ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/EmpericalEnergy.tex
Revision: 973
Committed: Wed Jan 21 19:00:23 2004 UTC (21 years, 3 months ago) by mmeineke
Content type: application/x-tex
File size: 24382 byte(s)
Log Message:
minor corrections to the previous commit

File Contents

# User Rev Content
1 mmeineke 806
2 mmeineke 966 \section{\label{sec:empiricalEnergy}The Empirical Energy Functions}
3 mmeineke 806
4 mmeineke 915 \subsection{\label{sec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
5 mmeineke 806
6 mmeineke 966 The basic unit of an {\sc oopse} simulation is the atom. The
7     parameters describing the atom are generalized to make the atom as
8     flexible a representation as possible. They may represent specific
9     atoms of an element, or be used for collections of atoms such as
10     methyl and carbonyl groups. The atoms are also capable of having
11     directional components associated with them (\emph{e.g.}~permanent
12     dipoles). Charges on atoms are not currently supported by {\sc oopse}.
13 mmeineke 806
14 mmeineke 972 \begin{lstlisting}[caption={[Specifier for molecules and atoms] A sample specification of the simple Ar molecule},label=sch:AtmMole]
15 mmeineke 964 molecule{
16     name = "Ar";
17     nAtoms = 1;
18     atom[0]{
19 mmeineke 972 type="Ar";
20     position( 0.0, 0.0, 0.0 );
21 mmeineke 964 }
22     }
23     \end{lstlisting}
24    
25 mmeineke 972 Atoms can be collected into secondary srtructures such as rigid bodies
26     or molecules. The molecule is a way for {\sc oopse} to keep track of
27     the atoms in a simulation in logical manner. Molecular units store the
28     identities of all the atoms associated with themselves, and are
29     responsible for the evaluation of their own internal interactions
30     (\emph{i.e.}~bonds, bends, and torsions). Scheme \ref{sch:AtmMole}
31     shws how one creates a molecule in the \texttt{.mdl} files. The
32     position of the atoms given in the declaration are relative to the
33     origin of the molecule, and is used when creating a system containing
34     the molecule.
35 mmeineke 899
36 chrisfen 935 As stated previously, one of the features that sets {\sc oopse} apart
37 mmeineke 915 from most of the current molecular simulation packages is the ability
38     to handle rigid body dynamics. Rigid bodies are non-spherical
39     particles or collections of particles that have a constant internal
40     potential and move collectively.\cite{Goldstein01} They are not
41 chrisfen 935 included in most simulation packages because of the requirement to
42     propagate the orientational degrees of freedom. Until recently,
43     integrators which propagate orientational motion have been lacking.
44 mmeineke 915
45     Moving a rigid body involves determination of both the force and
46     torque applied by the surroundings, which directly affect the
47 chrisfen 935 translational and rotational motion in turn. In order to accumulate
48     the total force on a rigid body, the external forces and torques must
49     first be calculated for all the internal particles. The total force on
50     the rigid body is simply the sum of these external forces.
51     Accumulation of the total torque on the rigid body is more complex
52     than the force in that it is the torque applied on the center of mass
53     that dictates rotational motion. The torque on rigid body {\it i} is
54 chrisfen 925 \begin{equation}
55 chrisfen 935 \boldsymbol{\tau}_i=
56     \sum_{a}(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia}
57     + \boldsymbol{\tau}_{ia},
58 chrisfen 925 \label{eq:torqueAccumulate}
59     \end{equation}
60 chrisfen 935 where $\boldsymbol{\tau}_i$ and $\mathbf{r}_i$ are the torque on and
61     position of the center of mass respectively, while $\mathbf{f}_{ia}$,
62     $\mathbf{r}_{ia}$, and $\boldsymbol{\tau}_{ia}$ are the force on,
63     position of, and torque on the component particles of the rigid body.
64 mmeineke 915
65 chrisfen 935 The summation of the total torque is done in the body fixed axis of
66 mmeineke 915 the rigid body. In order to move between the space fixed and body
67 chrisfen 925 fixed coordinate axes, parameters describing the orientation must be
68     maintained for each rigid body. At a minimum, the rotation matrix
69 chrisfen 935 (\textbf{A}) can be described by the three Euler angles ($\phi,
70     \theta,$ and $\psi$), where the elements of \textbf{A} are composed of
71 chrisfen 925 trigonometric operations involving $\phi, \theta,$ and
72 chrisfen 935 $\psi$.\cite{Goldstein01} In order to avoid numerical instabilities
73 chrisfen 925 inherent in using the Euler angles, the four parameter ``quaternion''
74 chrisfen 935 scheme is often used. The elements of \textbf{A} can be expressed as
75     arithmetic operations involving the four quaternions ($q_0, q_1, q_2,$
76     and $q_3$).\cite{allen87:csl} Use of quaternions also leads to
77     performance enhancements, particularly for very small
78 chrisfen 925 systems.\cite{Evans77}
79 mmeineke 915
80 chrisfen 935 {\sc oopse} utilizes a relatively new scheme that propagates the
81     entire nine parameter rotation matrix internally. Further discussion
82 mmeineke 972 on this choice can be found in Sec.~\ref{sec:integrate}. An example
83     definition of a riged body can be seen in Scheme
84     \ref{sch:rigidBody}. The positions in the atom definitions are the
85     placements of the atoms relative to the origin of the rigid body,
86     which itself has a position relative to the origin of the molecule.
87 chrisfen 925
88 mmeineke 972 \begin{lstlisting}[caption={[Defining rigid bodies]A sample definition of a rigid body},label={sch:rigidBody}]
89     molecule{
90     name = "TIP3P_water";
91     nRigidBodies = 1;
92     rigidBody[0]{
93     nAtoms = 3;
94     atom[0]{
95     type = "O_TIP3P";
96     position( 0.0, 0.0, -0.06556 );
97     }
98     atom[1]{
99     type = "H_TIP3P";
100     position( 0.0, 0.75695, 0.52032 );
101     }
102     atom[2]{
103     type = "H_TIP3P";
104     position( 0.0, -0.75695, 0.52032 );
105     }
106     position( 0.0, 0.0, 0.0 );
107     orientation( 0.0, 0.0, 1.0 );
108     }
109     }
110     \end{lstlisting}
111    
112 mmeineke 915 \subsection{\label{sec:LJPot}The Lennard Jones Potential}
113    
114 mmeineke 972 The most basic force field implemented in {\sc oopse} is the
115     Lennard-Jones potential, which mimics the van der Waals interaction at
116     long distances, and uses an empirical repulsion at short
117     distances. The Lennard-Jones potential is given by:
118 mmeineke 915 \begin{equation}
119     V_{\text{LJ}}(r_{ij}) =
120     4\epsilon_{ij} \biggl[
121     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
122     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
123     \biggr]
124     \label{eq:lennardJonesPot}
125     \end{equation}
126 mmeineke 972 Where $r_{ij}$ is the distance between particles $i$ and $j$,
127 mmeineke 930 $\sigma_{ij}$ scales the length of the interaction, and
128 mmeineke 972 $\epsilon_{ij}$ scales the well depth of the potential. Scheme
129     \ref{sch:LJFF} gives and example partial \texttt{.bass} file that
130     shows a system of 108 Ar particles simulated with the Lennard-Jones
131     force field.
132 mmeineke 915
133 mmeineke 972 \begin{lstlisting}[caption={[Invocation of the Lennard-Jones force field] A sample system using the Lennard-Jones force field.},label={sch:LJFF}]
134    
135     /*
136     * The Ar molecule is specified
137     * external to the.bass file
138     */
139    
140     #include "argon.mdl"
141    
142     nComponents = 1;
143     component{
144     type = "Ar";
145     nMol = 108;
146     }
147    
148     /*
149     * The initial configuration is generated
150     * before the simulation is invoked.
151     */
152    
153     initialConfig = "./argon.init";
154    
155     forceField = "LJ";
156     \end{lstlisting}
157    
158 mmeineke 930 Because this potential is calculated between all pairs, the force
159 mmeineke 915 evaluation can become computationally expensive for large systems. To
160 mmeineke 972 keep the pair evaluations to a manageable number, {\sc oopse} employs
161     a cut-off radius.\cite{allen87:csl} The cutoff radius is set to be
162     $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest Lennard-Jones
163     length parameter present in the simulation. Truncating the calculation
164     at $r_{\text{cut}}$ introduces a discontinuity into the potential
165 mmeineke 915 energy. To offset this discontinuity, the energy value at
166 mmeineke 972 $r_{\text{cut}}$ is subtracted from the potential. This causes the
167     potential to go to zero smoothly at the cut-off radius.
168 mmeineke 915
169     Interactions between dissimilar particles requires the generation of
170     cross term parameters for $\sigma$ and $\epsilon$. These are
171     calculated through the Lorentz-Berthelot mixing
172     rules:\cite{allen87:csl}
173     \begin{equation}
174     \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
175     \label{eq:sigmaMix}
176     \end{equation}
177     and
178     \begin{equation}
179     \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
180     \label{eq:epsilonMix}
181     \end{equation}
182    
183    
184 mmeineke 972
185 mmeineke 899 \subsection{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
186    
187 mmeineke 972 The dipolar unified-atom force field ({\sc duff}) was developed to
188     simulate lipid bilayers. The simulations require a model capable of
189     forming bilayers, while still being sufficiently computationally
190     efficient to allow large systems ($\approx$100's of phospholipids,
191     $\approx$1000's of waters) to be simulated for long times
192     ($\approx$10's of nanoseconds).
193 mmeineke 899
194 mmeineke 972 With this goal in mind, {\sc duff} has no point
195     charges. Charge-neutral distributions were replaced with dipoles,
196     while most atoms and groups of atoms were reduced to Lennard-Jones
197     interaction sites. This simplification cuts the length scale of long
198     range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us
199     to avoid the computationally expensive Ewald sum. Instead, we can use
200 mmeineke 930 neighbor-lists, reaction field, and cutoff radii for the dipolar
201     interactions.
202 mmeineke 899
203 mmeineke 930 As an example, lipid head-groups in {\sc duff} are represented as
204     point dipole interaction sites. By placing a dipole of 20.6~Debye at
205     the head group center of mass, our model mimics the head group of
206 mmeineke 972 phosphatidylcholine.\cite{Cevc87} Additionally, a large Lennard-Jones
207     site is located at the pseudoatom's center of mass. The model is
208     illustrated by the dark grey atom in Fig.~\ref{fig:lipidModel}. The
209     water model we use to complement the dipoles of the lipids is our
210 mmeineke 966 reparameterization of the soft sticky dipole (SSD) model of Ichiye
211 mmeineke 930 \emph{et al.}\cite{liu96:new_model}
212 mmeineke 899
213     \begin{figure}
214 mmeineke 930 \epsfxsize=\linewidth
215 mmeineke 918 \epsfbox{lipidModel.eps}
216 mmeineke 899 \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
217 mmeineke 930 is the bend angle, $\mu$ is the dipole moment of the head group, and n
218     is the chain length.}
219 mmeineke 899 \label{fig:lipidModel}
220     \end{figure}
221    
222 mmeineke 972 We have used a set of scalable parameters to model the alkyl groups
223     with Lennard-Jones sites. For this, we have borrowed parameters from
224     the TraPPE force field of Siepmann
225 mmeineke 899 \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
226     representation of n-alkanes, which is parametrized against phase
227 mmeineke 972 equilibria using Gibbs ensemble Monte Carlo simulation
228 mmeineke 899 techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
229     it generalizes the types of atoms in an alkyl chain to keep the number
230     of pseudoatoms to a minimum; the parameters for an atom such as
231     $\text{CH}_2$ do not change depending on what species are bonded to
232     it.
233    
234 mmeineke 972 TraPPE also constrains all bonds to be of fixed length. Typically,
235 mmeineke 899 bond vibrations are the fastest motions in a molecular dynamic
236     simulation. Small time steps between force evaluations must be used to
237 mmeineke 972 ensure adequate sampling of the bond potential to ensure conservation
238     of energy. By constraining the bond lengths, larger time steps may be
239     used when integrating the equations of motion. A simulation using {\sc
240     duff} is illustrated in Scheme \ref{sch:DUFF}.
241 mmeineke 899
242 mmeineke 972 \begin{lstlisting}[caption={[Invocation of {\sc duff}]Sample \texttt{.bass} file showing a simulation utilizing {\sc duff}},label={sch:DUFF}]
243 mmeineke 899
244 mmeineke 972 #include "water.mdl"
245     #include "lipid.mdl"
246    
247     nComponents = 2;
248     component{
249     type = "simpleLipid_16";
250     nMol = 60;
251     }
252    
253     component{
254     type = "SSD_water";
255     nMol = 1936;
256     }
257    
258     initialConfig = "bilayer.init";
259    
260     forceField = "DUFF";
261    
262     \end{lstlisting}
263    
264 mmeineke 899 \subsubsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
265    
266 mmeineke 972 The total potential energy function in {\sc duff} is
267 mmeineke 899 \begin{equation}
268 mmeineke 972 V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
269 mmeineke 930 + \sum^{N}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}}
270 mmeineke 899 \label{eq:totalPotential}
271     \end{equation}
272 mmeineke 972 Where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
273 mmeineke 899 \begin{equation}
274     V^{I}_{\text{Internal}} =
275     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
276 mmeineke 930 + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
277 mmeineke 899 + \sum_{i \in I} \sum_{(j>i+4) \in I}
278     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
279     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
280     \biggr]
281     \label{eq:internalPotential}
282     \end{equation}
283     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
284 mmeineke 972 within the molecule $I$, and $V_{\text{torsion}}$ is the torsion potential
285 mmeineke 930 for all 1, 4 bonded pairs. The pairwise portions of the internal
286     potential are excluded for pairs that are closer than three bonds,
287     i.e.~atom pairs farther away than a torsion are included in the
288     pair-wise loop.
289 mmeineke 899
290    
291     The bend potential of a molecule is represented by the following function:
292     \begin{equation}
293 mmeineke 972 V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
294 mmeineke 899 \end{equation}
295     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
296 mmeineke 972 (see Fig.~\ref{fig:lipidModel}), $\theta_0$ is the equilibrium
297     bond angle, and $k_{\theta}$ is the force constant which determines the
298 mmeineke 899 strength of the harmonic bend. The parameters for $k_{\theta}$ and
299 mmeineke 972 $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
300 mmeineke 899
301 mmeineke 972 The torsion potential and parameters are also borrowed from TraPPE. It is
302 mmeineke 899 of the form:
303     \begin{equation}
304 mmeineke 930 V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
305 mmeineke 899 + c_2[1 + \cos(2\phi)]
306     + c_3[1 + \cos(3\phi)]
307     \label{eq:origTorsionPot}
308     \end{equation}
309 mmeineke 972 Here $\phi$ is the angle defined by four bonded neighbors $i$,
310 mmeineke 930 $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). For
311 mmeineke 966 computational efficiency, the torsion potential has been recast after
312 mmeineke 972 the method of CHARMM,\cite{charmm1983} in which the angle series is
313 mmeineke 930 converted to a power series of the form:
314 mmeineke 899 \begin{equation}
315 mmeineke 972 V_{\text{torsion}}(\phi) =
316 mmeineke 899 k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
317     \label{eq:torsionPot}
318     \end{equation}
319     Where:
320     \begin{align*}
321     k_0 &= c_1 + c_3 \\
322     k_1 &= c_1 - 3c_3 \\
323     k_2 &= 2 c_2 \\
324     k_3 &= 4c_3
325     \end{align*}
326 mmeineke 972 By recasting the potential as a power series, repeated trigonometric
327     evaluations are avoided during the calculation of the potential energy.
328 mmeineke 899
329    
330 mmeineke 972 The cross potential between molecules $I$ and $J$, $V^{IJ}_{\text{Cross}}$, is
331 mmeineke 930 as follows:
332     \begin{equation}
333     V^{IJ}_{\text{Cross}} =
334     \sum_{i \in I} \sum_{j \in J}
335     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
336     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
337     + V_{\text{sticky}}
338     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
339     \biggr]
340     \label{eq:crossPotentail}
341     \end{equation}
342     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
343     $V_{\text{dipole}}$ is the dipole dipole potential, and
344 mmeineke 972 $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
345     (Sec.~\ref{sec:SSD}). Note that not all atom types include all
346     interactions.
347 mmeineke 915
348 mmeineke 899 The dipole-dipole potential has the following form:
349     \begin{equation}
350     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
351 mmeineke 930 \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
352     \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
353 mmeineke 899 -
354 mmeineke 930 \frac{3(\boldsymbol{\hat{u}}_i \cdot \mathbf{r}_{ij}) %
355     (\boldsymbol{\hat{u}}_j \cdot \mathbf{r}_{ij}) }
356     {r^{2}_{ij}} \biggr]
357 mmeineke 899 \label{eq:dipolePot}
358     \end{equation}
359     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
360     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
361 mmeineke 972 are the orientational degrees of freedom for atoms $i$ and $j$
362     respectively. $|\mu_i|$ is the magnitude of the dipole moment of atom
363     $i$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
364     vector of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is
365     the unit vector pointing along $\mathbf{r}_{ij}$.
366 mmeineke 899
367    
368 mmeineke 972 \subsubsection{\label{sec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF}
369 mmeineke 899
370 chrisfen 925 In the interest of computational efficiency, the default solvent used
371 chrisfen 961 by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water
372     model.\cite{Gezelter04} The original SSD was developed by Ichiye
373 chrisfen 967 \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
374 chrisfen 961 water model proposed by Bratko, Blum, and
375 mmeineke 899 Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
376     with a Lennard-Jones core and a sticky potential that directs the
377     particles to assume the proper hydrogen bond orientation in the first
378     solvation shell. Thus, the interaction between two SSD water molecules
379     \emph{i} and \emph{j} is given by the potential
380     \begin{equation}
381 chrisfen 925 V_{ij} =
382     V_{ij}^{LJ} (r_{ij})\ + V_{ij}^{dp}
383     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
384     V_{ij}^{sp}
385     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
386     \label{eq:ssdPot}
387 mmeineke 899 \end{equation}
388     where the $\mathbf{r}_{ij}$ is the position vector between molecules
389 chrisfen 925 \emph{i} and \emph{j} with magnitude equal to the distance $r_{ij}$, and
390 mmeineke 899 $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
391 chrisfen 925 orientations of the respective molecules. The Lennard-Jones and dipole
392     parts of the potential are given by equations \ref{eq:lennardJonesPot}
393     and \ref{eq:dipolePot} respectively. The sticky part is described by
394     the following,
395 mmeineke 899 \begin{equation}
396 chrisfen 925 u_{ij}^{sp}(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=
397     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},
398     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) +
399     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},
400     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
401     \label{eq:stickyPot}
402 mmeineke 899 \end{equation}
403 chrisfen 925 where $\nu_0$ is a strength parameter for the sticky potential, and
404     $s$ and $s^\prime$ are cubic switching functions which turn off the
405     sticky interaction beyond the first solvation shell. The $w$ function
406     can be thought of as an attractive potential with tetrahedral
407     geometry:
408 mmeineke 899 \begin{equation}
409 chrisfen 925 w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
410     \sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
411     \label{eq:stickyW}
412 mmeineke 899 \end{equation}
413 chrisfen 925 while the $w^\prime$ function counters the normal aligned and
414     anti-aligned structures favored by point dipoles:
415 mmeineke 899 \begin{equation}
416 chrisfen 925 w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
417     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
418     \label{eq:stickyWprime}
419 mmeineke 899 \end{equation}
420 chrisfen 925 It should be noted that $w$ is proportional to the sum of the $Y_3^2$
421     and $Y_3^{-2}$ spherical harmonics (a linear combination which
422     enhances the tetrahedral geometry for hydrogen bonded structures),
423     while $w^\prime$ is a purely empirical function. A more detailed
424     description of the functional parts and variables in this potential
425     can be found in the original SSD
426 chrisfen 967 articles.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md,Ichiye03}
427 mmeineke 899
428 chrisfen 925 Since SSD is a single-point {\it dipolar} model, the force
429     calculations are simplified significantly relative to the standard
430     {\it charged} multi-point models. In the original Monte Carlo
431     simulations using this model, Ichiye {\it et al.} reported that using
432     SSD decreased computer time by a factor of 6-7 compared to other
433 chrisfen 967 models.\cite{liu96:new_model} What is most impressive is that these savings
434 chrisfen 925 did not come at the expense of accurate depiction of the liquid state
435     properties. Indeed, SSD maintains reasonable agreement with the Soper
436 chrisfen 961 diffraction data for the structural features of liquid
437 chrisfen 967 water.\cite{Soper86,liu96:new_model} Additionally, the dynamical properties
438 chrisfen 925 exhibited by SSD agree with experiment better than those of more
439     computationally expensive models (like TIP3P and
440 chrisfen 967 SPC/E).\cite{chandra99:ssd_md} The combination of speed and accurate depiction
441 chrisfen 925 of solvent properties makes SSD a very attractive model for the
442     simulation of large scale biochemical simulations.
443 mmeineke 899
444     Recent constant pressure simulations revealed issues in the original
445     SSD model that led to lower than expected densities at all target
446 chrisfen 925 pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse}
447 chrisfen 961 is therefore SSD/E, a density corrected derivative of SSD that
448     exhibits improved liquid structure and transport behavior. If the use
449     of a reaction field long-range interaction correction is desired, it
450     is recommended that the parameters be modified to those of the SSD/RF
451     model. Solvent parameters can be easily modified in an accompanying
452     {\sc BASS} file as illustrated in the scheme below. A table of the
453     parameter values and the drawbacks and benefits of the different
454     density corrected SSD models can be found in reference
455     \ref{Gezelter04}.
456 mmeineke 899
457 mmeineke 973 \begin{lstlisting}[caption={[A simulation of {\sc ssd} water]An example file showing a simulation including {\sc ssd} water.},label={sch:ssd}]
458 mmeineke 899
459 mmeineke 973 #include "water.mdl"
460    
461     nComponents = 1;
462     component{
463     type = "SSD_water";
464     nMol = 864;
465     }
466    
467     initialConfig = "liquidWater.init";
468    
469     forceField = "DUFF";
470    
471     /*
472     * The reactionField flag toggles reaction
473     * field corrections.
474     */
475    
476     reactionField = false; // defaults to false
477     dielectric = 80.0; // dielectric for reaction field
478    
479     /*
480     * The following two flags set the cutoff
481     * radius for the electrostatic forces
482     * as well as the skin thickness of the switching
483     * function.
484     */
485    
486     electrostaticCutoffRadius = 9.2;
487     electrostaticSkinThickness = 1.38;
488    
489     \end{lstlisting}
490    
491    
492 mmeineke 930 \subsection{\label{sec:eam}Embedded Atom Method}
493 mmeineke 899
494 chuckv 931 Several other molecular dynamics packages\cite{dynamo86} exist which have the
495 mmeineke 918 capacity to simulate metallic systems, including some that have
496     parallel computational abilities\cite{plimpton93}. Potentials that
497     describe bonding transition metal
498     systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have a
499 chuckv 931 attractive interaction which models ``Embedding''
500     a positively charged metal ion in the electron density due to the
501 mmeineke 918 free valance ``sea'' of electrons created by the surrounding atoms in
502     the system. A mostly repulsive pairwise part of the potential
503     describes the interaction of the positively charged metal core ions
504     with one another. A particular potential description called the
505 chuckv 931 Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}({\sc eam}) that has
506 mmeineke 966 particularly wide adoption has been selected for inclusion in {\sc oopse}. A
507 chuckv 931 good review of {\sc eam} and other metallic potential formulations was done
508 mmeineke 918 by Voter.\cite{voter}
509 mmeineke 915
510 mmeineke 918 The {\sc eam} potential has the form:
511     \begin{eqnarray}
512     V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
513     \phi_{ij}({\bf r}_{ij}) \\
514     \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
515 chuckv 932 \end{eqnarray}S
516 mmeineke 918
517 chuckv 932 where $F_{i} $ is the embedding function that equates the energy required to embed a
518     positively-charged core ion $i$ into a linear superposition of
519 mmeineke 966 spherically averaged atomic electron densities given by
520 chuckv 931 $\rho_{i}$. $\phi_{ij}$ is a primarily repulsive pairwise interaction
521     between atoms $i$ and $j$. In the original formulation of
522     {\sc eam} cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term, however
523 chuckv 933 in later refinements to EAM have shown that non-uniqueness between $F$
524 chuckv 931 and $\phi$ allow for more general forms for $\phi$.\cite{Daw89}
525     There is a cutoff distance, $r_{cut}$, which limits the
526 mmeineke 918 summations in the {\sc eam} equation to the few dozen atoms
527     surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
528 chuckv 931 interactions. Foiles et al. fit EAM potentials for fcc metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals\cite{FDB86}. These potential fits are in the DYNAMO 86 format and are included with {\sc oopse}.
529 mmeineke 918
530 chuckv 931
531 mmeineke 915 \subsection{\label{Sec:pbc}Periodic Boundary Conditions}
532 mmeineke 937
533     \newcommand{\roundme}{\operatorname{round}}
534 mmeineke 972
535 mmeineke 930 \textit{Periodic boundary conditions} are widely used to simulate truly
536     macroscopic systems with a relatively small number of particles. The
537 mmeineke 972 simulation box is replicated throughout space to form an infinite lattice.
538     During the simulation, when a particle moves in the primary cell, its image in
539     other boxes move in exactly the same direction with exactly the same
540     orientation.Thus, as a particle leaves the primary cell, one of its images
541     will enter through the opposite face.If the simulation box is large enough to
542     avoid \textquotedblleft feeling\textquotedblright\ the symmetries of the
543     periodic lattice, surface effects can be ignored. Cubic, orthorhombic and
544     parallelepiped are the available periodic cells In OOPSE. We use a matrix to
545     describe the property of the simulation box. Therefore, both the size and
546     shape of the simulation box can be changed during the simulation. The
547     transformation from box space vector $\mathbf{s}$ to its corresponding real
548     space vector $\mathbf{r}$ is defined by
549 mmeineke 930 \begin{equation}
550 tim 968 \mathbf{r}=\underline{\mathbf{H}}\cdot\mathbf{s}%
551 mmeineke 930 \end{equation}
552    
553    
554 mmeineke 972 where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
555     box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the three sides of the
556     simulation box respectively.
557 mmeineke 930
558 mmeineke 972 To find the minimum image of a vector $\mathbf{r}$, we convert the real vector
559     to its corresponding vector in box space first, \bigskip%
560 mmeineke 930 \begin{equation}
561 tim 968 \mathbf{s}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{r}%
562 mmeineke 930 \end{equation}
563     And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5,
564     \begin{equation}
565 mmeineke 937 s_{i}^{\prime}=s_{i}-\roundme(s_{i})
566 mmeineke 930 \end{equation}
567     where
568    
569     %
570    
571     \begin{equation}
572 mmeineke 937 \roundme(x)=\left\{
573 mmeineke 972 \begin{array}{cc}%
574 mmeineke 930 \lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\
575     \lceil{x-0.5}\rceil & \text{otherwise}%
576     \end{array}
577     \right.
578     \end{equation}
579    
580    
581 mmeineke 972 For example, $\roundme(3.6)=4$,$\roundme(3.1)=3$, $\roundme(-3.6)=-4$, $\roundme(-3.1)=-3$.
582    
583     Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
584     transforming back to real space,%
585    
586 mmeineke 930 \begin{equation}
587 tim 968 \mathbf{r}^{\prime}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{s}^{\prime}%
588 mmeineke 930 \end{equation}
589