ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/EmpericalEnergy.tex
Revision: 915
Committed: Fri Jan 9 20:25:50 2004 UTC (21 years, 4 months ago) by mmeineke
Content type: application/x-tex
File size: 18489 byte(s)
Log Message:
added a lennard jones section to the Emperical Energy section

File Contents

# User Rev Content
1 mmeineke 806
2 mmeineke 899 \section{\label{sec:empericalEnergy}The Emperical Energy Functions}
3 mmeineke 806
4 mmeineke 915 \subsection{\label{sec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
5 mmeineke 806
6 gezelter 818 The basic unit of an {\sc oopse} simulation is the atom. The parameters
7 mmeineke 806 describing the atom are generalized to make the atom as flexible a
8     representation as possible. They may represent specific atoms of an
9     element, or be used for collections of atoms such as a methyl
10     group. The atoms are also capable of having a directional component
11     associated with them, often in the form of a dipole. Charges on atoms
12 gezelter 818 are not currently suporrted by {\sc oopse}.
13 mmeineke 806
14     The second most basic building block of a simulation is the
15 gezelter 818 molecule. The molecule is a way for {\sc oopse} to keep track of the atoms
16 mmeineke 806 in a simulation in logical manner. This particular unit will store the
17     identities of all the atoms associated with itself and is responsible
18     for the evaluation of its own bonded interaction (i.e.~bonds, bends,
19     and torsions).
20 mmeineke 899
21 mmeineke 915 As stated in the previously, one of the features that sets OOPSE apart
22     from most of the current molecular simulation packages is the ability
23     to handle rigid body dynamics. Rigid bodies are non-spherical
24     particles or collections of particles that have a constant internal
25     potential and move collectively.\cite{Goldstein01} They are not
26     included in many standard simulation packages because of the need to
27     consider orientational degrees of freedom and include an integrator
28     that accurately propagates these motions in time.
29    
30     Moving a rigid body involves determination of both the force and
31     torque applied by the surroundings, which directly affect the
32     translation and rotation in turn. In order to accumulate the total
33     force on a rigid body, the external forces must first be calculated
34     for all the interal particles. The total force on the rigid body is
35     simply the sum of these external forces. Accumulation of the total
36     torque on the rigid body is similar to the force in that it is a sum
37     of the torque applied on each internal particle, mapped onto the
38     center of mass of the rigid body.
39    
40     The application of the total torque is done in the body fixed axis of
41     the rigid body. In order to move between the space fixed and body
42     fixed coordinate axes, parameters describing the orientation be
43     maintained for each rigid body. At a minimum, the rotation matrix can
44     be described and propagated by the three Euler
45     angles.\cite{Goldstein01} In order to avoid rotational limitations
46     when using Euler angles, the four parameter ``quaternion'' scheme can
47     be used instead.\cite{allen87:csl} Use of quaternions also leads to
48     performance enhancements, particularly for very small
49     systems.\cite{Evans77} OOPSE utilizes a relatively new scheme that
50     propagates the entire nine parameter rotation matrix. Further
51     discussion on this choice can be found in Sec.~\ref{sec:integrate}.
52    
53     \subsection{\label{sec:LJPot}The Lennard Jones Potential}
54    
55     The most basic force field implemented in OOPSE is the Lennard-Jones
56     potential. The Lennard-Jones potential mimics the attractive forces
57     two charge neutral particles experience when spontaneous dipoles are
58     induced on each other. This is the predominant intermolecular force in
59     systems of such as noble gases and simple alkanes.
60    
61     The Lennard-Jones potential is given by:
62     \begin{equation}
63     V_{\text{LJ}}(r_{ij}) =
64     4\epsilon_{ij} \biggl[
65     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
66     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
67     \biggr]
68     \label{eq:lennardJonesPot}
69     \end{equation}
70     Where $r_ij$ is the distance between particle $i$ and $j$, $\sigma_{ij}$
71     scales the length of the interaction, and $\epsilon_{ij}$ scales the
72     energy well depth of the potential.
73    
74     Because the potential is calculated between all pairs, the force
75     evaluation can become computationally expensive for large systems. To
76     keep the pair evaluation to a manegable number, OOPSE employs the use
77     of a cut-off radius.\cite{allen87:csl} The cutoff radius is set to be
78     $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest self self length
79     parameter in the system. Truncating the calculation at
80     $r_{\text{cut}}$ introduces a discontinuity into the potential
81     energy. To offset this discontinuity, the energy value at
82     $r_{\text{cut}}$ is subtracted from the entire potential. This causes
83     the equation to go to zero at the cut-off radius.
84    
85     Interactions between dissimilar particles requires the generation of
86     cross term parameters for $\sigma$ and $\epsilon$. These are
87     calculated through the Lorentz-Berthelot mixing
88     rules:\cite{allen87:csl}
89     \begin{equation}
90     \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
91     \label{eq:sigmaMix}
92     \end{equation}
93     and
94     \begin{equation}
95     \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
96     \label{eq:epsilonMix}
97     \end{equation}
98    
99    
100 mmeineke 899 \subsection{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
101    
102     The \underline{D}ipolar \underline{U}nified-Atom
103     \underline{F}orce \underline{F}ield ({\sc duff}) was developed to
104     simulate lipid bilayers. We needed a model capable of forming
105     bilayers, while still being sufficiently computationally efficient to
106     allow simulations of large systems ($\approx$100's of phospholipids,
107     $\approx$1000's of waters) for long times ($\approx$10's of
108     nanoseconds).
109    
110     With this goal in mind, we have eliminated all point charges. Charge
111     distributions were replaced with dipoles, and charge-neutral
112     distributions were reduced to Lennard-Jones interaction sites. This
113     simplification cuts the length scale of long range interactions from
114     $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
115     computationally expensive Ewald-Sum. Instead, we can use
116     neighbor-lists and cutoff radii for the dipolar interactions.
117    
118     As an example, lipid head groups in {\sc duff} are represented as point
119     dipole interaction sites.PC and PE Lipid head groups are typically
120     zwitterionic in nature, with charges separated by as much as
121     6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
122     center of mass, our model mimics the head group of PC.\cite{Cevc87}
123     Additionally, a Lennard-Jones site is located at the
124     pseudoatom's center of mass. The model is illustrated by the dark grey
125     atom in Fig.~\ref{fig:lipidModel}.
126    
127     \begin{figure}
128     \epsfxsize=6in
129     \epsfbox{lipidModel.epsi}
130     \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
131     is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
132     \label{fig:lipidModel}
133     \end{figure}
134    
135     The water model we use to complement the dipoles of the lipids is
136     the soft sticky dipole (SSD) model of Ichiye \emph{et
137     al.}\cite{liu96:new_model} This model is discussed in greater detail
138     in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
139     Lennard-Jones interaction site. The site also contains a dipole to
140     mimic the partial charges on the hydrogens and the oxygen. However,
141     what makes the SSD model unique is the inclusion of a tetrahedral
142     short range potential to recover the hydrogen bonding of water, an
143     important factor when modeling bilayers, as it has been shown that
144     hydrogen bond network formation is a leading contribution to the
145     entropic driving force towards lipid bilayer formation.\cite{Cevc87}
146    
147    
148     Turning to the tails of the phospholipids, we have used a set of
149     scalable parameters to model the alkyl groups with Lennard-Jones
150     sites. For this, we have used the TraPPE force field of Siepmann
151     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
152     representation of n-alkanes, which is parametrized against phase
153     equilibria using Gibbs Monte Carlo simulation
154     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
155     it generalizes the types of atoms in an alkyl chain to keep the number
156     of pseudoatoms to a minimum; the parameters for an atom such as
157     $\text{CH}_2$ do not change depending on what species are bonded to
158     it.
159    
160     TraPPE also constrains of all bonds to be of fixed length. Typically,
161     bond vibrations are the fastest motions in a molecular dynamic
162     simulation. Small time steps between force evaluations must be used to
163     ensure adequate sampling of the bond potential conservation of
164     energy. By constraining the bond lengths, larger time steps may be
165     used when integrating the equations of motion.
166    
167    
168     \subsubsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
169    
170     The total energy of function in {\sc duff} is given by the following:
171     \begin{equation}
172     V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
173     + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
174     \label{eq:totalPotential}
175     \end{equation}
176     Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
177     \begin{equation}
178     V^{I}_{\text{Internal}} =
179     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
180     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\theta_{ijkl})
181     + \sum_{i \in I} \sum_{(j>i+4) \in I}
182     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
183     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
184     \biggr]
185     \label{eq:internalPotential}
186     \end{equation}
187     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
188     within in the molecule. $V_{\text{torsion}}$ is the torsion The
189     pairwise portions of the internal potential are excluded for pairs
190     that ar closer than three bonds, i.e.~atom pairs farther away than a
191     torsion are included in the pair-wise loop.
192    
193     The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
194     as follows:
195     \begin{equation}
196     V^{IJ}_{\text{Cross}} =
197     \sum_{i \in I} \sum_{j \in J}
198     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
199     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
200     + V_{\text{sticky}}
201     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
202     \biggr]
203     \label{eq:crossPotentail}
204     \end{equation}
205     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
206     $V_{\text{dipole}}$ is the dipole dipole potential, and
207     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model.
208    
209     The bend potential of a molecule is represented by the following function:
210     \begin{equation}
211     V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
212     \end{equation}
213     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
214     (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
215     bond angle. $k_{\theta}$ is the force constant which determines the
216     strength of the harmonic bend. The parameters for $k_{\theta}$ and
217     $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
218    
219     The torsion potential and parameters are also taken from TraPPE. It is
220     of the form:
221     \begin{equation}
222     V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi]
223     + c_2[1 + \cos(2\phi)]
224     + c_3[1 + \cos(3\phi)]
225     \label{eq:origTorsionPot}
226     \end{equation}
227     Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
228     $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). However,
229     for computaional efficency, the torsion potentail has been recast
230     after the method of CHARMM\cite{charmm1983} whereby the angle series
231     is converted to a power series of the form:
232     \begin{equation}
233     V_{\text{torsion}}(\phi_{ijkl}) =
234     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
235     \label{eq:torsionPot}
236     \end{equation}
237     Where:
238     \begin{align*}
239     k_0 &= c_1 + c_3 \\
240     k_1 &= c_1 - 3c_3 \\
241     k_2 &= 2 c_2 \\
242     k_3 &= 4c_3
243     \end{align*}
244     By recasting the equation to a power series, repeated trigonometric
245     evaluations are avoided during the calculation of the potential.
246    
247    
248 mmeineke 915
249 mmeineke 899 The dipole-dipole potential has the following form:
250     \begin{equation}
251     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
252     \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
253     \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
254     -
255     \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
256     (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
257     {r^{5}_{ij}} \biggr]
258     \label{eq:dipolePot}
259     \end{equation}
260     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
261     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
262     are the Euler angles of atom $i$ and $j$
263     respectively. $\boldsymbol{\mu}_i$ is the dipole vector of atom
264     $i$ it takes its orientation from $\boldsymbol{\Omega}_i$.
265    
266    
267     \subsection{\label{sec:SSD}Water Model: SSD and Derivatives}
268    
269     In the interest of computational efficiency, the native solvent used
270     in {\sc oopse} is the Soft Sticky Dipole (SSD) water model. SSD was
271     developed by Ichiye \emph{et al.} as a modified form of the
272     hard-sphere water model proposed by Bratko, Blum, and
273     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
274     with a Lennard-Jones core and a sticky potential that directs the
275     particles to assume the proper hydrogen bond orientation in the first
276     solvation shell. Thus, the interaction between two SSD water molecules
277     \emph{i} and \emph{j} is given by the potential
278     \begin{equation}
279     u_{ij} = u_{ij}^{LJ} (r_{ij})\ + u_{ij}^{dp}
280     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
281     u_{ij}^{sp}
282     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
283     \end{equation}
284     where the $\mathbf{r}_{ij}$ is the position vector between molecules
285     \emph{i} and \emph{j} with magnitude equal to the distance $r_ij$, and
286     $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
287     orientations of the respective molecules. The Lennard-Jones, dipole,
288     and sticky parts of the potential are giving by the following
289     equations,
290     \begin{equation}
291     u_{ij}^{LJ}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}}\right)^{12}-\left(\frac{\sigma}{r_{ij}}\right)^{6}\right],
292     \end{equation}
293     \begin{equation}
294     u_{ij}^{dp} = \frac{\boldsymbol{\mu}_i\cdot\boldsymbol{\mu}_j}{r_{ij}^3}-\frac{3(\boldsymbol{\mu}_i\cdot\mathbf{r}_{ij})(\boldsymbol{\mu}_j\cdot\mathbf{r}_{ij})}{r_{ij}^5}\ ,
295     \end{equation}
296     \begin{equation}
297     \begin{split}
298     u_{ij}^{sp}
299     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)
300     &=
301     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\\
302     & \quad \ +
303     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
304     \end{split}
305     \end{equation}
306     where $\boldsymbol{\mu}_i$ and $\boldsymbol{\mu}_j$ are the dipole
307     unit vectors of particles \emph{i} and \emph{j} with magnitude 2.35 D,
308     $\nu_0$ scales the strength of the overall sticky potential, $s$ and
309     $s^\prime$ are cubic switching functions. The $w$ and $w^\prime$
310     functions take the following forms,
311     \begin{equation}
312     w(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=\sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
313     \end{equation}
314     \begin{equation}
315     w^\prime(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) = (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
316     \end{equation}
317     where $w^0 = 0.07715$. The $w$ function is the tetrahedral attractive
318     term that promotes hydrogen bonding orientations within the first
319     solvation shell, and $w^\prime$ is a dipolar repulsion term that
320     repels unrealistic dipolar arrangements within the first solvation
321     shell. A more detailed description of the functional parts and
322     variables in this potential can be found in other
323     articles.\cite{liu96:new_model,chandra99:ssd_md}
324    
325     Since SSD is a one-site point dipole model, the force calculations are
326     simplified significantly from a computational standpoint, in that the
327     number of long-range interactions is dramatically reduced. In the
328     original Monte Carlo simulations using this model, Ichiye \emph{et
329     al.} reported a calculation speed up of up to an order of magnitude
330     over other comparable models while maintaining the structural behavior
331     of water.\cite{liu96:new_model} In the original molecular dynamics studies of
332     SSD, it was shown that it actually improves upon the prediction of
333     water's dynamical properties over TIP3P and SPC/E.\cite{chandra99:ssd_md}
334    
335     Recent constant pressure simulations revealed issues in the original
336     SSD model that led to lower than expected densities at all target
337     pressures.\cite{Ichiye03,Gezelter04} Reparameterizations of the
338     original SSD have resulted in improved density behavior, as well as
339     alterations in the water structure and transport behavior. {\sc oopse} is
340     easily modified to impliment these new potential parameter sets for
341     the derivative water models: SSD1, SSD/E, and SSD/RF. All of the
342     variable parameters are listed in the accompanying BASS file, and
343     these parameters simply need to be changed to the updated values.
344    
345    
346     \subsection{\label{sec:eam}Embedded Atom Model}
347    
348     here there be Monsters
349 mmeineke 915
350     \subsection{\label{Sec:pbc}Periodic Boundary Conditions}
351    
352     \textit{Periodic boundary conditions} are widely used to simulate truly
353     macroscopic systems with a relatively small number of particles. Simulation
354     box is replicated throughout space to form an infinite lattice. During the
355     simulation, when a particle moves in the primary cell, its periodic image
356     particles in other boxes move in exactly the same direction with exactly the
357     same orientation.Thus, as a particle leaves the primary cell, one of its
358     images will enter through the opposite face.If the simulation box is large
359     enough to avoid "feeling" the symmetric of the periodic lattice,the surface
360     effect could be ignored. Cubic and parallelepiped are the available periodic
361     cells. \bigskip In OOPSE, we use the matrix instead of the vector to describe
362     the property of the simulation box. Therefore, not only the size of the
363     simulation box could be changed during the simulation, but also the shape of
364     it. The transformation from box space vector $\overrightarrow{s}$ to its
365     corresponding real space vector $\overrightarrow{r}$ is defined by
366     \begin{equation}
367     \overrightarrow{r}=H\overrightarrow{s}%
368     \end{equation}
369    
370    
371     where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
372     box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the sides of the
373     simulation box respectively.
374    
375     To find the minimum image, we need to convert the real vector to its
376     corresponding vector in box space first, \bigskip%
377     \begin{equation}
378     \overrightarrow{s}=H^{-1}\overrightarrow{r}%
379     \end{equation}
380     And then, each element of $\overrightarrow{s}$ is casted to lie between -0.5
381     to 0.5,
382     \begin{equation}
383     s_{i}^{\prime}=s_{i}-round(s_{i})
384     \end{equation}
385     where%
386    
387     \begin{equation}
388     round(x)=\lfloor{x+0.5}\rfloor\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{
389     }x\geqslant0
390     \end{equation}
391     %
392    
393     \begin{equation}
394     round(x)=\lceil{x-0.5}\rceil\text{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }if\text{ }x<0
395     \end{equation}
396    
397    
398     For example, $round(3.6)=4$,$round(3.1)=3$, $round(-3.6)=-4$, $round(-3.1)=-3$.
399    
400     Finally, we could get the minimum image by transforming back to real space,%
401    
402     \begin{equation}
403     \overrightarrow{r^{\prime}}=H^{-1}\overrightarrow{s^{\prime}}%
404     \end{equation}