ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/EmpericalEnergy.tex
Revision: 925
Committed: Mon Jan 12 18:43:56 2004 UTC (21 years, 3 months ago) by chrisfen
Content type: application/x-tex
File size: 21375 byte(s)
Log Message:
Updated the rigid body and ssd sections

File Contents

# User Rev Content
1 mmeineke 806
2 mmeineke 899 \section{\label{sec:empericalEnergy}The Emperical Energy Functions}
3 mmeineke 806
4 mmeineke 915 \subsection{\label{sec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
5 mmeineke 806
6 gezelter 818 The basic unit of an {\sc oopse} simulation is the atom. The parameters
7 mmeineke 806 describing the atom are generalized to make the atom as flexible a
8     representation as possible. They may represent specific atoms of an
9     element, or be used for collections of atoms such as a methyl
10     group. The atoms are also capable of having a directional component
11     associated with them, often in the form of a dipole. Charges on atoms
12 gezelter 818 are not currently suporrted by {\sc oopse}.
13 mmeineke 806
14     The second most basic building block of a simulation is the
15 chrisfen 925 molecule. The molecule is a way for {\sc oopse} to keep track of the
16     atoms in a simulation in logical manner. This particular unit will
17     store the identities of all the atoms associated with itself and is
18     responsible for the evaluation of its own bonded interaction
19     (i.e.~bonds, bends, and torsions).
20 mmeineke 899
21 chrisfen 925 As stated previously, one of the features that sets {\sc OOPSE} apart
22 mmeineke 915 from most of the current molecular simulation packages is the ability
23     to handle rigid body dynamics. Rigid bodies are non-spherical
24     particles or collections of particles that have a constant internal
25     potential and move collectively.\cite{Goldstein01} They are not
26 chrisfen 925 included in most simulation packages because of the need to
27 mmeineke 915 consider orientational degrees of freedom and include an integrator
28     that accurately propagates these motions in time.
29    
30     Moving a rigid body involves determination of both the force and
31     torque applied by the surroundings, which directly affect the
32     translation and rotation in turn. In order to accumulate the total
33     force on a rigid body, the external forces must first be calculated
34 chrisfen 925 for all the internal particles. The total force on the rigid body is
35 mmeineke 915 simply the sum of these external forces. Accumulation of the total
36 chrisfen 925 torque on the rigid body is more complex than the force in that it is
37     the torque applied on the center of mass that dictates rotational
38     motion. The summation of this torque is given by
39     \begin{equation}
40     \mathbf{\tau}_i=
41     \sum_{a}(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia},
42     \label{eq:torqueAccumulate}
43     \end{equation}
44     where $\mathbf{\tau}_i$ and $\mathbf{r}_i$ are the torque about and
45     position of the center of mass respectively, while $\mathbf{f}_{ia}$
46     and $\mathbf{r}_{ia}$ are the force on and position of the component
47     particles of the rigid body.\cite{allen87:csl}
48 mmeineke 915
49     The application of the total torque is done in the body fixed axis of
50     the rigid body. In order to move between the space fixed and body
51 chrisfen 925 fixed coordinate axes, parameters describing the orientation must be
52     maintained for each rigid body. At a minimum, the rotation matrix
53     (\textbf{A}) can be described and propagated by the three Euler angles
54     ($\phi, \theta, \text{and} \psi$), where \textbf{A} is composed of
55     trigonometric operations involving $\phi, \theta,$ and
56     $\psi$.\cite{Goldstein01} In order to avoid rotational limitations
57     inherent in using the Euler angles, the four parameter ``quaternion''
58     scheme can be used instead, where \textbf{A} is composed of arithmetic
59     operations involving the four components of a quaternion ($q_0, q_1,
60     q_2, \text{and} q_3$).\cite{allen87:csl} Use of quaternions also leads
61     to performance enhancements, particularly for very small
62     systems.\cite{Evans77}
63 mmeineke 915
64 chrisfen 925 {\sc OOPSE} utilizes a relatively new scheme that uses the entire nine
65     parameter rotation matrix internally. Further discussion on this
66     choice can be found in Sec.~\ref{sec:integrate}.
67    
68 mmeineke 915 \subsection{\label{sec:LJPot}The Lennard Jones Potential}
69    
70     The most basic force field implemented in OOPSE is the Lennard-Jones
71     potential. The Lennard-Jones potential mimics the attractive forces
72     two charge neutral particles experience when spontaneous dipoles are
73     induced on each other. This is the predominant intermolecular force in
74     systems of such as noble gases and simple alkanes.
75    
76     The Lennard-Jones potential is given by:
77     \begin{equation}
78     V_{\text{LJ}}(r_{ij}) =
79     4\epsilon_{ij} \biggl[
80     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
81     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
82     \biggr]
83     \label{eq:lennardJonesPot}
84     \end{equation}
85     Where $r_ij$ is the distance between particle $i$ and $j$, $\sigma_{ij}$
86     scales the length of the interaction, and $\epsilon_{ij}$ scales the
87     energy well depth of the potential.
88    
89     Because the potential is calculated between all pairs, the force
90     evaluation can become computationally expensive for large systems. To
91     keep the pair evaluation to a manegable number, OOPSE employs the use
92     of a cut-off radius.\cite{allen87:csl} The cutoff radius is set to be
93     $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest self self length
94     parameter in the system. Truncating the calculation at
95     $r_{\text{cut}}$ introduces a discontinuity into the potential
96     energy. To offset this discontinuity, the energy value at
97     $r_{\text{cut}}$ is subtracted from the entire potential. This causes
98     the equation to go to zero at the cut-off radius.
99    
100     Interactions between dissimilar particles requires the generation of
101     cross term parameters for $\sigma$ and $\epsilon$. These are
102     calculated through the Lorentz-Berthelot mixing
103     rules:\cite{allen87:csl}
104     \begin{equation}
105     \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
106     \label{eq:sigmaMix}
107     \end{equation}
108     and
109     \begin{equation}
110     \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
111     \label{eq:epsilonMix}
112     \end{equation}
113    
114    
115 mmeineke 899 \subsection{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
116    
117     The \underline{D}ipolar \underline{U}nified-Atom
118     \underline{F}orce \underline{F}ield ({\sc duff}) was developed to
119     simulate lipid bilayers. We needed a model capable of forming
120     bilayers, while still being sufficiently computationally efficient to
121     allow simulations of large systems ($\approx$100's of phospholipids,
122     $\approx$1000's of waters) for long times ($\approx$10's of
123     nanoseconds).
124    
125     With this goal in mind, we have eliminated all point charges. Charge
126     distributions were replaced with dipoles, and charge-neutral
127     distributions were reduced to Lennard-Jones interaction sites. This
128     simplification cuts the length scale of long range interactions from
129     $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
130     computationally expensive Ewald-Sum. Instead, we can use
131     neighbor-lists and cutoff radii for the dipolar interactions.
132    
133     As an example, lipid head groups in {\sc duff} are represented as point
134     dipole interaction sites.PC and PE Lipid head groups are typically
135     zwitterionic in nature, with charges separated by as much as
136     6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
137     center of mass, our model mimics the head group of PC.\cite{Cevc87}
138     Additionally, a Lennard-Jones site is located at the
139     pseudoatom's center of mass. The model is illustrated by the dark grey
140     atom in Fig.~\ref{fig:lipidModel}.
141    
142     \begin{figure}
143 mmeineke 918 \epsfbox{lipidModel.eps}
144 mmeineke 899 \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
145     is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
146     \label{fig:lipidModel}
147     \end{figure}
148    
149     The water model we use to complement the dipoles of the lipids is
150     the soft sticky dipole (SSD) model of Ichiye \emph{et
151     al.}\cite{liu96:new_model} This model is discussed in greater detail
152     in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
153     Lennard-Jones interaction site. The site also contains a dipole to
154     mimic the partial charges on the hydrogens and the oxygen. However,
155     what makes the SSD model unique is the inclusion of a tetrahedral
156     short range potential to recover the hydrogen bonding of water, an
157     important factor when modeling bilayers, as it has been shown that
158     hydrogen bond network formation is a leading contribution to the
159     entropic driving force towards lipid bilayer formation.\cite{Cevc87}
160    
161    
162     Turning to the tails of the phospholipids, we have used a set of
163     scalable parameters to model the alkyl groups with Lennard-Jones
164     sites. For this, we have used the TraPPE force field of Siepmann
165     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
166     representation of n-alkanes, which is parametrized against phase
167     equilibria using Gibbs Monte Carlo simulation
168     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
169     it generalizes the types of atoms in an alkyl chain to keep the number
170     of pseudoatoms to a minimum; the parameters for an atom such as
171     $\text{CH}_2$ do not change depending on what species are bonded to
172     it.
173    
174     TraPPE also constrains of all bonds to be of fixed length. Typically,
175     bond vibrations are the fastest motions in a molecular dynamic
176     simulation. Small time steps between force evaluations must be used to
177     ensure adequate sampling of the bond potential conservation of
178     energy. By constraining the bond lengths, larger time steps may be
179     used when integrating the equations of motion.
180    
181    
182     \subsubsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
183    
184     The total energy of function in {\sc duff} is given by the following:
185     \begin{equation}
186     V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
187     + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
188     \label{eq:totalPotential}
189     \end{equation}
190     Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
191     \begin{equation}
192     V^{I}_{\text{Internal}} =
193     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
194     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\theta_{ijkl})
195     + \sum_{i \in I} \sum_{(j>i+4) \in I}
196     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
197     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
198     \biggr]
199     \label{eq:internalPotential}
200     \end{equation}
201     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
202     within in the molecule. $V_{\text{torsion}}$ is the torsion The
203     pairwise portions of the internal potential are excluded for pairs
204     that ar closer than three bonds, i.e.~atom pairs farther away than a
205     torsion are included in the pair-wise loop.
206    
207     The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
208     as follows:
209     \begin{equation}
210     V^{IJ}_{\text{Cross}} =
211     \sum_{i \in I} \sum_{j \in J}
212     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
213     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
214     + V_{\text{sticky}}
215     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
216     \biggr]
217     \label{eq:crossPotentail}
218     \end{equation}
219     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
220     $V_{\text{dipole}}$ is the dipole dipole potential, and
221     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model.
222    
223     The bend potential of a molecule is represented by the following function:
224     \begin{equation}
225     V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
226     \end{equation}
227     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
228     (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
229     bond angle. $k_{\theta}$ is the force constant which determines the
230     strength of the harmonic bend. The parameters for $k_{\theta}$ and
231     $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
232    
233     The torsion potential and parameters are also taken from TraPPE. It is
234     of the form:
235     \begin{equation}
236     V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi]
237     + c_2[1 + \cos(2\phi)]
238     + c_3[1 + \cos(3\phi)]
239     \label{eq:origTorsionPot}
240     \end{equation}
241     Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
242     $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). However,
243     for computaional efficency, the torsion potentail has been recast
244     after the method of CHARMM\cite{charmm1983} whereby the angle series
245     is converted to a power series of the form:
246     \begin{equation}
247     V_{\text{torsion}}(\phi_{ijkl}) =
248     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
249     \label{eq:torsionPot}
250     \end{equation}
251     Where:
252     \begin{align*}
253     k_0 &= c_1 + c_3 \\
254     k_1 &= c_1 - 3c_3 \\
255     k_2 &= 2 c_2 \\
256     k_3 &= 4c_3
257     \end{align*}
258     By recasting the equation to a power series, repeated trigonometric
259     evaluations are avoided during the calculation of the potential.
260    
261    
262 mmeineke 915
263 mmeineke 899 The dipole-dipole potential has the following form:
264     \begin{equation}
265     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
266     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
267     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
268     -
269     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
270     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
271     {r^{5}_{ij}} \biggr]
272     \label{eq:dipolePot}
273     \end{equation}
274     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
275     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
276     are the Euler angles of atom $i$ and $j$
277     respectively. $\boldsymbol{\mu}_i$ is the dipole vector of atom
278     $i$ it takes its orientation from $\boldsymbol{\Omega}_i$.
279    
280    
281 chrisfen 925 \subsection{\label{sec:SSD}The {\sc DUFF} Water Models: SSD/E and SSD/RF}
282 mmeineke 899
283 chrisfen 925 In the interest of computational efficiency, the default solvent used
284 mmeineke 899 in {\sc oopse} is the Soft Sticky Dipole (SSD) water model. SSD was
285     developed by Ichiye \emph{et al.} as a modified form of the
286     hard-sphere water model proposed by Bratko, Blum, and
287     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
288     with a Lennard-Jones core and a sticky potential that directs the
289     particles to assume the proper hydrogen bond orientation in the first
290     solvation shell. Thus, the interaction between two SSD water molecules
291     \emph{i} and \emph{j} is given by the potential
292     \begin{equation}
293 chrisfen 925 V_{ij} =
294     V_{ij}^{LJ} (r_{ij})\ + V_{ij}^{dp}
295     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
296     V_{ij}^{sp}
297     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
298     \label{eq:ssdPot}
299 mmeineke 899 \end{equation}
300     where the $\mathbf{r}_{ij}$ is the position vector between molecules
301 chrisfen 925 \emph{i} and \emph{j} with magnitude equal to the distance $r_{ij}$, and
302 mmeineke 899 $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
303 chrisfen 925 orientations of the respective molecules. The Lennard-Jones and dipole
304     parts of the potential are given by equations \ref{eq:lennardJonesPot}
305     and \ref{eq:dipolePot} respectively. The sticky part is described by
306     the following,
307 mmeineke 899 \begin{equation}
308 chrisfen 925 u_{ij}^{sp}(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=
309     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},
310     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) +
311     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},
312     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
313     \label{eq:stickyPot}
314 mmeineke 899 \end{equation}
315 chrisfen 925 where $\nu_0$ is a strength parameter for the sticky potential, and
316     $s$ and $s^\prime$ are cubic switching functions which turn off the
317     sticky interaction beyond the first solvation shell. The $w$ function
318     can be thought of as an attractive potential with tetrahedral
319     geometry:
320 mmeineke 899 \begin{equation}
321 chrisfen 925 w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
322     \sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
323     \label{eq:stickyW}
324 mmeineke 899 \end{equation}
325 chrisfen 925 while the $w^\prime$ function counters the normal aligned and
326     anti-aligned structures favored by point dipoles:
327 mmeineke 899 \begin{equation}
328 chrisfen 925 w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
329     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
330     \label{eq:stickyWprime}
331 mmeineke 899 \end{equation}
332 chrisfen 925 It should be noted that $w$ is proportional to the sum of the $Y_3^2$
333     and $Y_3^{-2}$ spherical harmonics (a linear combination which
334     enhances the tetrahedral geometry for hydrogen bonded structures),
335     while $w^\prime$ is a purely empirical function. A more detailed
336     description of the functional parts and variables in this potential
337     can be found in the original SSD
338     articles.\cite{Ichiye96,Ichiye96b,Ichiye99,Ichiye03}
339 mmeineke 899
340 chrisfen 925 Since SSD is a single-point {\it dipolar} model, the force
341     calculations are simplified significantly relative to the standard
342     {\it charged} multi-point models. In the original Monte Carlo
343     simulations using this model, Ichiye {\it et al.} reported that using
344     SSD decreased computer time by a factor of 6-7 compared to other
345     models.\cite{Ichiye96} What is most impressive is that this savings
346     did not come at the expense of accurate depiction of the liquid state
347     properties. Indeed, SSD maintains reasonable agreement with the Soper
348     data for the structural features of liquid
349     water.\cite{Soper86,Ichiye96} Additionally, the dynamical properties
350     exhibited by SSD agree with experiment better than those of more
351     computationally expensive models (like TIP3P and
352     SPC/E).\cite{Ichiye99} The combination of speed and accurate depiction
353     of solvent properties makes SSD a very attractive model for the
354     simulation of large scale biochemical simulations.
355 mmeineke 899
356     Recent constant pressure simulations revealed issues in the original
357     SSD model that led to lower than expected densities at all target
358 chrisfen 925 pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse}
359     is SSD/E, a density corrected derivative of SSD that exhibits improved
360     liquid structure and transport behavior. If the use of a reaction
361     field long-range interaction correction is desired, it is recommended
362     that the parameters be modified to those of the SSD/RF model. Solvent
363     parameters can be easily modified in an accompanying {\sc BASS} file
364     as illustrated in the scheme below. A table of the parameter values
365     and the drawbacks and benefits of the different density corrected SSD
366     models can be found in reference \ref{Gezelter04}.
367 mmeineke 899
368 chrisfen 925 !!!Place a {\sc BASS} scheme showing SSD parameters around here!!!
369 mmeineke 899
370     \subsection{\label{sec:eam}Embedded Atom Model}
371    
372 mmeineke 918 Several molecular dynamics codes\cite{dynamo86} exist which have the
373     capacity to simulate metallic systems, including some that have
374     parallel computational abilities\cite{plimpton93}. Potentials that
375     describe bonding transition metal
376     systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have a
377     attractive interaction which models the stabilization of ``Embedding''
378     a positively charged metal ion in an electron density created by the
379     free valance ``sea'' of electrons created by the surrounding atoms in
380     the system. A mostly repulsive pairwise part of the potential
381     describes the interaction of the positively charged metal core ions
382     with one another. A particular potential description called the
383     Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}(EAM) that has
384     particularly wide adoption has been selected for inclusion in OOPSE. A
385     good review of EAM and other metallic potential formulations was done
386     by Voter.\cite{voter}
387 mmeineke 915
388 mmeineke 918 The {\sc eam} potential has the form:
389     \begin{eqnarray}
390     V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
391     \phi_{ij}({\bf r}_{ij}) \\
392     \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
393     \end{eqnarray}
394    
395     where $\phi_{ij}$ is a primarily repulsive pairwise interaction
396     between atoms $i$ and $j$.In the origional formulation of
397     EAM\cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term, however
398     in later refinements to EAM have shown that nonuniqueness between $F$
399     and $\phi$ allow for more general forms for $\phi$.\cite{Daw89} The
400     embedding function $F_{i}$ is the energy required to embedded an
401     positively-charged core ion $i$ into a linear supeposition of
402     sperically averaged atomic electron densities given by
403     $\rho_{i}$. There is a cutoff distance, $r_{cut}$, which limits the
404     summations in the {\sc eam} equation to the few dozen atoms
405     surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
406     interactions.
407    
408 mmeineke 915 \subsection{\label{Sec:pbc}Periodic Boundary Conditions}
409    
410     \textit{Periodic boundary conditions} are widely used to simulate truly
411     macroscopic systems with a relatively small number of particles. Simulation
412     box is replicated throughout space to form an infinite lattice. During the
413     simulation, when a particle moves in the primary cell, its periodic image
414     particles in other boxes move in exactly the same direction with exactly the
415     same orientation.Thus, as a particle leaves the primary cell, one of its
416     images will enter through the opposite face.If the simulation box is large
417     enough to avoid "feeling" the symmetric of the periodic lattice,the surface
418     effect could be ignored. Cubic and parallelepiped are the available periodic
419     cells. \bigskip In OOPSE, we use the matrix instead of the vector to describe
420     the property of the simulation box. Therefore, not only the size of the
421     simulation box could be changed during the simulation, but also the shape of
422     it. The transformation from box space vector $\overrightarrow{s}$ to its
423     corresponding real space vector $\overrightarrow{r}$ is defined by
424     \begin{equation}
425     \overrightarrow{r}=H\overrightarrow{s}%
426     \end{equation}
427    
428    
429     where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
430     box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the sides of the
431     simulation box respectively.
432    
433     To find the minimum image, we need to convert the real vector to its
434     corresponding vector in box space first, \bigskip%
435     \begin{equation}
436     \overrightarrow{s}=H^{-1}\overrightarrow{r}%
437     \end{equation}
438     And then, each element of $\overrightarrow{s}$ is casted to lie between -0.5
439     to 0.5,
440     \begin{equation}
441     s_{i}^{\prime}=s_{i}-round(s_{i})
442     \end{equation}
443     where%
444    
445     \begin{equation}
446     round(x)=\lfloor{x+0.5}\rfloor\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{
447     }x\geqslant0
448     \end{equation}
449     %
450    
451     \begin{equation}
452     round(x)=\lceil{x-0.5}\rceil\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{ }x<0
453     \end{equation}
454    
455    
456     For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
457    
458     Finally, we could get the minimum image by transforming back to real space,%
459    
460     \begin{equation}
461     \overrightarrow{r^{\prime}}=H^{-1}\overrightarrow{s^{\prime}}%
462     \end{equation}