1 |
|
|
2 |
+ |
\documentclass[prb,aps,twocolumn]{revtex4} |
3 |
|
|
4 |
+ |
\usepackage{amsmath} |
5 |
+ |
\usepackage{berkeley} |
6 |
+ |
\usepackage{graphicx} |
7 |
+ |
\usepackage{tabularx} |
8 |
|
|
9 |
< |
\section{The DUFF Energy Functionals} |
9 |
> |
\begin{document} |
10 |
> |
|
11 |
> |
\section{The DUFF Energy Function} |
12 |
|
\label{sec:energyFunctionals} |
13 |
|
|
14 |
< |
The main energy functional set in OOPSE is DUFF (the Dipolar |
14 |
> |
|
15 |
> |
|
16 |
> |
The main energy function in OOPSE is DUFF (the Dipolar |
17 |
|
Unified-atom Force Field). DUFF is a collection of parameters taken |
18 |
|
from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et |
19 |
|
al.}\cite{liu96:new_model} The total energy of interaction is given by |
42 |
|
|
43 |
|
The torsion functional has the form: |
44 |
|
\begin{equation} |
45 |
< |
V_{\phi} = \sum ( k_1 \cos^3 \phi + k_2 \cos^2 \phi + k_3 \cos \phi + k_4) |
45 |
> |
V_{\phi} = \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0) |
46 |
|
\label{eq:torsionPot} |
47 |
|
\end{equation} |
48 |
|
Here, the authors decided to use a potential in terms of a power |
58 |
|
\end{equation} |
59 |
|
|
60 |
|
|
61 |
+ |
|
62 |
+ |
\bibliography{oopse} |
63 |
+ |
|
64 |
+ |
\end{document} |