1 |
|
|
2 |
+ |
\documentclass[prb,aps,twocolumn]{revtex4} |
3 |
|
|
4 |
+ |
\usepackage{amsmath} |
5 |
+ |
\usepackage{berkeley} |
6 |
+ |
\usepackage{graphicx} |
7 |
+ |
\usepackage{tabularx} |
8 |
|
|
9 |
< |
\section{The DUFF Energy Functionals} |
9 |
> |
\begin{document} |
10 |
> |
|
11 |
> |
\section{The DUFF Energy Function} |
12 |
|
\label{sec:energyFunctionals} |
13 |
|
|
14 |
< |
The main energy functional set in OOPSE is DUFF (the Dipolar |
14 |
> |
|
15 |
> |
|
16 |
> |
The main energy function in OOPSE is DUFF (the Dipolar |
17 |
|
Unified-atom Force Field). DUFF is a collection of parameters taken |
18 |
< |
from Seipman \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et |
18 |
> |
from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et |
19 |
|
al.}\cite{liu96:new_model} The total energy of interaction is given by |
20 |
|
Eq.~\ref{eq:totalPotential}: |
21 |
+ |
\begin{equation} |
22 |
+ |
V_{\text{Total}} = |
23 |
+ |
\overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} + |
24 |
+ |
\underbrace{V_{\text{LJ}} + V_{\text{Dp}} + % |
25 |
+ |
V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential} |
26 |
+ |
\end{equation} |
27 |
|
|
28 |
< |
\begin{multline}\label{eq:totalPotential} |
29 |
< |
V_{\text{lipid}} = |
15 |
< |
\sum_{i}V_{i}^{\text{internal}} |
16 |
< |
+ \sum_i \sum_{j>i} \sum_{\alpha_i} |
17 |
< |
\sum_{\beta_j}V_{\text{LJ}}(r_{\alpha_{i}\beta_{j}}) \\ |
18 |
< |
+\sum_i\sum_{j>i}V_{\text{dp}}(r_{1_i,1_j},\Omega_{1_i},\Omega_{1_j}) |
19 |
< |
\end{multline} |
28 |
> |
\subsection{Bonded Interactions} |
29 |
> |
\label{subSec:bondedInteractions} |
30 |
|
|
31 |
+ |
The bonded interactions in the DUFF functional set are limited to the |
32 |
+ |
bend potential and the torsional potential. Bond potentials are not |
33 |
+ |
calculated, instead all bond lengths are fixed to allow for large time |
34 |
+ |
steps to be taken between force evaluations. |
35 |
|
|
36 |
+ |
The bend functional is of the form: |
37 |
+ |
\begin{equation} |
38 |
+ |
V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot} |
39 |
+ |
\end{equation} |
40 |
+ |
$k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend |
41 |
+ |
angle, were taken from the TraPPE forcefield of Siepmann. |
42 |
+ |
|
43 |
+ |
The torsion functional has the form: |
44 |
+ |
\begin{equation} |
45 |
+ |
V_{\phi} = \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0) |
46 |
+ |
\label{eq:torsionPot} |
47 |
+ |
\end{equation} |
48 |
+ |
Here, the authors decided to use a potential in terms of a power |
49 |
+ |
expansion in $\cos \phi$ rather than the typical expansion in |
50 |
+ |
$\phi$. This prevents the need for repeated trigonemtric |
51 |
+ |
evaluations. Again, all $k_n$ constants were based on those in TraPPE. |
52 |
+ |
|
53 |
+ |
\subsection{Non-Bonded Interactions} |
54 |
+ |
\label{subSec:nonBondedInteractions} |
55 |
+ |
|
56 |
+ |
\begin{equation} |
57 |
+ |
V_{\text{LJ}} = \text{internal + external} |
58 |
+ |
\end{equation} |
59 |
+ |
|
60 |
+ |
|
61 |
+ |
|
62 |
+ |
\bibliography{oopse} |
63 |
+ |
|
64 |
+ |
\end{document} |