ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/oopsePaper/DUFF.tex
(Generate patch)

Comparing trunk/oopsePaper/DUFF.tex (file contents):
Revision 666 by mmeineke, Tue Aug 5 21:38:16 2003 UTC vs.
Revision 710 by mmeineke, Fri Aug 22 19:37:54 2003 UTC

# Line 1 | Line 1
1  
2 + \documentclass[prb,aps,twocolumn]{revtex4}
3  
4 + \usepackage{amsmath}
5 + \usepackage{berkeley}
6 + \usepackage{graphicx}
7 + \usepackage{tabularx}
8  
9 < \section{The DUFF Energy Functionals}
9 > \begin{document}
10 >
11 > \section{The DUFF Energy Function}
12   \label{sec:energyFunctionals}
13  
14 < The main energy functional set in OOPSE is DUFF (the Dipolar
14 >
15 >
16 > The main energy function in OOPSE is DUFF (the Dipolar
17   Unified-atom Force Field). DUFF is a collection of parameters taken
18 < from Seipman \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et
18 > from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et
19   al.}\cite{liu96:new_model} The total energy of interaction is given by
20   Eq.~\ref{eq:totalPotential}:
21 + \begin{equation}
22 + V_{\text{Total}} =
23 +        \overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} +
24 +        \underbrace{V_{\text{LJ}} + V_{\text{Dp}} + %
25 +        V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential}
26 + \end{equation}
27  
28 < \begin{multline}\label{eq:totalPotential}
29 < V_{\text{lipid}} =
15 <        \sum_{i}V_{i}^{\text{internal}}
16 <        + \sum_i \sum_{j>i} \sum_{\alpha_i}
17 <        \sum_{\beta_j}V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}}) \\
18 <        +\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j})
19 < \end{multline}
28 > \subsection{Bonded Interactions}
29 > \label{subSec:bondedInteractions}
30  
31 + The bonded interactions in the DUFF functional set are limited to the
32 + bend potential and the torsional potential. Bond potentials are not
33 + calculated, instead all bond lengths are fixed to allow for large time
34 + steps to be taken between force evaluations.
35  
36 + The bend functional is of the form:
37 + \begin{equation}
38 + V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot}
39 + \end{equation}
40 + $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend
41 + angle, were taken from the TraPPE forcefield of Siepmann.
42 +
43 + The torsion functional has the form:
44 + \begin{equation}
45 + V_{\phi} =  \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0)
46 + \label{eq:torsionPot}
47 + \end{equation}
48 + Here, the authors decided to use a potential in terms of a power
49 + expansion in $\cos \phi$ rather than the typical expansion in
50 + $\phi$. This prevents the need for repeated trigonemtric
51 + evaluations. Again, all $k_n$ constants were based on those in TraPPE.
52 +
53 + \subsection{Non-Bonded Interactions}
54 + \label{subSec:nonBondedInteractions}
55 +
56 + \begin{equation}
57 + V_{\text{LJ}} = \text{internal + external}
58 + \end{equation}
59 +
60 +
61 +
62 + \bibliography{oopse}
63 +
64 + \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines