ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
(Generate patch)

Comparing trunk/oopsePaper/DUFF.tex (file contents):
Revision 666 by mmeineke, Tue Aug 5 21:38:16 2003 UTC vs.
Revision 713 by mmeineke, Sat Aug 23 17:01:50 2003 UTC

# Line 1 | Line 1
1  
2 + \section{\label{sec:DUFF}The DUFF Force Field}
3  
4 + The DUFF (\underline{D}ipolar \underline{U}nified-atom
5 + \underline{F}orce \underline{F}ield) force field was developed to
6 + simulate lipid bilayer formation and equilibrium dynamics. We needed a
7 + model capable of forming bilaers, while still being sufficiently
8 + computationally efficient allowing simulations of large systems
9 + (\~100's of phospholipids, \~1000's of waters) for long times (\~10's
10 + of nanoseconds).
11  
12 < \section{The DUFF Energy Functionals}
13 < \label{sec:energyFunctionals}
12 > With this goal in mind, we decided to eliminate all charged
13 > interactions within the force field. Charge distributions were
14 > replaced with dipolar entities, and charge neutral distributions were
15 > reduced to Lennard-Jones interaction sites. This simplification cuts
16 > the length scale of long range interactions from $\frac{1}{r}$ to
17 > $\frac{1}{r^3}$ (Eq.~\ref{eq:dipole} vs.~ Eq.~\ref{eq:coloumb}).
18  
19 < The main energy functional set in OOPSE is DUFF (the Dipolar
19 > \begin{align}
20 > V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
21 >        \boldsymbol{\Omega}_{j}) &=
22 >        \frac{1}{4\pi\epsilon_{0}} \biggl[
23 >        \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}}
24 >        -
25 >        \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) %
26 >                (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) }
27 >                {r^{5}_{ij}} \biggr]\label{eq:dipole} \\
28 > V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) &= \frac{q_{i}q_{j}}%
29 >        {4\pi\epsilon_{0} r_{ij}} \label{eq:coloumb}
30 > \end{align}
31 >
32 >
33 > The main energy function in OOPSE is DUFF (the Dipolar
34   Unified-atom Force Field). DUFF is a collection of parameters taken
35 < from Seipman \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et
35 > from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et
36   al.}\cite{liu96:new_model} The total energy of interaction is given by
37   Eq.~\ref{eq:totalPotential}:
38 + \begin{equation}
39 + V_{\text{Total}} =
40 +        \overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} +
41 +        \underbrace{V_{\text{LJ}} + V_{\text{Dp}} + %
42 +        V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential}
43 + \end{equation}
44  
45 < \begin{multline}\label{eq:totalPotential}
46 < V_{\text{lipid}} =
15 <        \sum_{i}V_{i}^{\text{internal}}
16 <        + \sum_i \sum_{j>i} \sum_{\alpha_i}
17 <        \sum_{\beta_j}V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}}) \\
18 <        +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
19 < \end{multline}
45 > \subsection{Bonded Interactions}
46 > \label{subSec:bondedInteractions}
47  
48 + The bonded interactions in the DUFF functional set are limited to the
49 + bend potential and the torsional potential. Bond potentials are not
50 + calculated, instead all bond lengths are fixed to allow for large time
51 + steps to be taken between force evaluations.
52  
53 + The bend functional is of the form:
54 + \begin{equation}
55 + V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot}
56 + \end{equation}
57 + $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
58 + angle, were taken from the TraPPE forcefield of Siepmann.
59 +
60 + The torsion functional has the form:
61 + \begin{equation}
62 + V_{\phi} =  \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
63 + \label{eq:torsionPot}
64 + \end{equation}
65 + Here, the authors decided to use a potential in terms of a power
66 + expansion in $\cos \phi$ rather than the typical expansion in
67 + $\phi$. This prevents the need for repeated trigonemtric
68 + evaluations. Again, all $k_n$ constants were based on those in TraPPE.
69 +
70 + \subsection{Non-Bonded Interactions}
71 + \label{subSec:nonBondedInteractions}
72 +
73 + \begin{equation}
74 + V_{\text{LJ}} = \text{internal + external}
75 + \end{equation}
76 +
77 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines