| 1 |
|
|
| 2 |
< |
\section{\label{sec:empericalEnergy}The Emperical Energy Functions} |
| 2 |
> |
\section{\label{sec:empiricalEnergy}The Empirical Energy Functions} |
| 3 |
|
|
| 4 |
|
\subsection{\label{sec:atomsMolecules}Atoms, Molecules and Rigid Bodies} |
| 5 |
|
|
| 6 |
< |
The basic unit of an {\sc oopse} simulation is the atom. The parameters |
| 7 |
< |
describing the atom are generalized to make the atom as flexible a |
| 8 |
< |
representation as possible. They may represent specific atoms of an |
| 9 |
< |
element, or be used for collections of atoms such as a methyl |
| 10 |
< |
group. The atoms are also capable of having a directional component |
| 11 |
< |
associated with them, often in the form of a dipole. Charges on atoms |
| 12 |
< |
are not currently suported by {\sc oopse}. |
| 6 |
> |
The basic unit of an {\sc oopse} simulation is the atom. The |
| 7 |
> |
parameters describing the atom are generalized to make the atom as |
| 8 |
> |
flexible a representation as possible. They may represent specific |
| 9 |
> |
atoms of an element, or be used for collections of atoms such as |
| 10 |
> |
methyl and carbonyl groups. The atoms are also capable of having |
| 11 |
> |
directional components associated with them (\emph{e.g.}~permanent |
| 12 |
> |
dipoles). Charges on atoms are not currently supported by {\sc oopse}. |
| 13 |
|
|
| 14 |
+ |
\begin{lstlisting}[caption={[Specifier for molecules and atoms] An example specifying the simple Ar molecule},label=sch:AtmMole] |
| 15 |
+ |
molecule{ |
| 16 |
+ |
name = "Ar"; |
| 17 |
+ |
nAtoms = 1; |
| 18 |
+ |
atom[0]{ |
| 19 |
+ |
type="Ar"; |
| 20 |
+ |
position( 0.0, 0.0, 0.0 ); |
| 21 |
+ |
} |
| 22 |
+ |
} |
| 23 |
+ |
\end{lstlisting} |
| 24 |
+ |
|
| 25 |
|
The second most basic building block of a simulation is the |
| 26 |
|
molecule. The molecule is a way for {\sc oopse} to keep track of the |
| 27 |
|
atoms in a simulation in logical manner. This particular unit will |
| 79 |
|
|
| 80 |
|
\subsection{\label{sec:LJPot}The Lennard Jones Potential} |
| 81 |
|
|
| 82 |
< |
The most basic force field implemented in OOPSE is the Lennard-Jones |
| 82 |
> |
The most basic force field implemented in {\sc oopse} is the Lennard-Jones |
| 83 |
|
potential. The Lennard-Jones potential. Which mimics the Van der Waals |
| 84 |
< |
interaction at long distances, and uses an emperical repulsion at |
| 84 |
> |
interaction at long distances, and uses an empirical repulsion at |
| 85 |
|
short distances. The Lennard-Jones potential is given by: |
| 86 |
|
\begin{equation} |
| 87 |
|
V_{\text{LJ}}(r_{ij}) = |
| 97 |
|
|
| 98 |
|
Because this potential is calculated between all pairs, the force |
| 99 |
|
evaluation can become computationally expensive for large systems. To |
| 100 |
< |
keep the pair evaluation to a manegable number, OOPSE employs a |
| 100 |
> |
keep the pair evaluation to a manageable number, {\sc oopse} employs a |
| 101 |
|
cut-off radius.\cite{allen87:csl} The cutoff radius is set to be |
| 102 |
|
$2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest Lennard-Jones length |
| 103 |
|
parameter in the system. Truncating the calculation at |
| 145 |
|
phosphatidylcholine.\cite{Cevc87} Additionally, a Lennard-Jones site |
| 146 |
|
is located at the pseudoatom's center of mass. The model is |
| 147 |
|
illustrated by the dark grey atom in Fig.~\ref{fig:lipidModel}. The water model we use to complement the dipoles of the lipids is out |
| 148 |
< |
repaarameterization of the soft sticky dipole (SSD) model of Ichiye |
| 148 |
> |
reparameterization of the soft sticky dipole (SSD) model of Ichiye |
| 149 |
|
\emph{et al.}\cite{liu96:new_model} |
| 150 |
|
|
| 151 |
|
\begin{figure} |
| 224 |
|
\end{equation} |
| 225 |
|
Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$, |
| 226 |
|
$j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). For |
| 227 |
< |
computaional efficency, the torsion potential has been recast after |
| 227 |
> |
computational efficiency, the torsion potential has been recast after |
| 228 |
|
the method of CHARMM\cite{charmm1983} whereby the angle series is |
| 229 |
|
converted to a power series of the form: |
| 230 |
|
\begin{equation} |
| 279 |
|
$\boldsymbol{\Omega}_i$. |
| 280 |
|
|
| 281 |
|
|
| 282 |
< |
\subsection{\label{sec:SSD}The {\sc DUFF} Water Models: SSD/E and SSD/RF} |
| 282 |
> |
\subsection{\label{sec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF} |
| 283 |
|
|
| 284 |
|
In the interest of computational efficiency, the default solvent used |
| 285 |
< |
in {\sc oopse} is the Soft Sticky Dipole (SSD) water model. SSD was |
| 286 |
< |
developed by Ichiye \emph{et al.} as a modified form of the |
| 287 |
< |
hard-sphere water model proposed by Bratko, Blum, and |
| 285 |
> |
by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water |
| 286 |
> |
model.\cite{Gezelter04} The original SSD was developed by Ichiye |
| 287 |
> |
\emph{et al.}\cite{Ichiye96} as a modified form of the hard-sphere |
| 288 |
> |
water model proposed by Bratko, Blum, and |
| 289 |
|
Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole |
| 290 |
|
with a Lennard-Jones core and a sticky potential that directs the |
| 291 |
|
particles to assume the proper hydrogen bond orientation in the first |
| 344 |
|
{\it charged} multi-point models. In the original Monte Carlo |
| 345 |
|
simulations using this model, Ichiye {\it et al.} reported that using |
| 346 |
|
SSD decreased computer time by a factor of 6-7 compared to other |
| 347 |
< |
models.\cite{Ichiye96} What is most impressive is that this savings |
| 347 |
> |
models.\cite{Ichiye96} What is most impressive is that these savings |
| 348 |
|
did not come at the expense of accurate depiction of the liquid state |
| 349 |
|
properties. Indeed, SSD maintains reasonable agreement with the Soper |
| 350 |
< |
data for the structural features of liquid |
| 350 |
> |
diffraction data for the structural features of liquid |
| 351 |
|
water.\cite{Soper86,Ichiye96} Additionally, the dynamical properties |
| 352 |
|
exhibited by SSD agree with experiment better than those of more |
| 353 |
|
computationally expensive models (like TIP3P and |
| 358 |
|
Recent constant pressure simulations revealed issues in the original |
| 359 |
|
SSD model that led to lower than expected densities at all target |
| 360 |
|
pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse} |
| 361 |
< |
is SSD/E, a density corrected derivative of SSD that exhibits improved |
| 362 |
< |
liquid structure and transport behavior. If the use of a reaction |
| 363 |
< |
field long-range interaction correction is desired, it is recommended |
| 364 |
< |
that the parameters be modified to those of the SSD/RF model. Solvent |
| 365 |
< |
parameters can be easily modified in an accompanying {\sc BASS} file |
| 366 |
< |
as illustrated in the scheme below. A table of the parameter values |
| 367 |
< |
and the drawbacks and benefits of the different density corrected SSD |
| 368 |
< |
models can be found in reference \ref{Gezelter04}. |
| 361 |
> |
is therefore SSD/E, a density corrected derivative of SSD that |
| 362 |
> |
exhibits improved liquid structure and transport behavior. If the use |
| 363 |
> |
of a reaction field long-range interaction correction is desired, it |
| 364 |
> |
is recommended that the parameters be modified to those of the SSD/RF |
| 365 |
> |
model. Solvent parameters can be easily modified in an accompanying |
| 366 |
> |
{\sc BASS} file as illustrated in the scheme below. A table of the |
| 367 |
> |
parameter values and the drawbacks and benefits of the different |
| 368 |
> |
density corrected SSD models can be found in reference |
| 369 |
> |
\ref{Gezelter04}. |
| 370 |
|
|
| 371 |
|
!!!Place a {\sc BASS} scheme showing SSD parameters around here!!! |
| 372 |
|
|
| 384 |
|
describes the interaction of the positively charged metal core ions |
| 385 |
|
with one another. A particular potential description called the |
| 386 |
|
Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}({\sc eam}) that has |
| 387 |
< |
particularly wide adoption has been selected for inclusion in OOPSE. A |
| 387 |
> |
particularly wide adoption has been selected for inclusion in {\sc oopse}. A |
| 388 |
|
good review of {\sc eam} and other metallic potential formulations was done |
| 389 |
|
by Voter.\cite{voter} |
| 390 |
|
|
| 397 |
|
|
| 398 |
|
where $F_{i} $ is the embedding function that equates the energy required to embed a |
| 399 |
|
positively-charged core ion $i$ into a linear superposition of |
| 400 |
< |
sperically averaged atomic electron densities given by |
| 400 |
> |
spherically averaged atomic electron densities given by |
| 401 |
|
$\rho_{i}$. $\phi_{ij}$ is a primarily repulsive pairwise interaction |
| 402 |
|
between atoms $i$ and $j$. In the original formulation of |
| 403 |
|
{\sc eam} cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term, however |
| 423 |
|
simulation box is large enough to avoid "feeling" the symmetries of |
| 424 |
|
the periodic lattice, surface effects can be ignored. Cubic, |
| 425 |
|
orthorhombic and parallelepiped are the available periodic cells In |
| 426 |
< |
OOPSE. We use a matrix to describe the property of the simulation |
| 426 |
> |
{\sc oopse}. We use a matrix to describe the property of the simulation |
| 427 |
|
box. Therefore, both the size and shape of the simulation box can be |
| 428 |
|
changed during the simulation. The transformation from box space |
| 429 |
|
vector $\mathbf{s}$ to its corresponding real space vector |