
\delta( z - z_{ij}) \rangle |
| 76 |
|
|
\end{multline} |
| 77 |
mmeineke |
695 |
Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$ |
| 78 |
|
|
components respectively of vector $\mathbf{r}_{ij}$. |
| 79 |
mmeineke |
668 |
|
| 80 |
mmeineke |
695 |
The final pair correlation is similar to |
| 81 |
|
|
Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega |
| 82 |
|
|
\rangle_{\text{AB}}(r)$ is calculated in the following way: |
| 83 |
mmeineke |
668 |
\begin{equation}\label{eq:cosOmegaOfR} |
| 84 |
mmeineke |
695 |
\langle \cos \omega \rangle_{\text{AB}}(r) = |
| 85 |
mmeineke |
668 |
\langle \sum_{i \in \text{A}} \sum_{j \in \text{B}} |
| 86 |
|
|
(\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle |
| 87 |
|
|
\end{equation} |
| 88 |
mmeineke |
695 |
Here $\cos \omega_{ij}$ is defined in the same way as in |
| 89 |
|
|
Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair |
| 90 |
|
|
correlation that gives the average correlation of two directional |
| 91 |
|
|
entities as a function of their distance from each other. |
| 92 |
|
|
|
| 93 |
mmeineke |
697 |
All static properties are calculated on a frame by frame basis. The |
| 94 |
|
|
trajectory is read a single frame at a time, and the appropriate |
| 95 |
|
|
calculations are done on each frame. Once one frame is finished, the |
| 96 |
|
|
next frame is read in, and a running average of the property being |
| 97 |
|
|
calculated is accumulated in each frame. The program allows for the |
| 98 |
|
|
user to specify more than one property be calculated in single run, |
| 99 |
|
|
preventing the need to read a file multiple times. |
| 100 |
|
|
|
| 101 |
mmeineke |
710 |
\subsection{\label{dynamicProps}Dynamic Property Analysis} |
| 102 |
|
|
|
| 103 |
mmeineke |
695 |
The dynamic properties of a trajectory are calculated with the program |
| 104 |
mmeineke |
697 |
\texttt{dynamicProps}. The program will calculate the following properties: |
| 105 |
|
|
\begin{gather} |
| 106 |
|
|
\langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle \label{eq:rms}\\ |
| 107 |
|
|
\langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \label{eq:velCorr} \\ |
| 108 |
|
|
\langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \label{eq:angularVelCorr} |
| 109 |
|
|
\end{gather} |
| 110 |
|
|
|
| 111 |
|
|
Eq.~\ref{eq:rms} is the root mean square displacement |
| 112 |
|
|
function. Eq.~\ref{eq:velCorr} and Eq.~\ref{eq:angularVelCorr} are the |
| 113 |
|
|
velocity and angular velocity correlation functions respectively. The |
| 114 |
|
|
latter is only applicable to directional species in the simulation. |
| 115 |
|
|
|
| 116 |
|
|
The \texttt{dynamicProps} program handles he file in a manner different from |
| 117 |
|
|
\texttt{staticProps}. As the properties calculated by this program are time |
| 118 |
|
|
dependent, multiple frames must be read in simultaneously by the |
| 119 |
|
|
program. For small trajectories this is no problem, and the entire |
| 120 |
|
|
trajectory is read into memory. However, for long trajectories of |
| 121 |
|
|
large systems, the files can be quite large. In order to accommodate |
| 122 |
|
|
large files, \texttt{dynamicProps} adopts a scheme whereby two blocks of memory |
| 123 |
|
|
are allocated to read in several frames each. |
| 124 |
|
|
|
| 125 |
|
|
In this two block scheme, the correlation functions are first |
| 126 |
|
|
calculated within each memory block, then the cross correlations |
| 127 |
|
|
between the frames contained within the two blocks are |
| 128 |
|
|
calculated. Once completed, the memory blocks are incremented, and the |
| 129 |
|
|
process is repeated. A diagram illustrating the process is shown in |
| 130 |
|
|
Fig.~\ref{fig:dynamicPropsMemory}. As was the case with \texttt{staticProps}, |
| 131 |
|
|
multiple properties may be calculated in a single run to avoid |
| 132 |
|
|
multiple reads on the same file. |
| 133 |
|
|
|
| 134 |
|
|
\begin{figure} |
| 135 |
mmeineke |
709 |
\includegraphics[angle=-90,width=80mm]{dynamicPropsMem.eps} |
| 136 |
|
|
\caption{This diagram illustrates the dynamic memory allocation used by \texttt{dynamicProps}, which follows the scheme: $\sum^{N_{\text{memory blocks}}}_{i=1}[ \operatorname{self}(i) + \sum^{N_{\text{memory blocks}}}_{j>i} \operatorname{cross}(i,j)]$. The shaded region represents the self correlation of the memory block, and the open blocks are read one at a time and the cross correlations between blocks are calculated.} |
| 137 |
mmeineke |
697 |
\label{fig:dynamicPropsMemory} |
| 138 |
|
|
\end{figure} |