ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/EmpericalEnergy.tex
Revision: 967
Committed: Tue Jan 20 14:17:21 2004 UTC (21 years, 3 months ago) by chrisfen
Content type: application/x-tex
File size: 21394 byte(s)
Log Message:
Corrected .bib file entries

File Contents

# User Rev Content
1 mmeineke 806
2 mmeineke 966 \section{\label{sec:empiricalEnergy}The Empirical Energy Functions}
3 mmeineke 806
4 mmeineke 915 \subsection{\label{sec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
5 mmeineke 806
6 mmeineke 966 The basic unit of an {\sc oopse} simulation is the atom. The
7     parameters describing the atom are generalized to make the atom as
8     flexible a representation as possible. They may represent specific
9     atoms of an element, or be used for collections of atoms such as
10     methyl and carbonyl groups. The atoms are also capable of having
11     directional components associated with them (\emph{e.g.}~permanent
12     dipoles). Charges on atoms are not currently supported by {\sc oopse}.
13 mmeineke 806
14 mmeineke 966 \begin{lstlisting}[caption={[Specifier for molecules and atoms] An example specifying the simple Ar molecule},label=sch:AtmMole]
15 mmeineke 964 molecule{
16     name = "Ar";
17     nAtoms = 1;
18     atom[0]{
19     type="Ar";
20     position( 0.0, 0.0, 0.0 );
21     }
22     }
23     \end{lstlisting}
24    
25 mmeineke 806 The second most basic building block of a simulation is the
26 chrisfen 925 molecule. The molecule is a way for {\sc oopse} to keep track of the
27     atoms in a simulation in logical manner. This particular unit will
28     store the identities of all the atoms associated with itself and is
29     responsible for the evaluation of its own bonded interaction
30     (i.e.~bonds, bends, and torsions).
31 mmeineke 899
32 chrisfen 935 As stated previously, one of the features that sets {\sc oopse} apart
33 mmeineke 915 from most of the current molecular simulation packages is the ability
34     to handle rigid body dynamics. Rigid bodies are non-spherical
35     particles or collections of particles that have a constant internal
36     potential and move collectively.\cite{Goldstein01} They are not
37 chrisfen 935 included in most simulation packages because of the requirement to
38     propagate the orientational degrees of freedom. Until recently,
39     integrators which propagate orientational motion have been lacking.
40 mmeineke 915
41     Moving a rigid body involves determination of both the force and
42     torque applied by the surroundings, which directly affect the
43 chrisfen 935 translational and rotational motion in turn. In order to accumulate
44     the total force on a rigid body, the external forces and torques must
45     first be calculated for all the internal particles. The total force on
46     the rigid body is simply the sum of these external forces.
47     Accumulation of the total torque on the rigid body is more complex
48     than the force in that it is the torque applied on the center of mass
49     that dictates rotational motion. The torque on rigid body {\it i} is
50 chrisfen 925 \begin{equation}
51 chrisfen 935 \boldsymbol{\tau}_i=
52     \sum_{a}(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia}
53     + \boldsymbol{\tau}_{ia},
54 chrisfen 925 \label{eq:torqueAccumulate}
55     \end{equation}
56 chrisfen 935 where $\boldsymbol{\tau}_i$ and $\mathbf{r}_i$ are the torque on and
57     position of the center of mass respectively, while $\mathbf{f}_{ia}$,
58     $\mathbf{r}_{ia}$, and $\boldsymbol{\tau}_{ia}$ are the force on,
59     position of, and torque on the component particles of the rigid body.
60 mmeineke 915
61 chrisfen 935 The summation of the total torque is done in the body fixed axis of
62 mmeineke 915 the rigid body. In order to move between the space fixed and body
63 chrisfen 925 fixed coordinate axes, parameters describing the orientation must be
64     maintained for each rigid body. At a minimum, the rotation matrix
65 chrisfen 935 (\textbf{A}) can be described by the three Euler angles ($\phi,
66     \theta,$ and $\psi$), where the elements of \textbf{A} are composed of
67 chrisfen 925 trigonometric operations involving $\phi, \theta,$ and
68 chrisfen 935 $\psi$.\cite{Goldstein01} In order to avoid numerical instabilities
69 chrisfen 925 inherent in using the Euler angles, the four parameter ``quaternion''
70 chrisfen 935 scheme is often used. The elements of \textbf{A} can be expressed as
71     arithmetic operations involving the four quaternions ($q_0, q_1, q_2,$
72     and $q_3$).\cite{allen87:csl} Use of quaternions also leads to
73     performance enhancements, particularly for very small
74 chrisfen 925 systems.\cite{Evans77}
75 mmeineke 915
76 chrisfen 935 {\sc oopse} utilizes a relatively new scheme that propagates the
77     entire nine parameter rotation matrix internally. Further discussion
78     on this choice can be found in Sec.~\ref{sec:integrate}.
79 chrisfen 925
80 mmeineke 915 \subsection{\label{sec:LJPot}The Lennard Jones Potential}
81    
82 mmeineke 966 The most basic force field implemented in {\sc oopse} is the Lennard-Jones
83 mmeineke 930 potential. The Lennard-Jones potential. Which mimics the Van der Waals
84 mmeineke 966 interaction at long distances, and uses an empirical repulsion at
85 mmeineke 930 short distances. The Lennard-Jones potential is given by:
86 mmeineke 915 \begin{equation}
87     V_{\text{LJ}}(r_{ij}) =
88     4\epsilon_{ij} \biggl[
89     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
90     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
91     \biggr]
92     \label{eq:lennardJonesPot}
93     \end{equation}
94 mmeineke 930 Where $r_{ij}$ is the distance between particle $i$ and $j$,
95     $\sigma_{ij}$ scales the length of the interaction, and
96     $\epsilon_{ij}$ scales the well depth of the potential.
97 mmeineke 915
98 mmeineke 930 Because this potential is calculated between all pairs, the force
99 mmeineke 915 evaluation can become computationally expensive for large systems. To
100 mmeineke 966 keep the pair evaluation to a manageable number, {\sc oopse} employs a
101 mmeineke 930 cut-off radius.\cite{allen87:csl} The cutoff radius is set to be
102     $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest Lennard-Jones length
103 mmeineke 915 parameter in the system. Truncating the calculation at
104     $r_{\text{cut}}$ introduces a discontinuity into the potential
105     energy. To offset this discontinuity, the energy value at
106     $r_{\text{cut}}$ is subtracted from the entire potential. This causes
107 mmeineke 930 the potential to go to zero at the cut-off radius.
108 mmeineke 915
109     Interactions between dissimilar particles requires the generation of
110     cross term parameters for $\sigma$ and $\epsilon$. These are
111     calculated through the Lorentz-Berthelot mixing
112     rules:\cite{allen87:csl}
113     \begin{equation}
114     \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
115     \label{eq:sigmaMix}
116     \end{equation}
117     and
118     \begin{equation}
119     \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
120     \label{eq:epsilonMix}
121     \end{equation}
122    
123    
124 mmeineke 899 \subsection{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
125    
126 mmeineke 930 The Dipolar Unified-atom Force Field ({\sc duff}) was developed to
127     simulate lipid bilayers. The systems require a model capable of forming
128 mmeineke 899 bilayers, while still being sufficiently computationally efficient to
129     allow simulations of large systems ($\approx$100's of phospholipids,
130     $\approx$1000's of waters) for long times ($\approx$10's of
131     nanoseconds).
132    
133 mmeineke 930 With this goal in mind, {\sc duff} has no point charges. Charge
134     neutral distributions were replaced with dipoles, while most atoms and
135     groups of atoms were reduced to Lennard-Jones interaction sites. This
136 mmeineke 899 simplification cuts the length scale of long range interactions from
137     $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
138 mmeineke 930 computationally expensive Ewald sum. Instead, we can use
139     neighbor-lists, reaction field, and cutoff radii for the dipolar
140     interactions.
141 mmeineke 899
142 mmeineke 930 As an example, lipid head-groups in {\sc duff} are represented as
143     point dipole interaction sites. By placing a dipole of 20.6~Debye at
144     the head group center of mass, our model mimics the head group of
145     phosphatidylcholine.\cite{Cevc87} Additionally, a Lennard-Jones site
146     is located at the pseudoatom's center of mass. The model is
147     illustrated by the dark grey atom in Fig.~\ref{fig:lipidModel}. The water model we use to complement the dipoles of the lipids is out
148 mmeineke 966 reparameterization of the soft sticky dipole (SSD) model of Ichiye
149 mmeineke 930 \emph{et al.}\cite{liu96:new_model}
150 mmeineke 899
151     \begin{figure}
152 mmeineke 930 \epsfxsize=\linewidth
153 mmeineke 918 \epsfbox{lipidModel.eps}
154 mmeineke 899 \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
155 mmeineke 930 is the bend angle, $\mu$ is the dipole moment of the head group, and n
156     is the chain length.}
157 mmeineke 899 \label{fig:lipidModel}
158     \end{figure}
159    
160     Turning to the tails of the phospholipids, we have used a set of
161     scalable parameters to model the alkyl groups with Lennard-Jones
162     sites. For this, we have used the TraPPE force field of Siepmann
163     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
164     representation of n-alkanes, which is parametrized against phase
165     equilibria using Gibbs Monte Carlo simulation
166     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
167     it generalizes the types of atoms in an alkyl chain to keep the number
168     of pseudoatoms to a minimum; the parameters for an atom such as
169     $\text{CH}_2$ do not change depending on what species are bonded to
170     it.
171    
172     TraPPE also constrains of all bonds to be of fixed length. Typically,
173     bond vibrations are the fastest motions in a molecular dynamic
174     simulation. Small time steps between force evaluations must be used to
175     ensure adequate sampling of the bond potential conservation of
176     energy. By constraining the bond lengths, larger time steps may be
177     used when integrating the equations of motion.
178    
179    
180     \subsubsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
181    
182     The total energy of function in {\sc duff} is given by the following:
183     \begin{equation}
184     V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
185 mmeineke 930 + \sum^{N}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}}
186 mmeineke 899 \label{eq:totalPotential}
187     \end{equation}
188     Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
189     \begin{equation}
190     V^{I}_{\text{Internal}} =
191     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
192 mmeineke 930 + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
193 mmeineke 899 + \sum_{i \in I} \sum_{(j>i+4) \in I}
194     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
195     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
196     \biggr]
197     \label{eq:internalPotential}
198     \end{equation}
199     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
200 mmeineke 930 within the molecule, and $V_{\text{torsion}}$ is the torsion potential
201     for all 1, 4 bonded pairs. The pairwise portions of the internal
202     potential are excluded for pairs that are closer than three bonds,
203     i.e.~atom pairs farther away than a torsion are included in the
204     pair-wise loop.
205 mmeineke 899
206    
207     The bend potential of a molecule is represented by the following function:
208     \begin{equation}
209     V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
210     \end{equation}
211     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
212     (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
213     bond angle. $k_{\theta}$ is the force constant which determines the
214     strength of the harmonic bend. The parameters for $k_{\theta}$ and
215     $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
216    
217     The torsion potential and parameters are also taken from TraPPE. It is
218     of the form:
219     \begin{equation}
220 mmeineke 930 V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
221 mmeineke 899 + c_2[1 + \cos(2\phi)]
222     + c_3[1 + \cos(3\phi)]
223     \label{eq:origTorsionPot}
224     \end{equation}
225     Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
226 mmeineke 930 $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). For
227 mmeineke 966 computational efficiency, the torsion potential has been recast after
228 mmeineke 930 the method of CHARMM\cite{charmm1983} whereby the angle series is
229     converted to a power series of the form:
230 mmeineke 899 \begin{equation}
231     V_{\text{torsion}}(\phi_{ijkl}) =
232     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
233     \label{eq:torsionPot}
234     \end{equation}
235     Where:
236     \begin{align*}
237     k_0 &= c_1 + c_3 \\
238     k_1 &= c_1 - 3c_3 \\
239     k_2 &= 2 c_2 \\
240     k_3 &= 4c_3
241     \end{align*}
242     By recasting the equation to a power series, repeated trigonometric
243     evaluations are avoided during the calculation of the potential.
244    
245    
246 mmeineke 930 The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
247     as follows:
248     \begin{equation}
249     V^{IJ}_{\text{Cross}} =
250     \sum_{i \in I} \sum_{j \in J}
251     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
252     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
253     + V_{\text{sticky}}
254     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
255     \biggr]
256     \label{eq:crossPotentail}
257     \end{equation}
258     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
259     $V_{\text{dipole}}$ is the dipole dipole potential, and
260     $V_{\text{sticky}}$ is the sticky potential defined by the SSD
261     model. Note that not all atom types include all interactions.
262 mmeineke 915
263 mmeineke 899 The dipole-dipole potential has the following form:
264     \begin{equation}
265     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
266 mmeineke 930 \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
267     \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
268 mmeineke 899 -
269 mmeineke 930 \frac{3(\boldsymbol{\hat{u}}_i \cdot \mathbf{r}_{ij}) %
270     (\boldsymbol{\hat{u}}_j \cdot \mathbf{r}_{ij}) }
271     {r^{2}_{ij}} \biggr]
272 mmeineke 899 \label{eq:dipolePot}
273     \end{equation}
274     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
275     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
276 mmeineke 930 are the Euler angles of atom $i$ and $j$ respectively. $|\mu_i|$ is
277     the magnitude of the dipole moment of atom $i$ and
278     $\boldsymbol{\hat{u}}_i$ is the standard unit orientation vector of
279     $\boldsymbol{\Omega}_i$.
280 mmeineke 899
281    
282 mmeineke 966 \subsection{\label{sec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF}
283 mmeineke 899
284 chrisfen 925 In the interest of computational efficiency, the default solvent used
285 chrisfen 961 by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water
286     model.\cite{Gezelter04} The original SSD was developed by Ichiye
287 chrisfen 967 \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
288 chrisfen 961 water model proposed by Bratko, Blum, and
289 mmeineke 899 Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
290     with a Lennard-Jones core and a sticky potential that directs the
291     particles to assume the proper hydrogen bond orientation in the first
292     solvation shell. Thus, the interaction between two SSD water molecules
293     \emph{i} and \emph{j} is given by the potential
294     \begin{equation}
295 chrisfen 925 V_{ij} =
296     V_{ij}^{LJ} (r_{ij})\ + V_{ij}^{dp}
297     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
298     V_{ij}^{sp}
299     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
300     \label{eq:ssdPot}
301 mmeineke 899 \end{equation}
302     where the $\mathbf{r}_{ij}$ is the position vector between molecules
303 chrisfen 925 \emph{i} and \emph{j} with magnitude equal to the distance $r_{ij}$, and
304 mmeineke 899 $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
305 chrisfen 925 orientations of the respective molecules. The Lennard-Jones and dipole
306     parts of the potential are given by equations \ref{eq:lennardJonesPot}
307     and \ref{eq:dipolePot} respectively. The sticky part is described by
308     the following,
309 mmeineke 899 \begin{equation}
310 chrisfen 925 u_{ij}^{sp}(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=
311     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},
312     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) +
313     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},
314     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
315     \label{eq:stickyPot}
316 mmeineke 899 \end{equation}
317 chrisfen 925 where $\nu_0$ is a strength parameter for the sticky potential, and
318     $s$ and $s^\prime$ are cubic switching functions which turn off the
319     sticky interaction beyond the first solvation shell. The $w$ function
320     can be thought of as an attractive potential with tetrahedral
321     geometry:
322 mmeineke 899 \begin{equation}
323 chrisfen 925 w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
324     \sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
325     \label{eq:stickyW}
326 mmeineke 899 \end{equation}
327 chrisfen 925 while the $w^\prime$ function counters the normal aligned and
328     anti-aligned structures favored by point dipoles:
329 mmeineke 899 \begin{equation}
330 chrisfen 925 w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
331     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
332     \label{eq:stickyWprime}
333 mmeineke 899 \end{equation}
334 chrisfen 925 It should be noted that $w$ is proportional to the sum of the $Y_3^2$
335     and $Y_3^{-2}$ spherical harmonics (a linear combination which
336     enhances the tetrahedral geometry for hydrogen bonded structures),
337     while $w^\prime$ is a purely empirical function. A more detailed
338     description of the functional parts and variables in this potential
339     can be found in the original SSD
340 chrisfen 967 articles.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md,Ichiye03}
341 mmeineke 899
342 chrisfen 925 Since SSD is a single-point {\it dipolar} model, the force
343     calculations are simplified significantly relative to the standard
344     {\it charged} multi-point models. In the original Monte Carlo
345     simulations using this model, Ichiye {\it et al.} reported that using
346     SSD decreased computer time by a factor of 6-7 compared to other
347 chrisfen 967 models.\cite{liu96:new_model} What is most impressive is that these savings
348 chrisfen 925 did not come at the expense of accurate depiction of the liquid state
349     properties. Indeed, SSD maintains reasonable agreement with the Soper
350 chrisfen 961 diffraction data for the structural features of liquid
351 chrisfen 967 water.\cite{Soper86,liu96:new_model} Additionally, the dynamical properties
352 chrisfen 925 exhibited by SSD agree with experiment better than those of more
353     computationally expensive models (like TIP3P and
354 chrisfen 967 SPC/E).\cite{chandra99:ssd_md} The combination of speed and accurate depiction
355 chrisfen 925 of solvent properties makes SSD a very attractive model for the
356     simulation of large scale biochemical simulations.
357 mmeineke 899
358     Recent constant pressure simulations revealed issues in the original
359     SSD model that led to lower than expected densities at all target
360 chrisfen 925 pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse}
361 chrisfen 961 is therefore SSD/E, a density corrected derivative of SSD that
362     exhibits improved liquid structure and transport behavior. If the use
363     of a reaction field long-range interaction correction is desired, it
364     is recommended that the parameters be modified to those of the SSD/RF
365     model. Solvent parameters can be easily modified in an accompanying
366     {\sc BASS} file as illustrated in the scheme below. A table of the
367     parameter values and the drawbacks and benefits of the different
368     density corrected SSD models can be found in reference
369     \ref{Gezelter04}.
370 mmeineke 899
371 chrisfen 925 !!!Place a {\sc BASS} scheme showing SSD parameters around here!!!
372 mmeineke 899
373 mmeineke 930 \subsection{\label{sec:eam}Embedded Atom Method}
374 mmeineke 899
375 chuckv 931 Several other molecular dynamics packages\cite{dynamo86} exist which have the
376 mmeineke 918 capacity to simulate metallic systems, including some that have
377     parallel computational abilities\cite{plimpton93}. Potentials that
378     describe bonding transition metal
379     systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have a
380 chuckv 931 attractive interaction which models ``Embedding''
381     a positively charged metal ion in the electron density due to the
382 mmeineke 918 free valance ``sea'' of electrons created by the surrounding atoms in
383     the system. A mostly repulsive pairwise part of the potential
384     describes the interaction of the positively charged metal core ions
385     with one another. A particular potential description called the
386 chuckv 931 Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}({\sc eam}) that has
387 mmeineke 966 particularly wide adoption has been selected for inclusion in {\sc oopse}. A
388 chuckv 931 good review of {\sc eam} and other metallic potential formulations was done
389 mmeineke 918 by Voter.\cite{voter}
390 mmeineke 915
391 mmeineke 918 The {\sc eam} potential has the form:
392     \begin{eqnarray}
393     V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
394     \phi_{ij}({\bf r}_{ij}) \\
395     \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
396 chuckv 932 \end{eqnarray}S
397 mmeineke 918
398 chuckv 932 where $F_{i} $ is the embedding function that equates the energy required to embed a
399     positively-charged core ion $i$ into a linear superposition of
400 mmeineke 966 spherically averaged atomic electron densities given by
401 chuckv 931 $\rho_{i}$. $\phi_{ij}$ is a primarily repulsive pairwise interaction
402     between atoms $i$ and $j$. In the original formulation of
403     {\sc eam} cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term, however
404 chuckv 933 in later refinements to EAM have shown that non-uniqueness between $F$
405 chuckv 931 and $\phi$ allow for more general forms for $\phi$.\cite{Daw89}
406     There is a cutoff distance, $r_{cut}$, which limits the
407 mmeineke 918 summations in the {\sc eam} equation to the few dozen atoms
408     surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
409 chuckv 931 interactions. Foiles et al. fit EAM potentials for fcc metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals\cite{FDB86}. These potential fits are in the DYNAMO 86 format and are included with {\sc oopse}.
410 mmeineke 918
411 chuckv 931
412 mmeineke 915 \subsection{\label{Sec:pbc}Periodic Boundary Conditions}
413 mmeineke 937
414     \newcommand{\roundme}{\operatorname{round}}
415 mmeineke 915
416 mmeineke 930 \textit{Periodic boundary conditions} are widely used to simulate truly
417     macroscopic systems with a relatively small number of particles. The
418     simulation box is replicated throughout space to form an infinite
419     lattice. During the simulation, when a particle moves in the primary
420     cell, its image in other boxes move in exactly the same direction with
421     exactly the same orientation.Thus, as a particle leaves the primary
422     cell, one of its images will enter through the opposite face.If the
423     simulation box is large enough to avoid "feeling" the symmetries of
424     the periodic lattice, surface effects can be ignored. Cubic,
425     orthorhombic and parallelepiped are the available periodic cells In
426 mmeineke 966 {\sc oopse}. We use a matrix to describe the property of the simulation
427 mmeineke 930 box. Therefore, both the size and shape of the simulation box can be
428     changed during the simulation. The transformation from box space
429     vector $\mathbf{s}$ to its corresponding real space vector
430     $\mathbf{r}$ is defined by
431     \begin{equation}
432     \mathbf{r}=\underline{\underline{H}}\cdot\mathbf{s}%
433     \end{equation}
434    
435    
436     where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of
437     the three box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the
438     three sides of the simulation box respectively.
439    
440     To find the minimum image, we convert the real vector to its
441     corresponding vector in box space first, \bigskip%
442     \begin{equation}
443     \mathbf{s}=\underline{\underline{H}}^{-1}\cdot\mathbf{r}%
444     \end{equation}
445     And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5,
446     \begin{equation}
447 mmeineke 937 s_{i}^{\prime}=s_{i}-\roundme(s_{i})
448 mmeineke 930 \end{equation}
449     where
450    
451     %
452    
453     \begin{equation}
454 mmeineke 937 \roundme(x)=\left\{
455     \begin{array}{cc}
456 mmeineke 930 \lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\
457     \lceil{x-0.5}\rceil & \text{otherwise}%
458     \end{array}
459     \right.
460     \end{equation}
461 mmeineke 937 For example, $\roundme(3.6)=4$, $\roundme(3.1)=3$, $\roundme(-3.6)=-4$,
462     $\roundme(-3.1)=-3$.
463 mmeineke 930
464     Finally, we obtain the minimum image coordinates by transforming back
465     to real space,%
466    
467     \begin{equation}
468     \mathbf{r}^{\prime}=\underline{\underline{H}}^{-1}\cdot\mathbf{s}^{\prime}%
469     \end{equation}
470