ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
(Generate patch)

Comparing trunk/oopsePaper/DUFF.tex (file contents):
Revision 666 by mmeineke, Tue Aug 5 21:38:16 2003 UTC vs.
Revision 737 by mmeineke, Mon Sep 1 19:50:07 2003 UTC

# Line 1 | Line 1
1  
2 + \section{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
3  
4 + The \underline{D}ipolar \underline{U}nified-Atom
5 + \underline{F}orce \underline{F}ield (DUFF) was developed to
6 + simulate lipid bilayers. We needed a model capable of forming
7 + bilayers, while still being sufficiently computationally efficient to
8 + allow simulations of large systems ($\approx$100's of phospholipids,
9 + $\approx$1000's of waters) for long times ($\approx$10's of
10 + nanoseconds).
11  
12 < \section{The DUFF Energy Functionals}
13 < \label{sec:energyFunctionals}
12 > With this goal in mind, we have eliminated all point charges. Charge
13 > distributions were replaced with dipoles, and charge-neutral
14 > distributions were reduced to Lennard-Jones interaction sites. This
15 > simplification cuts the length scale of long range interactions from
16 > $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us to avoid the
17 > computationally expensive Ewald-Sum. Instead, we can use
18 > neighbor-lists and cutoff radii for the dipolar interactions.
19  
20 < The main energy functional set in OOPSE is DUFF (the Dipolar
21 < Unified-atom Force Field). DUFF is a collection of parameters taken
22 < from Seipman \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et
23 < al.}\cite{liu96:new_model} The total energy of interaction is given by
24 < Eq.~\ref{eq:totalPotential}:
20 > \begin{equation}
21 > V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
22 >        \boldsymbol{\Omega}_{j}) =
23 >        \frac{1}{4\pi\epsilon_{0}} \biggl[
24 >        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
25 >        -
26 >        \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
27 >                (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
28 >                {r^{5}_{ij}} \biggr]\label{eq:dipole}
29 > \end{equation}
30  
31 < \begin{multline}\label{eq:totalPotential}
32 < V_{\text{lipid}} =
33 <        \sum_{i}V_{i}^{\text{internal}}
34 <        + \sum_i \sum_{j>i} \sum_{\alpha_i}
35 <        \sum_{\beta_j}V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}}) \\
36 <        +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
37 < \end{multline}
31 > As an example, lipid head groups in DUFF are represented as point
32 > dipole interaction sites.PC and PE Lipid head groups are typically
33 > zwitterionic in nature, with charges separated by as much as
34 > 6~$\mbox{\AA}$. By placing a dipole of 20.6~Debye at the head group
35 > center of mass, our model mimics the head group of PC.\cite{Cevc87}
36 > Additionally, a Lennard-Jones site is located at the
37 > pseudoatom's center of mass. The model is illustrated by the dark grey
38 > atom in Fig.~\ref{fig:lipidModel}.
39  
40 + \begin{figure}
41 + \includegraphics[angle=-90,width=\linewidth]{lipidModel.epsi}
42 + \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
43 + is the bend angle, $\mu$ is the dipole moment of the head group, and n is the chain length.}
44 + \label{fig:lipidModel}
45 + \end{figure}
46  
47 + Turning to the tails of the phospholipids, we have used a set of
48 + scalable parameters to model the alkyl groups with Lennard-Jones
49 + sites. For this, we have used the TraPPE force field of Siepmann
50 + \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
51 + representation of n-alkanes, which is parametrized against phase
52 + equilibria using Gibbs Monte Carlo simulation
53 + techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
54 + it generalizes the types of atoms in an alkyl chain to keep the number
55 + of pseudoatoms to a minimum; the parameters for an atom such as
56 + $\text{CH}_2$ do not change depending on what species are bonded to
57 + it.
58 +
59 + TraPPE also constrains of all bonds to be of fixed length. Typically,
60 + bond vibrations are the fastest motions in a molecular dynamic
61 + simulation. Small time steps between force evaluations must be used to
62 + ensure adequate sampling of the bond potential conservation of
63 + energy. By constraining the bond lengths, larger time steps may be
64 + used when integrating the equations of motion.
65 +
66 + The water model we use to complement this the dipoles of the lipids is
67 + the soft sticky dipole (SSD) model of Ichiye \emph{et
68 + al.}\cite{liu96:new_model} This model is discussed in greater detail
69 + in Sec.~\ref{sec:SSD}. In all cases we reduce water to a single
70 + Lennard-Jones interaction site. The site also contains a dipole to
71 + mimic the partial charges on the hydrogens and the oxygen. However,
72 + what makes the SSD model unique is the inclusion of a tetrahedral
73 + short range potential to recover the hydrogen bonding of water, an
74 + important factor when modeling bilayers, as it has been shown that
75 + hydrogen bond network formation is a leading contribution to the
76 + entropic driving force towards lipid bilayer formation.\cite{Cevc87}
77 +
78 + \subsection{\label{subSec:energyFunctions}Energy Functions}
79 +
80 + \begin{equation}
81 + V_{\text{Total}} = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
82 +        + \sum^{N}_{I=1} \sum^{N}_{J=1} V^{IJ}_{\text{Cross}}
83 + \label{eq:totalPotential}
84 + \end{equation}
85 +
86 + \begin{equation}
87 + V^{I}_{\text{Internal}} =
88 +        \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
89 +        + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\theta_{ijkl})
90 +        + \sum_{i \in I} \sum_{(j>i+4) \in I}
91 +        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
92 +        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
93 +        \biggr]
94 + \label{eq:internalPotential}
95 + \end{equation}
96 +
97 + \begin{equation}
98 + V^{IJ}_{\text{Cross}} =
99 +        \sum_{i \in I} \sum_{j \in J}
100 +        \biggl[ V_{\text{LJ}}(r_{ij}) +  V_{\text{dipole}}
101 +        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
102 +        + V_{\text{sticky}}
103 +        (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
104 +        \biggr]
105 + \label{eq:crossPotentail}
106 + \end{equation}
107 +
108 + \begin{equation}
109 + V_{\theta_{ijk}} = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
110 + \end{equation}
111 +
112 + \begin{equation}
113 + V_{\phi_{ijkl}} =  ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
114 + \label{eq:torsionPot}
115 + \end{equation}
116 +
117 +
118 + The bonded interactions in the DUFF functional set are limited to the
119 + bend potential and the torsional potential. Bond potentials are not
120 + calculated, instead all bond lengths are fixed to allow for large time
121 + steps to be taken between force evaluations.
122 +
123 + The bend functional is of the form:
124 +
125 + $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
126 + angle, were taken from the TraPPE forcefield of Siepmann.
127 +
128 + The torsion functional has the form:
129 +
130 + Here, the authors decided to use a potential in terms of a power
131 + expansion in $\cos \phi$ rather than the typical expansion in
132 + $\phi$. This prevents the need for repeated trigonometric
133 + evaluations. Again, all $k_n$ constants were based on those in TraPPE.
134 +
135 + \subsection{Non-Bonded Interactions}
136 + \label{subSec:nonBondedInteractions}
137 +
138 + \begin{equation}
139 + V_{\text{LJ}} = \text{internal + external}
140 + \end{equation}
141 +
142 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines