| 1 |
mmeineke |
664 |
|
| 2 |
mmeineke |
713 |
\section{\label{sec:DUFF}The DUFF Force Field} |
| 3 |
mmeineke |
664 |
|
| 4 |
mmeineke |
713 |
The DUFF (\underline{D}ipolar \underline{U}nified-atom |
| 5 |
|
|
\underline{F}orce \underline{F}ield) force field was developed to |
| 6 |
|
|
simulate lipid bilayer formation and equilibrium dynamics. We needed a |
| 7 |
|
|
model capable of forming bilaers, while still being sufficiently |
| 8 |
|
|
computationally efficient allowing simulations of large systems |
| 9 |
|
|
(\~100's of phospholipids, \~1000's of waters) for long times (\~10's |
| 10 |
|
|
of nanoseconds). |
| 11 |
mmeineke |
710 |
|
| 12 |
mmeineke |
713 |
With this goal in mind, we decided to eliminate all charged |
| 13 |
|
|
interactions within the force field. Charge distributions were |
| 14 |
|
|
replaced with dipolar entities, and charge neutral distributions were |
| 15 |
|
|
reduced to Lennard-Jones interaction sites. This simplification cuts |
| 16 |
|
|
the length scale of long range interactions from $\frac{1}{r}$ to |
| 17 |
|
|
$\frac{1}{r^3}$ (Eq.~\ref{eq:dipole} vs.~ Eq.~\ref{eq:coloumb}). |
| 18 |
mmeineke |
710 |
|
| 19 |
mmeineke |
713 |
\begin{align} |
| 20 |
|
|
V^{\text{dipole}}_{ij}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i}, |
| 21 |
|
|
\boldsymbol{\Omega}_{j}) &= |
| 22 |
|
|
\frac{1}{4\pi\epsilon_{0}} \biggl[ |
| 23 |
|
|
\frac{\boldsymbol{\mu}_{i} \cdot \boldsymbol{\mu}_{j}}{r^{3}_{ij}} |
| 24 |
|
|
- |
| 25 |
|
|
\frac{3(\boldsymbol{\mu}_i \cdot \mathbf{r}_{ij}) % |
| 26 |
|
|
(\boldsymbol{\mu}_j \cdot \mathbf{r}_{ij}) } |
| 27 |
|
|
{r^{5}_{ij}} \biggr]\label{eq:dipole} \\ |
| 28 |
|
|
V^{\text{ch}}_{ij}(\mathbf{r}_{ij}) &= \frac{q_{i}q_{j}}% |
| 29 |
|
|
{4\pi\epsilon_{0} r_{ij}} \label{eq:coloumb} |
| 30 |
|
|
\end{align} |
| 31 |
|
|
|
| 32 |
|
|
|
| 33 |
mmeineke |
709 |
The main energy function in OOPSE is DUFF (the Dipolar |
| 34 |
mmeineke |
664 |
Unified-atom Force Field). DUFF is a collection of parameters taken |
| 35 |
mmeineke |
698 |
from Seipmann \emph{et al.}\cite{Siepmann1998} and Ichiye \emph{et |
| 36 |
mmeineke |
664 |
al.}\cite{liu96:new_model} The total energy of interaction is given by |
| 37 |
mmeineke |
666 |
Eq.~\ref{eq:totalPotential}: |
| 38 |
mmeineke |
698 |
\begin{equation} |
| 39 |
|
|
V_{\text{Total}} = |
| 40 |
|
|
\overbrace{V_{\theta} + V_{\phi}}^{\text{bonded}} + |
| 41 |
|
|
\underbrace{V_{\text{LJ}} + V_{\text{Dp}} + % |
| 42 |
|
|
V_{\text{SSD}}}_{\text{non-bonded}} \label{eq:totalPotential} |
| 43 |
|
|
\end{equation} |
| 44 |
mmeineke |
666 |
|
| 45 |
mmeineke |
698 |
\subsection{Bonded Interactions} |
| 46 |
|
|
\label{subSec:bondedInteractions} |
| 47 |
mmeineke |
664 |
|
| 48 |
mmeineke |
698 |
The bonded interactions in the DUFF functional set are limited to the |
| 49 |
|
|
bend potential and the torsional potential. Bond potentials are not |
| 50 |
|
|
calculated, instead all bond lengths are fixed to allow for large time |
| 51 |
|
|
steps to be taken between force evaluations. |
| 52 |
mmeineke |
666 |
|
| 53 |
mmeineke |
698 |
The bend functional is of the form: |
| 54 |
|
|
\begin{equation} |
| 55 |
|
|
V_{\theta} = \sum k_{\theta}( \theta - \theta_0 )^2 \label{eq:bendPot} |
| 56 |
|
|
\end{equation} |
| 57 |
|
|
$k_{\theta}$, the force constant, and $\theta_0$, the equilibrium bend |
| 58 |
|
|
angle, were taken from the TraPPE forcefield of Siepmann. |
| 59 |
|
|
|
| 60 |
|
|
The torsion functional has the form: |
| 61 |
|
|
\begin{equation} |
| 62 |
mmeineke |
709 |
V_{\phi} = \sum ( k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0) |
| 63 |
mmeineke |
698 |
\label{eq:torsionPot} |
| 64 |
|
|
\end{equation} |
| 65 |
|
|
Here, the authors decided to use a potential in terms of a power |
| 66 |
|
|
expansion in $\cos \phi$ rather than the typical expansion in |
| 67 |
|
|
$\phi$. This prevents the need for repeated trigonemtric |
| 68 |
|
|
evaluations. Again, all $k_n$ constants were based on those in TraPPE. |
| 69 |
|
|
|
| 70 |
|
|
\subsection{Non-Bonded Interactions} |
| 71 |
|
|
\label{subSec:nonBondedInteractions} |
| 72 |
|
|
|
| 73 |
|
|
\begin{equation} |
| 74 |
|
|
V_{\text{LJ}} = \text{internal + external} |
| 75 |
|
|
\end{equation} |
| 76 |
|
|
|
| 77 |
|
|
|