1 |
|
|
2 |
< |
\documentclass[prb,aps,twocolumn]{revtex4} |
2 |
> |
\section{\label{sec:DUFF}The DUFF Force Field} |
3 |
|
|
4 |
< |
\usepackage{amsmath} |
5 |
< |
\usepackage{berkeley} |
6 |
< |
\usepackage{graphicx} |
7 |
< |
\usepackage{tabularx} |
4 |
> |
The DUFF (\underline{D}ipolar \underline{U}nified-atom |
5 |
> |
\underline{F}orce \underline{F}ield) force field was developed to |
6 |
> |
simulate lipid bilayer formation and equilibrium dynamics. We needed a |
7 |
> |
model capable of forming bilaers, while still being sufficiently |
8 |
> |
computationally efficient allowing simulations of large systems |
9 |
> |
(\~100's of phospholipids, \~1000's of waters) for long times (\~10's |
10 |
> |
of nanoseconds). |
11 |
|
|
12 |
< |
\begin{document} |
12 |
> |
With this goal in mind, we decided to eliminate all charged |
13 |
> |
interactions within the force field. Charge distributions were |
14 |
> |
replaced with dipolar entities, and charge neutral distributions were |
15 |
> |
reduced to Lennard-Jones interaction sites. This simplification cuts |
16 |
> |
the length scale of long range interactions from $\frac{1}{r}$ to |
17 |
> |
$\frac{1}{r^3}$ (Eq.~\ref{eq:dipole} vs.~ Eq.~\ref{eq:coloumb}). |
18 |
|
|
19 |
< |
\section{The DUFF Energy Function} |
20 |
< |
\label{sec:energyFunctionals} |
19 |
> |
\begin{align} |
20 |
> |
V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
21 |
> |
\boldsymbol{\Omega}_{j}) &= |
22 |
> |
\frac{1}{4\pi\epsilon_{0}} \biggl[ |
23 |
> |
\frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} |
24 |
> |
- |
25 |
> |
\frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) % |
26 |
> |
(\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) } |
27 |
> |
{r^{5}_{ij}} \biggr]\label{eq:dipole} \\ |
28 |
> |
V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) &= \frac{q_{i}q_{j}}% |
29 |
> |
{4\pi\epsilon_{0} r_{ij}} \label{eq:coloumb} |
30 |
> |
\end{align} |
31 |
|
|
32 |
|
|
15 |
– |
|
33 |
|
The main energy function in OOPSE is DUFF (the Dipolar |
34 |
|
Unified-atom Force Field). DUFF is a collection of parameters taken |
35 |
|
from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et |
75 |
|
\end{equation} |
76 |
|
|
77 |
|
|
61 |
– |
|
62 |
– |
\bibliography{oopse} |
63 |
– |
|
64 |
– |
\end{document} |