1 |
|
|
2 |
+ |
\section{\label{sec:DUFF}The DUFF Force Field} |
3 |
|
|
4 |
+ |
The DUFF (\underline{D}ipolar \underline{U}nified-atom |
5 |
+ |
\underline{F}orce \underline{F}ield) force field was developed to |
6 |
+ |
simulate lipid bilayer formation and equilibrium dynamics. We needed a |
7 |
+ |
model capable of forming bilaers, while still being sufficiently |
8 |
+ |
computationally efficient allowing simulations of large systems |
9 |
+ |
(\~100's of phospholipids, \~1000's of waters) for long times (\~10's |
10 |
+ |
of nanoseconds). |
11 |
|
|
12 |
< |
\section{The DUFF Energy Functionals} |
13 |
< |
\label{sec:energyFunctionals} |
12 |
> |
With this goal in mind, we decided to eliminate all charged |
13 |
> |
interactions within the force field. Charge distributions were |
14 |
> |
replaced with dipolar entities, and charge neutral distributions were |
15 |
> |
reduced to Lennard-Jones interaction sites. This simplification cuts |
16 |
> |
the length scale of long range interactions from $\frac{1}{r}$ to |
17 |
> |
$\frac{1}{r^3}$ (Eq.~\ref{eq:dipole} vs.~ Eq.~\ref{eq:coloumb}). |
18 |
|
|
19 |
< |
The main energy functional set in OOPSE is DUFF (the Dipolar |
19 |
> |
\begin{align} |
20 |
> |
V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
21 |
> |
\boldsymbol{\Omega}_{j}) &= |
22 |
> |
\frac{1}{4\pi\epsilon_{0}} \biggl[ |
23 |
> |
\frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} |
24 |
> |
- |
25 |
> |
\frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) % |
26 |
> |
(\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) } |
27 |
> |
{r^{5}_{ij}} \biggr]\label{eq:dipole} \\ |
28 |
> |
V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) &= \frac{q_{i}q_{j}}% |
29 |
> |
{4\pi\epsilon_{0} r_{ij}} \label{eq:coloumb} |
30 |
> |
\end{align} |
31 |
> |
|
32 |
> |
|
33 |
> |
The main energy function in OOPSE is DUFF (the Dipolar |
34 |
|
Unified-atom Force Field). DUFF is a collection of parameters taken |
35 |
< |
from Seipman \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et |
35 |
> |
from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et |
36 |
|
al.}\cite{liu96:new_model} The total energy of interaction is given by |
37 |
|
Eq.~\ref{eq:totalPotential}: |
38 |
+ |
\begin{equation} |
39 |
+ |
V_{\text{Total}} = |
40 |
+ |
\overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} + |
41 |
+ |
\underbrace{V_{\text{LJ}} + V_{\text{Dp}} + % |
42 |
+ |
V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential} |
43 |
+ |
\end{equation} |
44 |
|
|
45 |
< |
\begin{multline}\label{eq:totalPotential} |
46 |
< |
V_{\text{lipid}} = |
15 |
< |
\sum_{i}V_{i}^{\text{internal}} |
16 |
< |
+ \sum_i \sum_{j>i} \sum_{\alpha_i} |
17 |
< |
\sum_{\beta_j}V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}}) \\ |
18 |
< |
+\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j}) |
19 |
< |
\end{multline} |
45 |
> |
\subsection{Bonded Interactions} |
46 |
> |
\label{subSec:bondedInteractions} |
47 |
|
|
48 |
+ |
The bonded interactions in the DUFF functional set are limited to the |
49 |
+ |
bend potential and the torsional potential. Bond potentials are not |
50 |
+ |
calculated, instead all bond lengths are fixed to allow for large time |
51 |
+ |
steps to be taken between force evaluations. |
52 |
|
|
53 |
+ |
The bend functional is of the form: |
54 |
+ |
\begin{equation} |
55 |
+ |
V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot} |
56 |
+ |
\end{equation} |
57 |
+ |
$k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend |
58 |
+ |
angle, were taken from the TraPPE forcefield of Siepmann. |
59 |
+ |
|
60 |
+ |
The torsion functional has the form: |
61 |
+ |
\begin{equation} |
62 |
+ |
V_{\phi} = \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0) |
63 |
+ |
\label{eq:torsionPot} |
64 |
+ |
\end{equation} |
65 |
+ |
Here, the authors decided to use a potential in terms of a power |
66 |
+ |
expansion in $\cos \phi$ rather than the typical expansion in |
67 |
+ |
$\phi$. This prevents the need for repeated trigonemtric |
68 |
+ |
evaluations. Again, all $k_n$ constants were based on those in TraPPE. |
69 |
+ |
|
70 |
+ |
\subsection{Non-Bonded Interactions} |
71 |
+ |
\label{subSec:nonBondedInteractions} |
72 |
+ |
|
73 |
+ |
\begin{equation} |
74 |
+ |
V_{\text{LJ}} = \text{internal + external} |
75 |
+ |
\end{equation} |
76 |
+ |
|
77 |
+ |
|