ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
(Generate patch)

Comparing trunk/oopsePaper/DUFF.tex (file contents):
Revision 737 by mmeineke, Mon Sep 1 19:50:07 2003 UTC vs.
Revision 818 by gezelter, Fri Oct 24 21:27:59 2003 UTC

# Line 2 | Line 2 | The \underline{D}ipolar \underline{U}nified-Atom
2   \section{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
3  
4   The \underline{D}ipolar \underline{U}nified-Atom
5 < \underline{F}orce \underline{F}ield (DUFF) was developed to
5 > \underline{F}orce \underline{F}ield ({\sc duff}) was developed to
6   simulate lipid bilayers. We needed a model capable of forming
7   bilayers, while still being sufficiently computationally efficient to
8   allow simulations of large systems ($\approx$100's of phospholipids,
# Line 17 | Line 17 | neighbor-lists and cutoff radii for the dipolar intera
17   computationally expensive Ewald-Sum. Instead, we can use
18   neighbor-lists and cutoff radii for the dipolar interactions.
19  
20 < \begin{equation}
21 < V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
22 <        \boldsymbol{\Omega}_{j}) =
23 <        \frac{1}{4\pi\epsilon_{0}} \biggl[
24 <        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
25 <        -
26 <        \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
27 <                (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
28 <                {r^{5}_{ij}} \biggr]\label{eq:dipole}
29 < \end{equation}
30 <
31 < As an example, lipid head groups in DUFF are represented as point
20 > As an example, lipid head groups in {\sc duff} are represented as point
21   dipole interaction sites.PC and PE Lipid head groups are typically
22   zwitterionic in nature, with charges separated by as much as
23   6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
# Line 38 | Line 27 | atom in Fig.~\ref{fig:lipidModel}.
27   atom in Fig.~\ref{fig:lipidModel}.
28  
29   \begin{figure}
30 < \includegraphics[angle=-90,width=\linewidth]{lipidModel.epsi}
30 > \epsfxsize=6in
31 > \epsfbox{lipidModel.epsi}
32   \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
33   is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
34   \label{fig:lipidModel}
35   \end{figure}
36  
37 + The water model we use to complement the dipoles of the lipids is
38 + the soft sticky dipole (SSD) model of Ichiye \emph{et
39 + al.}\cite{liu96:new_model} This model is discussed in greater detail
40 + in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
41 + Lennard-Jones interaction site. The site also contains a dipole to
42 + mimic the partial charges on the hydrogens and the oxygen. However,
43 + what makes the SSD model unique is the inclusion of a tetrahedral
44 + short range potential to recover the hydrogen bonding of water, an
45 + important factor when modeling bilayers, as it has been shown that
46 + hydrogen bond network formation is a leading contribution to the
47 + entropic driving force towards lipid bilayer formation.\cite{Cevc87}
48 +
49 +
50   Turning to the tails of the phospholipids, we have used a set of
51   scalable parameters to model the alkyl groups with Lennard-Jones
52   sites. For this, we have used the TraPPE force field of Siepmann
# Line 63 | Line 66 | used when integrating the equations of motion.
66   energy. By constraining the bond lengths, larger time steps may be
67   used when integrating the equations of motion.
68  
66 The water model we use to complement this the dipoles of the lipids is
67 the soft sticky dipole (SSD) model of Ichiye \emph{et
68 al.}\cite{liu96:new_model} This model is discussed in greater detail
69 in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
70 Lennard-Jones interaction site. The site also contains a dipole to
71 mimic the partial charges on the hydrogens and the oxygen. However,
72 what makes the SSD model unique is the inclusion of a tetrahedral
73 short range potential to recover the hydrogen bonding of water, an
74 important factor when modeling bilayers, as it has been shown that
75 hydrogen bond network formation is a leading contribution to the
76 entropic driving force towards lipid bilayer formation.\cite{Cevc87}
69  
70 < \subsection{\label{subSec:energyFunctions}Energy Functions}
70 > \subsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
71  
72 + The total energy of function in {\sc duff} is given by the following:
73   \begin{equation}
74   V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
75          + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
76   \label{eq:totalPotential}
77   \end{equation}
78 <
78 > Where $V^{I}_{\text{Internal}}$ is the internal potential of a molecule:
79   \begin{equation}
80   V^{I}_{\text{Internal}} =
81          \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
# Line 93 | Line 86 | V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Interna
86          \biggr]
87   \label{eq:internalPotential}
88   \end{equation}
89 + Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
90 + within in the molecule. $V_{\text{torsion}}$ is the torsion The
91 + pairwise portions of the internal potential are excluded for pairs
92 + that ar closer than three bonds, i.e.~atom pairs farther away than a
93 + torsion are included in the pair-wise loop.
94  
95 + The cross portion of the total potential, $V^{IJ}_{\text{Cross}}$, is
96 + as follows:
97   \begin{equation}
98   V^{IJ}_{\text{Cross}} =
99          \sum_{i \in I} \sum_{j \in J}
# Line 104 | Line 104 | V^{IJ}_{\text{Cross}} =
104          \biggr]
105   \label{eq:crossPotentail}
106   \end{equation}
107 + Where $V_{\text{LJ}}$ is the Lennard Jones potential,
108 + $V_{\text{dipole}}$ is the dipole dipole potential, and
109 + $V_{\text{sticky}}$ is the sticky potential defined by the SSD model.
110  
111 + The bend potential of a molecule is represented by the following function:
112   \begin{equation}
113   V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
114   \end{equation}
115 + Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
116 + (see Fig.~\ref{fig:lipidModel}), and $\theta_0$ is the equilibrium
117 + bond angle. $k_{\theta}$ is the force constant which determines the
118 + strength of the harmonic bend. The parameters for $k_{\theta}$ and
119 + $\theta_0$ are based off of those in TraPPE.\cite{Siepmann1998}
120  
121 + The torsion potential and parameters are also taken from TraPPE. It is
122 + of the form:
123   \begin{equation}
124 < V_{\phi_{ijkl}} =  ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
124 > V_{\text{torsion}}(\phi_{ijkl}) = c_1[1 + \cos \phi]
125 >        + c_2[1 + \cos(2\phi)]
126 >        + c_3[1 + \cos(3\phi)]
127 > \label{eq:origTorsionPot}
128 > \end{equation}
129 > Here $\phi_{ijkl}$ is the angle defined by four bonded neighbors $i$,
130 > $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}).  However,
131 > for computaional efficency, the torsion potentail has been recast
132 > after the method of CHARMM\cite{charmm1983} whereby the angle series
133 > is converted to a power series of the form:
134 > \begin{equation}
135 > V_{\text{torsion}}(\phi_{ijkl}) =  
136 >        k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
137   \label{eq:torsionPot}
138   \end{equation}
139 + Where:
140 + \begin{align*}
141 + k_0 &= c_1 + c_3 \\
142 + k_1 &= c_1 - 3c_3 \\
143 + k_2 &= 2 c_2 \\
144 + k_3 &= 4c_3
145 + \end{align*}
146 + By recasting the equation to a power series, repeated trigonometric
147 + evaluations are avoided during the calculation of the potential.
148  
149 <
118 < The bonded interactions in the DUFF functional set are limited to the
119 < bend potential and the torsional potential. Bond potentials are not
120 < calculated, instead all bond lengths are fixed to allow for large time
121 < steps to be taken between force evaluations.
122 <
123 < The bend functional is of the form:
124 <
125 < $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
126 < angle, were taken from the TraPPE forcefield of Siepmann.
127 <
128 < The torsion functional has the form:
129 <
130 < Here, the authors decided to use a potential in terms of a power
131 < expansion in $\cos \phi$ rather than the typical expansion in
132 < $\phi$. This prevents the need for repeated trigonometric
133 < evaluations. Again, all $k_n$ constants were based on those in TraPPE.
134 <
135 < \subsection{Non-Bonded Interactions}
136 < \label{subSec:nonBondedInteractions}
137 <
149 > The Lennard-Jones potential is given by:
150   \begin{equation}
151 < V_{\text{LJ}} = \text{internal + external}
151 > V_{\text{LJ}}(r_{ij}) =
152 >        4\epsilon_{ij} \biggl[
153 >        \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
154 >        - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
155 >        \biggr]
156 > \label{eq:lennardJonesPot}
157   \end{equation}
158 + Where $r_ij$ is the distance between atoms $i$ and $j$, $\sigma_{ij}$
159 + scales the length of the interaction, and $\epsilon_{ij}$ scales the
160 + energy of the potential.
161  
162 <
162 > The dipole-dipole potential has the following form:
163 > \begin{equation}
164 > V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
165 >        \boldsymbol{\Omega}_{j}) = \frac{1}{4\pi\epsilon_{0}} \biggl[
166 >        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
167 >        -
168 >        \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
169 >                (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
170 >                {r^{5}_{ij}} \biggr]
171 > \label{eq:dipolePot}
172 > \end{equation}
173 > Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
174 > towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
175 > are the Euler angles of atom $i$ and $j$
176 > respectively. $\boldsymbol{\mu}_i$ is the dipole vector of atom
177 > $i$ it takes its orientation from $\boldsymbol{\Omega}_i$.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines