| 1 | mmeineke | 664 |  | 
| 2 | mmeineke | 713 | \section{\label{sec:DUFF}The DUFF Force Field} | 
| 3 | mmeineke | 664 |  | 
| 4 | mmeineke | 713 | The DUFF (\underline{D}ipolar \underline{U}nified-atom | 
| 5 |  |  | \underline{F}orce \underline{F}ield) force field was developed to | 
| 6 |  |  | simulate lipid bilayer formation and equilibrium dynamics. We needed a | 
| 7 |  |  | model capable of forming bilaers, while still being sufficiently | 
| 8 |  |  | computationally efficient allowing simulations of large systems | 
| 9 |  |  | (\~100's of phospholipids, \~1000's of waters) for long times (\~10's | 
| 10 |  |  | of nanoseconds). | 
| 11 | mmeineke | 710 |  | 
| 12 | mmeineke | 713 | With this goal in mind, we decided to eliminate all charged | 
| 13 |  |  | interactions within the force field. Charge distributions were | 
| 14 |  |  | replaced with dipolar entities, and charge neutral distributions were | 
| 15 |  |  | reduced to Lennard-Jones interaction sites. This simplification cuts | 
| 16 |  |  | the length scale of long range interactions from $\frac{1}{r}$ to | 
| 17 |  |  | $\frac{1}{r^3}$ (Eq.~\ref{eq:dipole} vs.~ Eq.~\ref{eq:coloumb}). | 
| 18 | mmeineke | 710 |  | 
| 19 | mmeineke | 713 | \begin{align} | 
| 20 |  |  | V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, | 
| 21 |  |  | \boldsymbol{\Omega}_{j}) &= | 
| 22 |  |  | \frac{1}{4\pi\epsilon_{0}} \biggl[ | 
| 23 |  |  | \frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} | 
| 24 |  |  | - | 
| 25 |  |  | \frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) % | 
| 26 |  |  | (\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) } | 
| 27 |  |  | {r^{5}_{ij}} \biggr]\label{eq:dipole} \\ | 
| 28 |  |  | V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) &= \frac{q_{i}q_{j}}% | 
| 29 |  |  | {4\pi\epsilon_{0} r_{ij}} \label{eq:coloumb} | 
| 30 |  |  | \end{align} | 
| 31 |  |  |  | 
| 32 |  |  |  | 
| 33 | mmeineke | 709 | The main energy function in OOPSE is DUFF (the Dipolar | 
| 34 | mmeineke | 664 | Unified-atom Force Field). DUFF is a collection of parameters taken | 
| 35 | mmeineke | 698 | from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et | 
| 36 | mmeineke | 664 | al.}\cite{liu96:new_model} The total energy of interaction is given by | 
| 37 | mmeineke | 666 | Eq.~\ref{eq:totalPotential}: | 
| 38 | mmeineke | 698 | \begin{equation} | 
| 39 |  |  | V_{\text{Total}} = | 
| 40 |  |  | \overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} + | 
| 41 |  |  | \underbrace{V_{\text{LJ}} + V_{\text{Dp}} + % | 
| 42 |  |  | V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential} | 
| 43 |  |  | \end{equation} | 
| 44 | mmeineke | 666 |  | 
| 45 | mmeineke | 698 | \subsection{Bonded Interactions} | 
| 46 |  |  | \label{subSec:bondedInteractions} | 
| 47 | mmeineke | 664 |  | 
| 48 | mmeineke | 698 | The bonded interactions in the DUFF functional set are limited to the | 
| 49 |  |  | bend potential and the torsional potential. Bond potentials are not | 
| 50 |  |  | calculated, instead all bond lengths are fixed to allow for large time | 
| 51 |  |  | steps to be taken between force evaluations. | 
| 52 | mmeineke | 666 |  | 
| 53 | mmeineke | 698 | The bend functional is of the form: | 
| 54 |  |  | \begin{equation} | 
| 55 |  |  | V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot} | 
| 56 |  |  | \end{equation} | 
| 57 |  |  | $k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend | 
| 58 |  |  | angle, were taken from the TraPPE forcefield of Siepmann. | 
| 59 |  |  |  | 
| 60 |  |  | The torsion functional has the form: | 
| 61 |  |  | \begin{equation} | 
| 62 | mmeineke | 709 | V_{\phi} =  \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0) | 
| 63 | mmeineke | 698 | \label{eq:torsionPot} | 
| 64 |  |  | \end{equation} | 
| 65 |  |  | Here, the authors decided to use a potential in terms of a power | 
| 66 |  |  | expansion in $\cos \phi$ rather than the typical expansion in | 
| 67 |  |  | $\phi$. This prevents the need for repeated trigonemtric | 
| 68 |  |  | evaluations. Again, all $k_n$ constants were based on those in TraPPE. | 
| 69 |  |  |  | 
| 70 |  |  | \subsection{Non-Bonded Interactions} | 
| 71 |  |  | \label{subSec:nonBondedInteractions} | 
| 72 |  |  |  | 
| 73 |  |  | \begin{equation} | 
| 74 |  |  | V_{\text{LJ}} = \text{internal + external} | 
| 75 |  |  | \end{equation} | 
| 76 |  |  |  | 
| 77 |  |  |  |