| 397 |
|
|
| 398 |
|
|
| 399 |
|
\subsection{\label{Sec:pbc}Periodic Boundary Conditions} |
| 400 |
+ |
|
| 401 |
+ |
\newcommand{\roundme}{\operatorname{round}} |
| 402 |
|
|
| 403 |
|
\textit{Periodic boundary conditions} are widely used to simulate truly |
| 404 |
|
macroscopic systems with a relatively small number of particles. The |
| 431 |
|
\end{equation} |
| 432 |
|
And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5, |
| 433 |
|
\begin{equation} |
| 434 |
< |
s_{i}^{\prime}=s_{i}-round(s_{i}) |
| 434 |
> |
s_{i}^{\prime}=s_{i}-\roundme(s_{i}) |
| 435 |
|
\end{equation} |
| 436 |
|
where |
| 437 |
|
|
| 438 |
|
% |
| 439 |
|
|
| 440 |
|
\begin{equation} |
| 441 |
< |
round(x)=\left\{ |
| 442 |
< |
\begin{array}[c]{c}% |
| 441 |
> |
\roundme(x)=\left\{ |
| 442 |
> |
\begin{array}{cc} |
| 443 |
|
\lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\ |
| 444 |
|
\lceil{x-0.5}\rceil & \text{otherwise}% |
| 445 |
|
\end{array} |
| 446 |
|
\right. |
| 447 |
|
\end{equation} |
| 448 |
+ |
For example, $\roundme(3.6)=4$, $\roundme(3.1)=3$, $\roundme(-3.6)=-4$, |
| 449 |
+ |
$\roundme(-3.1)=-3$. |
| 450 |
|
|
| 447 |
– |
|
| 448 |
– |
For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, |
| 449 |
– |
$round(-3.1)=-3$. |
| 450 |
– |
|
| 451 |
|
Finally, we obtain the minimum image coordinates by transforming back |
| 452 |
|
to real space,% |
| 453 |
|
|