ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/EmpericalEnergy.tex
Revision: 933
Committed: Tue Jan 13 20:03:21 2004 UTC (21 years, 3 months ago) by chuckv
Content type: application/x-tex
File size: 20830 byte(s)
Log Message:
more changes to eam section.

File Contents

# User Rev Content
1 mmeineke 806
2 mmeineke 899 \section{\label{sec:empericalEnergy}The Emperical Energy Functions}
3 mmeineke 806
4 mmeineke 915 \subsection{\label{sec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
5 mmeineke 806
6 gezelter 818 The basic unit of an {\sc oopse} simulation is the atom. The parameters
7 mmeineke 806 describing the atom are generalized to make the atom as flexible a
8     representation as possible. They may represent specific atoms of an
9     element, or be used for collections of atoms such as a methyl
10     group. The atoms are also capable of having a directional component
11     associated with them, often in the form of a dipole. Charges on atoms
12 mmeineke 930 are not currently suported by {\sc oopse}.
13 mmeineke 806
14     The second most basic building block of a simulation is the
15 chrisfen 925 molecule. The molecule is a way for {\sc oopse} to keep track of the
16     atoms in a simulation in logical manner. This particular unit will
17     store the identities of all the atoms associated with itself and is
18     responsible for the evaluation of its own bonded interaction
19     (i.e.~bonds, bends, and torsions).
20 mmeineke 899
21 chrisfen 925 As stated previously, one of the features that sets {\sc OOPSE} apart
22 mmeineke 915 from most of the current molecular simulation packages is the ability
23     to handle rigid body dynamics. Rigid bodies are non-spherical
24     particles or collections of particles that have a constant internal
25     potential and move collectively.\cite{Goldstein01} They are not
26 chrisfen 925 included in most simulation packages because of the need to
27 mmeineke 915 consider orientational degrees of freedom and include an integrator
28     that accurately propagates these motions in time.
29    
30     Moving a rigid body involves determination of both the force and
31     torque applied by the surroundings, which directly affect the
32     translation and rotation in turn. In order to accumulate the total
33     force on a rigid body, the external forces must first be calculated
34 chrisfen 925 for all the internal particles. The total force on the rigid body is
35 mmeineke 915 simply the sum of these external forces. Accumulation of the total
36 chrisfen 925 torque on the rigid body is more complex than the force in that it is
37     the torque applied on the center of mass that dictates rotational
38     motion. The summation of this torque is given by
39     \begin{equation}
40     \mathbf{\tau}_i=
41     \sum_{a}(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia},
42     \label{eq:torqueAccumulate}
43     \end{equation}
44     where $\mathbf{\tau}_i$ and $\mathbf{r}_i$ are the torque about and
45     position of the center of mass respectively, while $\mathbf{f}_{ia}$
46     and $\mathbf{r}_{ia}$ are the force on and position of the component
47     particles of the rigid body.\cite{allen87:csl}
48 mmeineke 915
49     The application of the total torque is done in the body fixed axis of
50     the rigid body. In order to move between the space fixed and body
51 chrisfen 925 fixed coordinate axes, parameters describing the orientation must be
52     maintained for each rigid body. At a minimum, the rotation matrix
53     (\textbf{A}) can be described and propagated by the three Euler angles
54     ($\phi, \theta, \text{and} \psi$), where \textbf{A} is composed of
55     trigonometric operations involving $\phi, \theta,$ and
56     $\psi$.\cite{Goldstein01} In order to avoid rotational limitations
57     inherent in using the Euler angles, the four parameter ``quaternion''
58     scheme can be used instead, where \textbf{A} is composed of arithmetic
59     operations involving the four components of a quaternion ($q_0, q_1,
60     q_2, \text{and} q_3$).\cite{allen87:csl} Use of quaternions also leads
61     to performance enhancements, particularly for very small
62     systems.\cite{Evans77}
63 mmeineke 915
64 chrisfen 925 {\sc OOPSE} utilizes a relatively new scheme that uses the entire nine
65     parameter rotation matrix internally. Further discussion on this
66     choice can be found in Sec.~\ref{sec:integrate}.
67    
68 mmeineke 915 \subsection{\label{sec:LJPot}The Lennard Jones Potential}
69    
70     The most basic force field implemented in OOPSE is the Lennard-Jones
71 mmeineke 930 potential. The Lennard-Jones potential. Which mimics the Van der Waals
72     interaction at long distances, and uses an emperical repulsion at
73     short distances. The Lennard-Jones potential is given by:
74 mmeineke 915 \begin{equation}
75     V_{\text{LJ}}(r_{ij}) =
76     4\epsilon_{ij} \biggl[
77     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
78     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
79     \biggr]
80     \label{eq:lennardJonesPot}
81     \end{equation}
82 mmeineke 930 Where $r_{ij}$ is the distance between particle $i$ and $j$,
83     $\sigma_{ij}$ scales the length of the interaction, and
84     $\epsilon_{ij}$ scales the well depth of the potential.
85 mmeineke 915
86 mmeineke 930 Because this potential is calculated between all pairs, the force
87 mmeineke 915 evaluation can become computationally expensive for large systems. To
88 mmeineke 930 keep the pair evaluation to a manegable number, OOPSE employs a
89     cut-off radius.\cite{allen87:csl} The cutoff radius is set to be
90     $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest Lennard-Jones length
91 mmeineke 915 parameter in the system. Truncating the calculation at
92     $r_{\text{cut}}$ introduces a discontinuity into the potential
93     energy. To offset this discontinuity, the energy value at
94     $r_{\text{cut}}$ is subtracted from the entire potential. This causes
95 mmeineke 930 the potential to go to zero at the cut-off radius.
96 mmeineke 915
97     Interactions between dissimilar particles requires the generation of
98     cross term parameters for $\sigma$ and $\epsilon$. These are
99     calculated through the Lorentz-Berthelot mixing
100     rules:\cite{allen87:csl}
101     \begin{equation}
102     \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
103     \label{eq:sigmaMix}
104     \end{equation}
105     and
106     \begin{equation}
107     \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
108     \label{eq:epsilonMix}
109     \end{equation}
110    
111    
112 mmeineke 899 \subsection{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
113    
114 mmeineke 930 The Dipolar Unified-atom Force Field ({\sc duff}) was developed to
115     simulate lipid bilayers. The systems require a model capable of forming
116 mmeineke 899 bilayers, while still being sufficiently computationally efficient to
117     allow simulations of large systems ($\approx$100's of phospholipids,
118     $\approx$1000's of waters) for long times ($\approx$10's of
119     nanoseconds).
120    
121 mmeineke 930 With this goal in mind, {\sc duff} has no point charges. Charge
122     neutral distributions were replaced with dipoles, while most atoms and
123     groups of atoms were reduced to Lennard-Jones interaction sites. This
124 mmeineke 899 simplification cuts the length scale of long range interactions from
125     $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
126 mmeineke 930 computationally expensive Ewald sum. Instead, we can use
127     neighbor-lists, reaction field, and cutoff radii for the dipolar
128     interactions.
129 mmeineke 899
130 mmeineke 930 As an example, lipid head-groups in {\sc duff} are represented as
131     point dipole interaction sites. By placing a dipole of 20.6~Debye at
132     the head group center of mass, our model mimics the head group of
133     phosphatidylcholine.\cite{Cevc87} Additionally, a Lennard-Jones site
134     is located at the pseudoatom's center of mass. The model is
135     illustrated by the dark grey atom in Fig.~\ref{fig:lipidModel}. The water model we use to complement the dipoles of the lipids is out
136     repaarameterization of the soft sticky dipole (SSD) model of Ichiye
137     \emph{et al.}\cite{liu96:new_model}
138 mmeineke 899
139     \begin{figure}
140 mmeineke 930 \epsfxsize=\linewidth
141 mmeineke 918 \epsfbox{lipidModel.eps}
142 mmeineke 899 \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
143 mmeineke 930 is the bend angle, $\mu$ is the dipole moment of the head group, and n
144     is the chain length.}
145 mmeineke 899 \label{fig:lipidModel}
146     \end{figure}
147    
148     Turning to the tails of the phospholipids, we have used a set of
149     scalable parameters to model the alkyl groups with Lennard-Jones
150     sites. For this, we have used the TraPPE force field of Siepmann
151     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
152     representation of n-alkanes, which is parametrized against phase
153     equilibria using Gibbs Monte Carlo simulation
154     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
155     it generalizes the types of atoms in an alkyl chain to keep the number
156     of pseudoatoms to a minimum; the parameters for an atom such as
157     $\text{CH}_2$ do not change depending on what species are bonded to
158     it.
159    
160     TraPPE also constrains of all bonds to be of fixed length. Typically,
161     bond vibrations are the fastest motions in a molecular dynamic
162     simulation. Small time steps between force evaluations must be used to
163     ensure adequate sampling of the bond potential conservation of
164     energy. By constraining the bond lengths, larger time steps may be
165     used when integrating the equations of motion.
166    
167    
168     \subsubsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
169    
170     The total energy of function in {\sc duff} is given by the following:
171     \begin{equation}
172     V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
173 mmeineke 930 + \sum^{N}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}}
174 mmeineke 899 \label{eq:totalPotential}
175     \end{equation}
176     Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
177     \begin{equation}
178     V^{I}_{\text{Internal}} =
179     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
180 mmeineke 930 + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
181 mmeineke 899 + \sum_{i \in I} \sum_{(j>i+4) \in I}
182     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
183     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
184     \biggr]
185     \label{eq:internalPotential}
186     \end{equation}
187     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
188 mmeineke 930 within the molecule, and $V_{\text{torsion}}$ is the torsion potential
189     for all 1, 4 bonded pairs. The pairwise portions of the internal
190     potential are excluded for pairs that are closer than three bonds,
191     i.e.~atom pairs farther away than a torsion are included in the
192     pair-wise loop.
193 mmeineke 899
194    
195     The bend potential of a molecule is represented by the following function:
196     \begin{equation}
197     V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
198     \end{equation}
199     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
200     (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
201     bond angle. $k_{\theta}$ is the force constant which determines the
202     strength of the harmonic bend. The parameters for $k_{\theta}$ and
203     $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
204    
205     The torsion potential and parameters are also taken from TraPPE. It is
206     of the form:
207     \begin{equation}
208 mmeineke 930 V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
209 mmeineke 899 + c_2[1 + \cos(2\phi)]
210     + c_3[1 + \cos(3\phi)]
211     \label{eq:origTorsionPot}
212     \end{equation}
213     Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
214 mmeineke 930 $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). For
215     computaional efficency, the torsion potential has been recast after
216     the method of CHARMM\cite{charmm1983} whereby the angle series is
217     converted to a power series of the form:
218 mmeineke 899 \begin{equation}
219     V_{\text{torsion}}(\phi_{ijkl}) =
220     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
221     \label{eq:torsionPot}
222     \end{equation}
223     Where:
224     \begin{align*}
225     k_0 &= c_1 + c_3 \\
226     k_1 &= c_1 - 3c_3 \\
227     k_2 &= 2 c_2 \\
228     k_3 &= 4c_3
229     \end{align*}
230     By recasting the equation to a power series, repeated trigonometric
231     evaluations are avoided during the calculation of the potential.
232    
233    
234 mmeineke 930 The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
235     as follows:
236     \begin{equation}
237     V^{IJ}_{\text{Cross}} =
238     \sum_{i \in I} \sum_{j \in J}
239     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
240     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
241     + V_{\text{sticky}}
242     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
243     \biggr]
244     \label{eq:crossPotentail}
245     \end{equation}
246     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
247     $V_{\text{dipole}}$ is the dipole dipole potential, and
248     $V_{\text{sticky}}$ is the sticky potential defined by the SSD
249     model. Note that not all atom types include all interactions.
250 mmeineke 915
251 mmeineke 899 The dipole-dipole potential has the following form:
252     \begin{equation}
253     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
254 mmeineke 930 \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
255     \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
256 mmeineke 899 -
257 mmeineke 930 \frac{3(\boldsymbol{\hat{u}}_i \cdot \mathbf{r}_{ij}) %
258     (\boldsymbol{\hat{u}}_j \cdot \mathbf{r}_{ij}) }
259     {r^{2}_{ij}} \biggr]
260 mmeineke 899 \label{eq:dipolePot}
261     \end{equation}
262     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
263     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
264 mmeineke 930 are the Euler angles of atom $i$ and $j$ respectively. $|\mu_i|$ is
265     the magnitude of the dipole moment of atom $i$ and
266     $\boldsymbol{\hat{u}}_i$ is the standard unit orientation vector of
267     $\boldsymbol{\Omega}_i$.
268 mmeineke 899
269    
270 chrisfen 925 \subsection{\label{sec:SSD}The {\sc DUFF} Water Models: SSD/E and SSD/RF}
271 mmeineke 899
272 chrisfen 925 In the interest of computational efficiency, the default solvent used
273 mmeineke 899 in {\sc oopse} is the Soft Sticky Dipole (SSD) water model. SSD was
274     developed by Ichiye \emph{et al.} as a modified form of the
275     hard-sphere water model proposed by Bratko, Blum, and
276     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
277     with a Lennard-Jones core and a sticky potential that directs the
278     particles to assume the proper hydrogen bond orientation in the first
279     solvation shell. Thus, the interaction between two SSD water molecules
280     \emph{i} and \emph{j} is given by the potential
281     \begin{equation}
282 chrisfen 925 V_{ij} =
283     V_{ij}^{LJ} (r_{ij})\ + V_{ij}^{dp}
284     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
285     V_{ij}^{sp}
286     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
287     \label{eq:ssdPot}
288 mmeineke 899 \end{equation}
289     where the $\mathbf{r}_{ij}$ is the position vector between molecules
290 chrisfen 925 \emph{i} and \emph{j} with magnitude equal to the distance $r_{ij}$, and
291 mmeineke 899 $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
292 chrisfen 925 orientations of the respective molecules. The Lennard-Jones and dipole
293     parts of the potential are given by equations \ref{eq:lennardJonesPot}
294     and \ref{eq:dipolePot} respectively. The sticky part is described by
295     the following,
296 mmeineke 899 \begin{equation}
297 chrisfen 925 u_{ij}^{sp}(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=
298     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},
299     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) +
300     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},
301     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
302     \label{eq:stickyPot}
303 mmeineke 899 \end{equation}
304 chrisfen 925 where $\nu_0$ is a strength parameter for the sticky potential, and
305     $s$ and $s^\prime$ are cubic switching functions which turn off the
306     sticky interaction beyond the first solvation shell. The $w$ function
307     can be thought of as an attractive potential with tetrahedral
308     geometry:
309 mmeineke 899 \begin{equation}
310 chrisfen 925 w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
311     \sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
312     \label{eq:stickyW}
313 mmeineke 899 \end{equation}
314 chrisfen 925 while the $w^\prime$ function counters the normal aligned and
315     anti-aligned structures favored by point dipoles:
316 mmeineke 899 \begin{equation}
317 chrisfen 925 w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
318     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
319     \label{eq:stickyWprime}
320 mmeineke 899 \end{equation}
321 chrisfen 925 It should be noted that $w$ is proportional to the sum of the $Y_3^2$
322     and $Y_3^{-2}$ spherical harmonics (a linear combination which
323     enhances the tetrahedral geometry for hydrogen bonded structures),
324     while $w^\prime$ is a purely empirical function. A more detailed
325     description of the functional parts and variables in this potential
326     can be found in the original SSD
327     articles.\cite{Ichiye96,Ichiye96b,Ichiye99,Ichiye03}
328 mmeineke 899
329 chrisfen 925 Since SSD is a single-point {\it dipolar} model, the force
330     calculations are simplified significantly relative to the standard
331     {\it charged} multi-point models. In the original Monte Carlo
332     simulations using this model, Ichiye {\it et al.} reported that using
333     SSD decreased computer time by a factor of 6-7 compared to other
334     models.\cite{Ichiye96} What is most impressive is that this savings
335     did not come at the expense of accurate depiction of the liquid state
336     properties. Indeed, SSD maintains reasonable agreement with the Soper
337     data for the structural features of liquid
338     water.\cite{Soper86,Ichiye96} Additionally, the dynamical properties
339     exhibited by SSD agree with experiment better than those of more
340     computationally expensive models (like TIP3P and
341     SPC/E).\cite{Ichiye99} The combination of speed and accurate depiction
342     of solvent properties makes SSD a very attractive model for the
343     simulation of large scale biochemical simulations.
344 mmeineke 899
345     Recent constant pressure simulations revealed issues in the original
346     SSD model that led to lower than expected densities at all target
347 chrisfen 925 pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse}
348     is SSD/E, a density corrected derivative of SSD that exhibits improved
349     liquid structure and transport behavior. If the use of a reaction
350     field long-range interaction correction is desired, it is recommended
351     that the parameters be modified to those of the SSD/RF model. Solvent
352     parameters can be easily modified in an accompanying {\sc BASS} file
353     as illustrated in the scheme below. A table of the parameter values
354     and the drawbacks and benefits of the different density corrected SSD
355     models can be found in reference \ref{Gezelter04}.
356 mmeineke 899
357 chrisfen 925 !!!Place a {\sc BASS} scheme showing SSD parameters around here!!!
358 mmeineke 899
359 mmeineke 930 \subsection{\label{sec:eam}Embedded Atom Method}
360 mmeineke 899
361 chuckv 931 Several other molecular dynamics packages\cite{dynamo86} exist which have the
362 mmeineke 918 capacity to simulate metallic systems, including some that have
363     parallel computational abilities\cite{plimpton93}. Potentials that
364     describe bonding transition metal
365     systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have a
366 chuckv 931 attractive interaction which models ``Embedding''
367     a positively charged metal ion in the electron density due to the
368 mmeineke 918 free valance ``sea'' of electrons created by the surrounding atoms in
369     the system. A mostly repulsive pairwise part of the potential
370     describes the interaction of the positively charged metal core ions
371     with one another. A particular potential description called the
372 chuckv 931 Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}({\sc eam}) that has
373 mmeineke 918 particularly wide adoption has been selected for inclusion in OOPSE. A
374 chuckv 931 good review of {\sc eam} and other metallic potential formulations was done
375 mmeineke 918 by Voter.\cite{voter}
376 mmeineke 915
377 mmeineke 918 The {\sc eam} potential has the form:
378     \begin{eqnarray}
379     V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
380     \phi_{ij}({\bf r}_{ij}) \\
381     \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
382 chuckv 932 \end{eqnarray}S
383 mmeineke 918
384 chuckv 932 where $F_{i} $ is the embedding function that equates the energy required to embed a
385     positively-charged core ion $i$ into a linear superposition of
386 mmeineke 918 sperically averaged atomic electron densities given by
387 chuckv 931 $\rho_{i}$. $\phi_{ij}$ is a primarily repulsive pairwise interaction
388     between atoms $i$ and $j$. In the original formulation of
389     {\sc eam} cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term, however
390 chuckv 933 in later refinements to EAM have shown that non-uniqueness between $F$
391 chuckv 931 and $\phi$ allow for more general forms for $\phi$.\cite{Daw89}
392     There is a cutoff distance, $r_{cut}$, which limits the
393 mmeineke 918 summations in the {\sc eam} equation to the few dozen atoms
394     surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
395 chuckv 931 interactions. Foiles et al. fit EAM potentials for fcc metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals\cite{FDB86}. These potential fits are in the DYNAMO 86 format and are included with {\sc oopse}.
396 mmeineke 918
397 chuckv 931
398 mmeineke 915 \subsection{\label{Sec:pbc}Periodic Boundary Conditions}
399    
400 mmeineke 930 \textit{Periodic boundary conditions} are widely used to simulate truly
401     macroscopic systems with a relatively small number of particles. The
402     simulation box is replicated throughout space to form an infinite
403     lattice. During the simulation, when a particle moves in the primary
404     cell, its image in other boxes move in exactly the same direction with
405     exactly the same orientation.Thus, as a particle leaves the primary
406     cell, one of its images will enter through the opposite face.If the
407     simulation box is large enough to avoid "feeling" the symmetries of
408     the periodic lattice, surface effects can be ignored. Cubic,
409     orthorhombic and parallelepiped are the available periodic cells In
410     OOPSE. We use a matrix to describe the property of the simulation
411     box. Therefore, both the size and shape of the simulation box can be
412     changed during the simulation. The transformation from box space
413     vector $\mathbf{s}$ to its corresponding real space vector
414     $\mathbf{r}$ is defined by
415     \begin{equation}
416     \mathbf{r}=\underline{\underline{H}}\cdot\mathbf{s}%
417     \end{equation}
418    
419    
420     where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of
421     the three box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the
422     three sides of the simulation box respectively.
423    
424     To find the minimum image, we convert the real vector to its
425     corresponding vector in box space first, \bigskip%
426     \begin{equation}
427     \mathbf{s}=\underline{\underline{H}}^{-1}\cdot\mathbf{r}%
428     \end{equation}
429     And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5,
430     \begin{equation}
431     s_{i}^{\prime}=s_{i}-round(s_{i})
432     \end{equation}
433     where
434    
435     %
436    
437     \begin{equation}
438     round(x)=\left\{
439     \begin{array}[c]{c}%
440     \lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\
441     \lceil{x-0.5}\rceil & \text{otherwise}%
442     \end{array}
443     \right.
444     \end{equation}
445    
446    
447     For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$,
448     $round(-3.1)=-3$.
449    
450     Finally, we obtain the minimum image coordinates by transforming back
451     to real space,%
452    
453     \begin{equation}
454     \mathbf{r}^{\prime}=\underline{\underline{H}}^{-1}\cdot\mathbf{s}^{\prime}%
455     \end{equation}
456