ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.bib
Revision: 4077
Committed: Fri Mar 14 18:49:24 2014 UTC (11 years, 6 months ago) by gezelter
File size: 106029 byte(s)
Log Message:
Edits

File Contents

# User Rev Content
1 kstocke1 4059 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 gezelter 4077 %% Created for Dan Gezelter at 2014-03-14 14:39:35 -0400
6 kstocke1 4059
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11     @string{acp = {Adv. Chem. Phys.}}
12    
13     @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76 gezelter 4077 @article{Schmidt:2003kx,
77     Abstract = {Using molecular dynamics computer simulation, we have calculated the velocity autocorrelation function and diffusion constant for a spherical solute in a dense fluid of spherical solvent particles. The size and mass of the solute particle are related in such a way that we can naturally approach the Brownian limit (when the solute becomes much larger and more massive than the solvent particles). We find that as long as the solute radius is interpreted as an effective hydrodynamic radius, the Stokes-Einstein law with slip boundary conditions is satisfied as the Brownian limit is approached (specifically, when the solute is roughly 100 times more massive than the solvent particles). In contrast, the Stokes-Einstein law is not satisfied for a tagged particle of the neat solvent. We also find that in the Brownian limit the amplitude of the long-time tail of the solute's velocity autocorrelation function is in good agreement with theoretical hydrodynamic predictions. When the solvent density is substantially lower than the triple density, the Stokes-Einstein law is no longer satisfied, and the amplitude of the long-time tail is not in good agreement with theoretical predictions, signaling the breakdown of hydrodynamics. (C) 2003 American Institute of Physics.},
78     Author = {Schmidt, JR and Skinner, JL},
79     Date-Added = {2014-03-14 18:36:17 +0000},
80     Date-Modified = {2014-03-14 18:36:17 +0000},
81     Doi = {DOI 10.1063/1.1610442},
82     Journal = jcp,
83     Pages = {8062-8068},
84     Title = {Hydrodynamic boundary conditions, the Stokes-Einstein law, and long-time tails in the Brownian limit},
85     Volume = 119,
86     Year = 2003,
87     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
88    
89     @article{Schmidt:2004fj,
90     Abstract = {Using molecular dynamics computer simulation, we have calculated the velocity autocorrelation function and diffusion constant for a variety of solutes in a dense fluid of spherical solvent particles. We explore the effects of surface roughness of the solute on the resulting hydrodynamic boundary condition as we naturally approach the Brownian limit (when the solute becomes much larger and more massive than the solvent particles). We find that when the solute and solvent interact through a purely repulsive isotropic potential, in the Brownian limit the Stokes-Einstein law is satisfied with slip boundary conditions. However, when surface roughness is introduced through an anisotropic solute-solvent interaction potential, we find that the Stokes-Einstein law is satisfied with stick boundary conditions. In addition, when the attractive strength of a short-range isotropic solute-solvent potential is increased, the solute becomes dressed with solvent particles, making it effectively rough, and so stick boundary conditions are again recovered.},
91     Author = {Schmidt, JR and Skinner, JL},
92     Date-Added = {2014-03-14 18:36:17 +0000},
93     Date-Modified = {2014-03-14 18:36:17 +0000},
94     Doi = {DOI 10.1021/jp037185r},
95     Journal = jpcb,
96     Pages = {6767-6771},
97     Title = {Brownian motion of a rough sphere and the Stokes-Einstein Law},
98     Volume = 108,
99     Year = 2004,
100     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp037185r}}
101    
102 gezelter 4076 @article{Lervik:2009fk,
103     Abstract = {We investigate{,} using transient non-equilibrium molecular-dynamics simulations{,} heat-transfer through nanometer-scale interfaces consisting of n-decane (2-12 nm diameter) droplets in water. Using computer simulation results of the temperature relaxation of the nanodroplet as a function of time we have computed the thermal conductivity and the interfacial conductance of the droplet and the droplet/water interface respectively. We find that the thermal conductivity of the n-decane droplets is insensitive to droplet size{,} whereas the interfacial conductance shows a strong dependence on the droplet radius. We rationalize this behavior in terms of a modification of the n-decane/water surface-tension with droplet curvature. This enhancement in interfacial conductance would contribute{,} in the case of a suspension{,} to an increase in the thermal conductivity with decreasing particle radius. This notion is consistent with recent experimental studies of nanofluids. We also investigate the accuracy of different diffusion equations to model the temperature relaxation in non stationary non equilibrium processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires the consideration of the thermal conductivity of the nanodroplet as well as the temperature discontinuity across the interface. The relevance of this result in diffusion models that neglect thermal conductivity effects in the modeling of the temperature relaxation is discussed.},
104     Author = {Lervik, Anders and Bresme, Fernando and Kjelstrup, Signe},
105     Date-Added = {2014-03-14 17:33:22 +0000},
106     Date-Modified = {2014-03-14 17:33:22 +0000},
107     Doi = {10.1039/B817666C},
108     Issue = {12},
109     Journal = {Soft Matter},
110     Pages = {2407-2414},
111     Publisher = {The Royal Society of Chemistry},
112     Title = {Heat transfer in soft nanoscale interfaces: the influence of interface curvature},
113     Url = {http://dx.doi.org/10.1039/B817666C},
114     Volume = {5},
115     Year = {2009},
116     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B817666C}}
117    
118 gezelter 4064 @article{Vogelsang:1988qv,
119     Author = {Vogelsang, R. and Hoheisel, G. and Luckas, M.},
120     Date-Added = {2014-03-13 20:40:44 +0000},
121     Date-Modified = {2014-03-13 20:40:58 +0000},
122     Doi = {10.1080/00268978800100813},
123     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268978800100813},
124     Journal = {Molecular Physics},
125     Number = {6},
126     Pages = {1203-1213},
127     Title = {Shear viscosity and thermal conductivity of the Lennard-Jones liquid computed using molecular dynamics and predicted by a memory function model for a large number of states},
128     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268978800100813},
129     Volume = {64},
130     Year = {1988},
131     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268978800100813},
132     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268978800100813}}
133    
134 gezelter 4063 @article{Berendsen87,
135     Author = {Berendsen, H. J. C. and Grigera, J. R. and Straatsma, T. P.},
136     Date-Added = {2014-03-13 15:02:07 +0000},
137     Date-Modified = {2014-03-13 15:02:07 +0000},
138     Doi = {10.1021/j100308a038},
139     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100308a038},
140     Journal = {The Journal of Physical Chemistry},
141     Number = {24},
142     Pages = {6269-6271},
143     Title = {The missing term in effective pair potentials},
144     Url = {http://pubs.acs.org/doi/abs/10.1021/j100308a038},
145     Volume = {91},
146     Year = {1987},
147     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100308a038},
148     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100308a038}}
149    
150     @article{Stocker:2013cl,
151     Author = {Stocker, Kelsey M. and Gezelter, J. Daniel},
152     Date-Added = {2014-03-13 14:20:18 +0000},
153     Date-Modified = {2014-03-13 14:21:57 +0000},
154     Doi = {10.1021/jp312734f},
155     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp312734f},
156     Journal = {The Journal of Physical Chemistry C},
157     Number = {15},
158     Pages = {7605-7612},
159     Title = {Simulations of Heat Conduction at Thiolate-Capped Gold Surfaces: The Role of Chain Length and Solvent Penetration},
160     Url = {http://pubs.acs.org/doi/abs/10.1021/jp312734f},
161     Volume = {117},
162     Year = {2013},
163     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp312734f},
164     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp312734f}}
165    
166     @article{Picalek:2009rz,
167     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
168     hexafluorophosphate is investigated by non-equilibrium molecular
169     dynamics simulations with cosine-modulated force in the temperature
170     range from 360 to 480K. It is shown that this method is able to
171     correctly predict the shear viscosity. The simulation setting and
172     choice of the force field are discussed in detail. The all-atom force
173     field exhibits a bad convergence and the shear viscosity is
174     overestimated, while the simple united atom model predicts the kinetics
175     very well. The results are compared with the equilibrium molecular
176     dynamics simulations. The relationship between the diffusion
177     coefficient and viscosity is examined by means of the hydrodynamic
178     radii calculated from the Stokes-Einstein equation and the solvation
179     properties are discussed.},
180     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
181     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
182     Author = {Picalek, Jan and Kolafa, Jiri},
183     Author-Email = {jiri.kolafa@vscht.cz},
184     Date-Added = {2014-03-13 14:11:53 +0000},
185     Date-Modified = {2014-03-13 14:12:08 +0000},
186     Doc-Delivery-Number = {448FD},
187     Doi = {10.1080/08927020802680703},
188     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
189     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
190     Issn = {0892-7022},
191     Journal = {Mol. Simul.},
192     Journal-Iso = {Mol. Simul.},
193     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
194     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
195     Language = {English},
196     Number = {8},
197     Number-Of-Cited-References = {50},
198     Pages = {685-690},
199     Publisher = {TAYLOR \& FRANCIS LTD},
200     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
201     Times-Cited = {2},
202     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
203     Type = {Article},
204     Unique-Id = {ISI:000266247600008},
205     Volume = {35},
206     Year = {2009},
207     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
208    
209     @article{Backer:2005sf,
210     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
211     Date-Added = {2014-03-13 14:11:38 +0000},
212     Date-Modified = {2014-03-13 14:12:08 +0000},
213     Doi = {10.1063/1.1883163},
214     Eid = {154503},
215     Journal = {J. Chem. Phys.},
216     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
217     Number = {15},
218     Numpages = {6},
219     Pages = {154503},
220     Publisher = {AIP},
221     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
222     Url = {http://link.aip.org/link/?JCP/122/154503/1},
223     Volume = {122},
224     Year = {2005},
225     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
226     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
227    
228     @article{Vasquez:2004ty,
229     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
230     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
231     Date = {2004/11/02/},
232     Date-Added = {2014-03-13 14:11:31 +0000},
233     Date-Modified = {2014-03-13 14:12:08 +0000},
234     Day = {02},
235     Journal = {Int. J. Thermophys.},
236     M3 = {10.1007/s10765-004-7736-3},
237     Month = {11},
238     Number = {6},
239     Pages = {1799--1818},
240     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
241     Ty = {JOUR},
242     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
243     Volume = {25},
244     Year = {2004},
245     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
246    
247     @article{Hess:2002nr,
248     Author = {Berk Hess},
249     Date-Added = {2014-03-13 14:11:23 +0000},
250     Date-Modified = {2014-03-13 14:12:08 +0000},
251     Doi = {10.1063/1.1421362},
252     Journal = {J. Chem. Phys.},
253     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
254     Number = {1},
255     Pages = {209-217},
256     Publisher = {AIP},
257     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
258     Url = {http://link.aip.org/link/?JCP/116/209/1},
259     Volume = {116},
260     Year = {2002},
261     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
262     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
263    
264 kstocke1 4059 @article{Romer2012,
265     Author = {R{\"o}mer, Frank and Lervik, Anders and Bresme, Fernando},
266     Date-Added = {2014-01-08 20:51:36 +0000},
267     Date-Modified = {2014-01-08 20:53:28 +0000},
268     Journal = {J. Chem. Phys.},
269     Pages = {074503-1 - 8},
270     Title = {Nonequilibrium Molecular Dynamics Simulations of the Thermal Conductivity of Water: A Systematic Investigation of the SPC/E and TIP4P/2005 Models},
271     Volume = {137},
272     Year = {2012}}
273    
274     @article{Zhang2005,
275     Author = {Zhang, Meimei and Lussetti, Enrico and de Souza, Lu{\'\i}s and M\"{u}ller-Plathe, Florian},
276     Date-Added = {2014-01-08 20:49:09 +0000},
277     Date-Modified = {2014-01-08 20:51:28 +0000},
278     Journal = {J. Phys. Chem. B},
279     Pages = {15060-15067},
280     Title = {Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics},
281     Volume = {109},
282     Year = {2005}}
283    
284     @article{Vardeman2011,
285     Author = {Charles F. Vardeman and Kelsey M. Stocker and J. Daniel Gezelter},
286     Date-Added = {2013-09-05 23:48:02 +0000},
287     Date-Modified = {2013-09-05 23:48:02 +0000},
288     Journal = {J. Chem. Theory Comput.},
289     Keywords = {Langevin Hull},
290     Pages = {834-842},
291     Title = {The Langevin Hull: Constant Pressure and Temperature Dynamics for Nonperiodic Systems},
292     Volume = {7},
293     Year = {2011},
294 gezelter 4063 Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QOS4uLy4uLy4uLy4uL1ZvbHVtZXMvVGltZSBNYWNoaW5lIEJhY2t1cHMvVmFyZGVtYW4yMDExLnBkZtIXCxgZV05TLmRhdGFPEQGEAAAAAAGEAAIAABRUaW1lIE1hY2hpbmUgQmFja3VwcwAAAAAAAADMiTMXSCsAAAAAAAIQVmFyZGVtYW4yMDExLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvNWMnJ/r4AAAAAAAAAAP////8AAAkAAAAAAAAAAAAAAAAAAAAAFFRpbWUgTWFjaGluZSBCYWNrdXBzABAACAAAzIlrVwAAABEACAAAyco2/gAAAAEAAAACACVUaW1lIE1hY2hpbmUgQmFja3VwczpWYXJkZW1hbjIwMTEucGRmAAAOACIAEABWAGEAcgBkAGUAbQBhAG4AMgAwADEAMQAuAHAAZABmAA8AKgAUAFQAaQBtAGUAIABNAGEAYwBoAGkAbgBlACAAQgBhAGMAawB1AHAAcwASABEvVmFyZGVtYW4yMDExLnBkZgAAEwAdL1ZvbHVtZXMvVGltZSBNYWNoaW5lIEJhY2t1cHMA//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4AygDPANcCXwJhAmYCcQJ6AogCjAKTApwCoQKuArECwwLGAssAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAACzQ==}}
295 kstocke1 4059
296     @article{EDELSBRUNNER:1994oq,
297     Abstract = {Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ''shape'' of the set. For that purpose, this article introduces the formal notion of the family of alpha-shapes of a finite point set in R3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter alpha is-an-element-of R controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size n in time O(n2), worst case. A robust implementation of the algorithm is discussed, and several applications in the area of scientific computing are mentioned.},
298     Address = {1515 BROADWAY, NEW YORK, NY 10036},
299     Author = {Edelsbrunner, H and Mucke, E.~P.},
300     Date = {JAN 1994},
301     Date-Added = {2013-09-05 23:47:03 +0000},
302     Date-Modified = {2013-09-05 23:47:03 +0000},
303     Journal = {ACM Trans. Graphics},
304     Keywords = {COMPUTATIONAL GRAPHICS; DELAUNAY TRIANGULATIONS; GEOMETRIC ALGORITHMS; POINT SETS; POLYTOPES; ROBUST IMPLEMENTATION; SCIENTIFIC COMPUTING; SCIENTIFIC VISUALIZATION; SIMPLICIAL COMPLEXES; SIMULATED PERTURBATION; 3-DIMENSIONAL SPACE},
305     Pages = {43-72},
306     Publisher = {ASSOC COMPUTING MACHINERY},
307     Timescited = {270},
308     Title = {3-DIMENSIONAL ALPHA-SHAPES},
309     Volume = {13},
310     Year = {1994}}
311    
312     @article{Barber96,
313     Author = {C.~B. Barber and D.~P. Dobkin and H.~T. Huhdanpaa},
314     Date-Added = {2013-09-05 23:46:55 +0000},
315     Date-Modified = {2013-09-05 23:46:55 +0000},
316     Journal = {ACM Trans. Math. Software},
317     Pages = {469-483},
318     Title = {The Quickhull Algorithm for Convex Hulls},
319     Volume = 22,
320     Year = 1996}
321    
322     @article{Sun2008,
323     Author = {Xiuquan Sun and Teng Lin and J. Daniel Gezelter},
324     Date-Added = {2013-09-05 20:13:18 +0000},
325     Date-Modified = {2013-09-05 20:14:17 +0000},
326     Journal = {J. Chem. Phys.},
327     Pages = {234107},
328     Title = {Langevin Dynamics for Rigid Bodies of Arbitrary Shape},
329     Volume = {128},
330     Year = {2008}}
331    
332     @article{Zwanzig,
333     Author = {ChihMing Hu and Robert Zwanzig},
334     Date-Added = {2013-09-05 20:11:32 +0000},
335     Date-Modified = {2013-09-05 20:12:42 +0000},
336     Journal = {J. Chem. Phys.},
337     Number = {11},
338     Pages = {4353-4357},
339     Title = {Rotational Friction Coefficients for Spheroids with the Slipping Boundary Condition},
340     Volume = {60},
341     Year = {1974}}
342    
343     @article{hartland2011,
344     Author = {Hartland, Gregory V.},
345     Date-Added = {2013-02-11 22:54:29 +0000},
346     Date-Modified = {2013-02-18 17:56:29 +0000},
347     Journal = {Chem. Rev.},
348     Pages = {3858-3887},
349     Title = {Optical Studies of Dynamics in Noble Metal Nanostructures},
350     Volume = {11},
351     Year = {2011}}
352    
353     @article{hase:2010,
354     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
355     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
356     Date-Added = {2012-12-25 17:47:40 +0000},
357     Date-Modified = {2012-12-25 17:47:40 +0000},
358     Doi = {10.1039/B923858C},
359     Issue = {17},
360     Journal = {Phys. Chem. Chem. Phys.},
361     Pages = {4435-4445},
362     Publisher = {The Royal Society of Chemistry},
363     Title = {Model Non-Equilibrium Molecular Dynamics Simulations of Heat Transfer from a Hot Gold Surface to an Alkylthiolate Self-Assembled Monolayer},
364     Url = {http://dx.doi.org/10.1039/B923858C},
365     Volume = {12},
366     Year = {2010},
367     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
368    
369     @article{hase:2011,
370     Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
371     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
372     Date-Added = {2012-12-25 17:47:40 +0000},
373     Date-Modified = {2013-02-18 17:57:24 +0000},
374     Doi = {10.1021/jp200672e},
375     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
376     Journal = {J. Phys. Chem. C},
377     Number = {19},
378     Pages = {9622-9628},
379     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
380     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
381     Volume = {115},
382     Year = {2011},
383     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
384     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
385    
386     @article{RevModPhys.61.605,
387     Author = {Swartz, E. T. and Pohl, R. O.},
388     Date-Added = {2012-12-21 20:34:12 +0000},
389     Date-Modified = {2012-12-21 20:34:12 +0000},
390     Doi = {10.1103/RevModPhys.61.605},
391     Issue = {3},
392     Journal = {Rev. Mod. Phys.},
393     Month = {Jul},
394     Pages = {605--668},
395     Publisher = {American Physical Society},
396     Title = {Thermal Boundary Resistance},
397     Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
398     Volume = {61},
399     Year = {1989},
400     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
401     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
402    
403     @article{packmol,
404     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
405     Bibsource = {DBLP, http://dblp.uni-trier.de},
406     Date-Added = {2011-02-01 15:13:02 -0500},
407     Date-Modified = {2013-02-18 18:01:34 +0000},
408     Ee = {http://dx.doi.org/10.1002/jcc.21224},
409     Journal = {J. Comput. Chem.},
410     Number = {13},
411     Pages = {2157-2164},
412     Title = {PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations},
413     Volume = {30},
414     Year = {2009}}
415    
416     @article{doi:10.1021/jp034405s,
417     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
418     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
419     Date-Added = {2012-12-17 18:38:38 +0000},
420     Date-Modified = {2012-12-17 18:38:38 +0000},
421     Doi = {10.1021/jp034405s},
422     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
423     Journal = {J. Phys. Chem. B},
424     Number = {43},
425     Pages = {11940-11950},
426     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
427     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
428     Volume = {107},
429     Year = {2003},
430     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
431     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
432    
433     @article{hautman:4994,
434     Author = {Joseph Hautman and Michael L. Klein},
435     Date-Added = {2012-12-17 18:38:26 +0000},
436     Date-Modified = {2012-12-17 18:38:26 +0000},
437     Doi = {10.1063/1.457621},
438     Journal = {J. Chem. Phys.},
439     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
440     Number = {8},
441     Pages = {4994-5001},
442     Publisher = {AIP},
443     Title = {Simulation of a Monolayer of Alkyl Thiol Chains},
444     Url = {http://link.aip.org/link/?JCP/91/4994/1},
445     Volume = {91},
446     Year = {1989},
447     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
448     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
449    
450     @article{vlugt:cpc2007154,
451     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
452     Date-Added = {2012-12-17 18:38:20 +0000},
453     Date-Modified = {2013-02-18 18:04:43 +0000},
454     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
455     Issn = {0010-4655},
456     Journal = {Comput. Phys. Commun.},
457     Keywords = {Gold nanocrystals},
458     Note = {Proceedings of the Conference on Computational Physics 2006: CCP 2006 - Conference on Computational Physics 2006},
459     Number = {1-2},
460     Pages = {154 - 157},
461     Title = {Selective Adsorption of Alkyl Thiols on Gold in Different Geometries},
462     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
463     Volume = {177},
464     Year = {2007},
465     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
466     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
467    
468     @article{landman:1998,
469     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
470     Author = {Luedtke, W. D. and Landman, Uzi},
471     Date-Added = {2012-12-17 18:38:13 +0000},
472     Date-Modified = {2012-12-17 18:38:13 +0000},
473     Doi = {10.1021/jp981745i},
474     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
475     Journal = {J. Phys. Chem. B},
476     Number = {34},
477     Pages = {6566-6572},
478     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
479     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
480     Volume = {102},
481     Year = {1998},
482     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
483     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
484    
485     @article{PhysRevLett.96.186101,
486     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
487     Date-Added = {2012-12-17 17:44:53 +0000},
488     Date-Modified = {2012-12-17 17:44:53 +0000},
489     Doi = {10.1103/PhysRevLett.96.186101},
490     Journal = prl,
491     Month = {May},
492     Number = {18},
493     Numpages = {4},
494     Pages = {186101},
495     Publisher = {American Physical Society},
496     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
497     Volume = {96},
498     Year = {2006},
499     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
500    
501     @article{Larson:2007hw,
502     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
503     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
504     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
505     Date = {AUG 15 2007},
506     Date-Added = {2012-12-17 17:44:44 +0000},
507     Date-Modified = {2013-02-18 17:34:30 +0000},
508     Doi = {ARTN 325101},
509     Journal = {Nanotechnology},
510     Pages = {325101},
511     Publisher = {IOP PUBLISHING LTD},
512     Timescited = {5},
513     Title = {Hybrid Plasmonic Magnetic Nanoparticles as Molecular Specific Agents for MRI/Optical Imaging and Photothermal Therapy of Cancer Cells},
514     Volume = {18},
515     Year = {2007},
516     Bdsk-Url-1 = {http://dx.doi.org/325101}}
517    
518     @article{Huff:2007ye,
519     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
520     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
521     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
522     Date = {FEB 2007},
523     Date-Added = {2012-12-17 17:44:36 +0000},
524     Date-Modified = {2012-12-17 17:44:36 +0000},
525     Doi = {DOI 10.2217/17435889.2.1.125},
526     Journal = {Nanomedicine},
527     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
528     Pages = {125-132},
529     Publisher = {FUTURE MEDICINE LTD},
530     Timescited = {13},
531     Title = {Hyperthermic Effects of Gold Nanorods on Tumor Cells},
532     Volume = {2},
533     Year = {2007},
534     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
535    
536 gezelter 4063 @article{Jiang:2008hc,
537 kstocke1 4059 Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
538     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
539     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
540     Date-Added = {2012-12-17 16:57:19 +0000},
541 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
542 kstocke1 4059 Doi = {10.1021/jp802942v},
543     Issn = {1520-6106},
544     Journal = jpcb,
545     Pages = {10207-10216},
546     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
547     Volume = {112},
548     Year = {2008},
549     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
550    
551     @article{Schelling:2002dp,
552     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
553     Date = {APR 1 2002},
554     Date-Added = {2012-12-17 16:57:10 +0000},
555 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
556 kstocke1 4059 Doi = {10.1103/PhysRevB.65.144306},
557     Isi = {WOS:000174980300055},
558     Issn = {1098-0121},
559     Journal = prb,
560     Month = {Apr},
561     Number = {14},
562     Pages = {144306},
563     Publication-Type = {J},
564     Times-Cited = {288},
565     Title = {Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity},
566     Volume = {65},
567     Year = {2002},
568     Z8 = {12},
569     Z9 = {296},
570     Zb = {0},
571     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
572    
573 gezelter 4063 @article{Evans:2002tg,
574 kstocke1 4059 Author = {Evans, D. J. and Searles, D. J.},
575     Date = {NOV 2002},
576     Date-Added = {2012-12-17 16:56:59 +0000},
577 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
578 kstocke1 4059 Doi = {10.1080/00018730210155133},
579     Isi = {WOS:000179448200001},
580     Issn = {0001-8732},
581     Journal = {Adv. Phys.},
582     Month = {Nov},
583     Number = {7},
584     Pages = {1529--1585},
585     Publication-Type = {J},
586     Times-Cited = {309},
587     Title = {The Fluctuation Theorem},
588     Volume = {51},
589     Year = {2002},
590     Z8 = {3},
591     Z9 = {311},
592     Zb = {9},
593     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
594    
595 gezelter 4063 @article{Berthier:2002ai,
596 kstocke1 4059 Author = {Berthier, L. and Barrat, J. L.},
597     Date = {APR 8 2002},
598     Date-Added = {2012-12-17 16:56:47 +0000},
599 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
600 kstocke1 4059 Doi = {10.1063/1.1460862},
601     Isi = {WOS:000174634200036},
602     Issn = {0021-9606},
603     Journal = jcp,
604     Month = {Apr},
605     Number = {14},
606     Pages = {6228--6242},
607     Publication-Type = {J},
608     Times-Cited = {172},
609     Title = {Nonequilibrium Dynamics and Fluctuation-Dissipation Relation in a Sheared Fluid},
610     Volume = {116},
611     Year = {2002},
612     Z8 = {0},
613     Z9 = {172},
614     Zb = {1},
615     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
616    
617 gezelter 4063 @article{Maginn:1993kl,
618 kstocke1 4059 Author = {Maginn, E. J. and Bell, A. T. and Theodorou, D. N.},
619     Date = {APR 22 1993},
620     Date-Added = {2012-12-17 16:56:40 +0000},
621 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
622 kstocke1 4059 Doi = {10.1021/j100118a038},
623     Isi = {WOS:A1993KY46600039},
624     Issn = {0022-3654},
625     Journal = jpc,
626     Month = {Apr},
627     Number = {16},
628     Pages = {4173--4181},
629     Publication-Type = {J},
630     Times-Cited = {198},
631     Title = {Transport Diffusivity of Methane in Silicalite from Equilibrium and Nonequilibrium Simulations},
632     Volume = {97},
633     Year = {1993},
634     Z8 = {4},
635     Z9 = {201},
636     Zb = {0},
637     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
638    
639 gezelter 4063 @article{Erpenbeck:1984qe,
640 kstocke1 4059 Author = {Erpenbeck, J. J.},
641     Date = {1984},
642     Date-Added = {2012-12-17 16:56:32 +0000},
643 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
644 kstocke1 4059 Doi = {10.1103/PhysRevLett.52.1333},
645     Isi = {WOS:A1984SK96700021},
646     Issn = {0031-9007},
647     Journal = prl,
648     Number = {15},
649     Pages = {1333--1335},
650     Publication-Type = {J},
651     Times-Cited = {189},
652     Title = {Shear Viscosity of the Hard-Sphere Fluid via Nonequilibrium Molecular Dynamics},
653     Volume = {52},
654     Year = {1984},
655     Z8 = {0},
656     Z9 = {189},
657     Zb = {1},
658     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
659    
660 gezelter 4063 @article{Evans:1982oq,
661 kstocke1 4059 Author = {Evans, Denis J.},
662     Date-Added = {2012-12-17 16:56:24 +0000},
663 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
664 kstocke1 4059 Journal = {Phys. Lett. A},
665     Number = {9},
666     Pages = {457--460},
667     Title = {Homogeneous NEMD Algorithm for Thermal Conductivity -- Application of Non-Canonical Linear Response Theory},
668     Ty = {JOUR},
669     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
670     Volume = {91},
671     Year = {1982},
672     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
673    
674 gezelter 4063 @article{Ashurst:1975eu,
675 kstocke1 4059 Author = {Ashurst, W. T. and Hoover, W. G.},
676     Date = {1975},
677     Date-Added = {2012-12-17 16:56:05 +0000},
678 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
679 kstocke1 4059 Doi = {10.1103/PhysRevA.11.658},
680     Isi = {WOS:A1975V548400036},
681     Issn = {1050-2947},
682     Journal = pra,
683     Number = {2},
684     Pages = {658--678},
685     Publication-Type = {J},
686     Times-Cited = {295},
687     Title = {Dense-Fluid Shear Viscosity via Nonequilibrium Molecular Dynamics},
688     Volume = {11},
689     Year = {1975},
690     Z8 = {3},
691     Z9 = {298},
692     Zb = {1},
693     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
694    
695     @article{kinaci:014106,
696     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
697     Date-Added = {2012-12-17 16:55:56 +0000},
698     Date-Modified = {2012-12-17 16:55:56 +0000},
699     Doi = {10.1063/1.4731450},
700     Eid = {014106},
701     Journal = jcp,
702     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
703     Number = {1},
704     Numpages = {8},
705     Pages = {014106},
706     Publisher = {AIP},
707     Title = {On Calculation of Thermal Conductivity from Einstein Relation in Equilibrium Molecular Dynamics},
708     Url = {http://link.aip.org/link/?JCP/137/014106/1},
709     Volume = {137},
710     Year = {2012},
711     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
712     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
713    
714     @article{che:6888,
715     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
716     Date-Added = {2012-12-17 16:55:48 +0000},
717     Date-Modified = {2012-12-17 16:55:48 +0000},
718     Doi = {10.1063/1.1310223},
719     Journal = jcp,
720     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
721     Number = {16},
722     Pages = {6888-6900},
723     Publisher = {AIP},
724     Title = {Thermal Conductivity of Diamond and Related Materials from Molecular Dynamics Simulations},
725     Url = {http://link.aip.org/link/?JCP/113/6888/1},
726     Volume = {113},
727     Year = {2000},
728     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
729     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
730    
731     @article{Viscardy:2007rp,
732     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
733     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
734     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
735     Date = {MAY 14 2007},
736     Date-Added = {2012-12-17 16:55:32 +0000},
737     Date-Modified = {2013-02-18 17:58:40 +0000},
738     Doi = {ARTN 184513},
739     Journal = jcp,
740     Pages = {184513},
741     Publisher = {AMER INST PHYSICS},
742     Timescited = {1},
743     Title = {Transport and Helfand Moments in the Lennard-Jones Fluid. II. Thermal Conductivity},
744     Volume = {126},
745     Year = {2007},
746     Bdsk-Url-1 = {http://dx.doi.org/184513}}
747    
748     @article{PhysRev.119.1,
749     Author = {Helfand, Eugene},
750     Date-Added = {2012-12-17 16:55:19 +0000},
751     Date-Modified = {2012-12-17 16:55:19 +0000},
752     Doi = {10.1103/PhysRev.119.1},
753     Journal = {Phys. Rev.},
754     Month = {Jul},
755     Number = {1},
756     Numpages = {8},
757     Pages = {1--9},
758     Publisher = {American Physical Society},
759     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
760     Volume = {119},
761     Year = {1960},
762     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
763    
764 gezelter 4063 @article{Evans:1986nx,
765 kstocke1 4059 Author = {Evans, Denis J.},
766     Date-Added = {2012-12-17 16:55:19 +0000},
767 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
768 kstocke1 4059 Doi = {10.1103/PhysRevA.34.1449},
769     Journal = {Phys. Rev. A},
770     Month = {Aug},
771     Number = {2},
772     Numpages = {4},
773     Pages = {1449--1453},
774     Publisher = {American Physical Society},
775     Title = {Thermal Conductivity of the Lennard-Jones Fluid},
776     Volume = {34},
777     Year = {1986},
778     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
779    
780     @article{MASSOBRIO:1984bl,
781     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
782     Author = {Massobrio, C and Ciccotti, G},
783     Date = {1984},
784     Date-Added = {2012-12-17 16:55:03 +0000},
785     Date-Modified = {2012-12-21 22:42:02 +0000},
786     Journal = pra,
787     Pages = {3191-3197},
788     Publisher = {AMERICAN PHYSICAL SOC},
789     Timescited = {29},
790     Title = {Lennard-Jones Triple-Point Conductivity via Weak External Fields},
791     Volume = {30},
792     Year = {1984}}
793    
794     @article{PhysRevB.37.5677,
795     Author = {Heyes, David M.},
796     Date-Added = {2012-12-17 16:54:55 +0000},
797     Date-Modified = {2012-12-17 16:54:55 +0000},
798     Doi = {10.1103/PhysRevB.37.5677},
799     Journal = prb,
800     Month = {Apr},
801     Number = {10},
802     Numpages = {19},
803     Pages = {5677--5696},
804     Publisher = {American Physical Society},
805     Title = {Transport Coefficients of Lennard-Jones Fluids: A Molecular-Dynamics and Effective-Hard-Sphere Treatment},
806     Volume = {37},
807     Year = {1988},
808     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
809    
810     @article{PhysRevB.80.195406,
811     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
812     Date-Added = {2012-12-17 16:54:55 +0000},
813     Date-Modified = {2012-12-17 16:54:55 +0000},
814     Doi = {10.1103/PhysRevB.80.195406},
815     Journal = prb,
816     Month = {Nov},
817     Number = {19},
818     Numpages = {6},
819     Pages = {195406},
820     Publisher = {American Physical Society},
821     Title = {Cooling Dynamics and Thermal Interface Resistance of Glass-Embedded Metal Nanoparticles},
822     Volume = {80},
823     Year = {2009},
824     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
825    
826     @article{Wang10082007,
827     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
828     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
829     Date-Added = {2012-12-17 16:54:31 +0000},
830     Date-Modified = {2012-12-17 16:54:31 +0000},
831     Doi = {10.1126/science.1145220},
832     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
833     Journal = {Science},
834     Number = {5839},
835     Pages = {787-790},
836     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
837     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
838     Volume = {317},
839     Year = {2007},
840     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
841     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
842    
843     @article{doi:10.1021/la904855s,
844     Annote = {PMID: 20166728},
845     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
846     Date-Added = {2012-12-17 16:54:12 +0000},
847     Date-Modified = {2013-02-18 17:57:03 +0000},
848     Doi = {10.1021/la904855s},
849     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
850     Journal = {Langmuir},
851     Number = {6},
852     Pages = {3786-3789},
853     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
854     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
855     Volume = {26},
856     Year = {2010},
857     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
858     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
859    
860     @article{doi:10.1021/jp048375k,
861     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
862     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
863     Date-Added = {2012-12-17 16:54:03 +0000},
864     Date-Modified = {2012-12-17 16:54:03 +0000},
865     Doi = {10.1021/jp048375k},
866     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
867     Journal = jpcb,
868     Number = {49},
869     Pages = {18870-18875},
870     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
871     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
872     Volume = {108},
873     Year = {2004},
874     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
875     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
876    
877     @article{doi:10.1021/jp8051888,
878     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
879     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
880     Date-Added = {2012-12-17 16:54:03 +0000},
881     Date-Modified = {2013-02-18 17:54:59 +0000},
882     Doi = {10.1021/jp8051888},
883     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
884     Journal = jpcc,
885     Number = {35},
886     Pages = {13320-13323},
887     Title = {Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay},
888     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
889     Volume = {112},
890     Year = {2008},
891     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
892     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
893    
894     @article{PhysRevB.67.054302,
895     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
896     Date-Added = {2012-12-17 16:53:48 +0000},
897     Date-Modified = {2012-12-17 16:53:48 +0000},
898     Doi = {10.1103/PhysRevB.67.054302},
899     Journal = prb,
900     Month = {Feb},
901     Number = {5},
902     Numpages = {5},
903     Pages = {054302},
904     Publisher = {American Physical Society},
905     Title = {Thermal Conductance of Epitaxial Interfaces},
906     Volume = {67},
907     Year = {2003},
908     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
909    
910     @article{cahill:793,
911     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
912     Date-Added = {2012-12-17 16:53:36 +0000},
913     Date-Modified = {2012-12-17 16:53:36 +0000},
914     Doi = {10.1063/1.1524305},
915     Journal = {J. Appl. Phys.},
916     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
917     Number = {2},
918     Pages = {793-818},
919     Publisher = {AIP},
920     Title = {Nanoscale Thermal Transport},
921     Url = {http://link.aip.org/link/?JAP/93/793/1},
922     Volume = {93},
923     Year = {2003},
924     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
925     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
926    
927     @article{Eapen:2007mw,
928     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
929     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
930     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
931     Date = {DEC 2007},
932     Date-Added = {2012-12-17 16:53:30 +0000},
933     Date-Modified = {2013-02-18 17:48:08 +0000},
934     Doi = {ARTN 062501},
935     Journal = pre,
936     Pages = {062501},
937     Publisher = {AMER PHYSICAL SOC},
938     Timescited = {0},
939     Title = {Beyond the Maxwell Limit: Thermal Conduction in Nanofluids with Percolating Fluid Structures},
940     Volume = {76},
941     Year = {2007},
942     Bdsk-Url-1 = {http://dx.doi.org/062501}}
943    
944     @article{Xue:2003ya,
945     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
946     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
947     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
948     Date = {JAN 1 2003},
949     Date-Added = {2012-12-17 16:53:22 +0000},
950     Date-Modified = {2012-12-17 16:53:22 +0000},
951     Doi = {DOI 10.1063/1.1525806},
952     Journal = jcp,
953     Pages = {337-339},
954     Publisher = {AMER INST PHYSICS},
955     Timescited = {19},
956     Title = {Two Regimes of Thermal Resistance at a Liquid-Solid Interface},
957     Volume = {118},
958     Year = {2003},
959     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
960    
961     @article{Xue:2004oa,
962     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
963     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
964     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
965     Date = {SEP 2004},
966     Date-Added = {2012-12-17 16:53:22 +0000},
967     Date-Modified = {2013-02-18 17:47:37 +0000},
968     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
969     Journal = {Int. J. Heat Mass Tran.},
970     Keywords = {interfacial Thermal Resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
971     Pages = {4277-4284},
972     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
973     Timescited = {29},
974     Title = {Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport},
975     Volume = {47},
976     Year = {2004},
977     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
978    
979     @article{Lee:1999ct,
980     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
981     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
982     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
983     Date = {MAY 1999},
984     Date-Added = {2012-12-17 16:53:15 +0000},
985     Date-Modified = {2013-02-18 17:46:57 +0000},
986     Journal = {J. Heat Transf.},
987     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
988     Pages = {280-289},
989     Publisher = {ASME-AMER SOC MECHANICAL ENG},
990     Timescited = {183},
991     Title = {Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles},
992     Volume = {121},
993     Year = {1999}}
994    
995     @article{Keblinski:2002bx,
996     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
997     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
998     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
999     Date = {FEB 2002},
1000     Date-Added = {2012-12-17 16:53:06 +0000},
1001     Date-Modified = {2013-02-18 17:41:04 +0000},
1002     Journal = {Int. J. Heat Mass Tran.},
1003     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
1004     Pages = {855-863},
1005     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
1006     Timescited = {161},
1007     Title = {Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)},
1008     Volume = {45},
1009     Year = {2002}}
1010    
1011     @article{Eastman:2001wb,
1012     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
1013     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1014     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
1015     Date = {FEB 5 2001},
1016     Date-Added = {2012-12-17 16:52:55 +0000},
1017     Date-Modified = {2013-02-18 17:40:41 +0000},
1018     Journal = {Appl. Phys. Lett.},
1019     Pages = {718-720},
1020     Publisher = {AMER INST PHYSICS},
1021     Timescited = {246},
1022     Title = {Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles},
1023     Volume = {78},
1024     Year = {2001}}
1025    
1026     @article{Eapen:2007th,
1027     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
1028     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1029     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
1030     Date = {AUG 31 2007},
1031     Date-Added = {2012-12-17 16:52:46 +0000},
1032     Date-Modified = {2013-02-18 17:40:15 +0000},
1033     Doi = {ARTN 095901},
1034     Journal = prl,
1035     Pages = {095901},
1036     Publisher = {AMER PHYSICAL SOC},
1037     Timescited = {8},
1038     Title = {Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction},
1039     Volume = {99},
1040     Year = {2007},
1041     Bdsk-Url-1 = {http://dx.doi.org/095901}}
1042    
1043     @article{Plech:2005kx,
1044     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
1045     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
1046     Date-Added = {2012-12-17 16:52:34 +0000},
1047     Date-Modified = {2012-12-17 16:52:34 +0000},
1048     Doi = {DOI 10.1016/j.cplett.2004.11.072},
1049     Journal = cpl,
1050     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
1051     Pages = {565-569},
1052     Title = {Thermal Dynamics in Laser Excited Metal Nanoparticles},
1053     Volume = {401},
1054     Year = {2005},
1055     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
1056    
1057     @article{Wilson:2002uq,
1058     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
1059     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
1060     Date-Added = {2012-12-17 16:52:22 +0000},
1061     Date-Modified = {2013-02-18 17:34:52 +0000},
1062     Doi = {ARTN 224301},
1063     Journal = {Phys. Rev. B},
1064     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
1065     Pages = {224301},
1066     Title = {Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids},
1067     Volume = {66},
1068     Year = {2002},
1069     Bdsk-Url-1 = {http://dx.doi.org/224301}}
1070    
1071     @article{Mazzaglia:2008to,
1072     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
1073     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1074     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
1075     Date = {MAY 1 2008},
1076     Date-Added = {2012-12-17 16:52:15 +0000},
1077     Date-Modified = {2012-12-17 16:52:15 +0000},
1078     Doi = {DOI 10.1021/jp7120033},
1079     Journal = jpcc,
1080     Pages = {6764-6769},
1081     Publisher = {AMER CHEMICAL SOC},
1082     Timescited = {0},
1083     Title = {Amphiphilic Cyclodextrins as Capping Agents for Gold Colloids: A Spectroscopic Investigation with Perspectives in Photothermal Therapy},
1084     Volume = {112},
1085     Year = {2008},
1086     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
1087    
1088     @article{Gnyawali:2008lp,
1089     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
1090     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
1091     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
1092     Date = {FEB 2008},
1093     Date-Added = {2012-12-17 16:52:08 +0000},
1094     Date-Modified = {2013-02-18 17:32:43 +0000},
1095     Doi = {DOI 10.1007/s11517-007-0251-5},
1096     Journal = {Med. Biol. Eng. Comput.},
1097     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
1098     Pages = {159-168},
1099     Publisher = {SPRINGER HEIDELBERG},
1100     Timescited = {0},
1101     Title = {Temperature Measurement on Tissue Surface During Laser Irradiation},
1102     Volume = {46},
1103     Year = {2008},
1104     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
1105    
1106     @article{Petrova:2007ad,
1107     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
1108     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
1109     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
1110     Date = {2007},
1111     Date-Added = {2012-12-17 16:52:01 +0000},
1112     Date-Modified = {2013-02-18 17:32:23 +0000},
1113     Doi = {DOI 10.1524/zpch.2007.221.3.361},
1114     Journal = {Z Phys. Chem.},
1115     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
1116     Pages = {361-376},
1117     Publisher = {OLDENBOURG VERLAG},
1118     Timescited = {2},
1119     Title = {Photothermal Properties of Gold Nanoparticles},
1120     Volume = {221},
1121     Year = {2007},
1122     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
1123    
1124     @article{Jain:2007ux,
1125     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
1126     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
1127     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
1128     Date = {SEP 2007},
1129     Date-Added = {2012-12-17 16:51:52 +0000},
1130     Date-Modified = {2013-02-18 17:25:37 +0000},
1131     Doi = {DOI 10.1007/s11468-007-9031-1},
1132     Journal = {Plasmonics},
1133     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
1134     Number = {3},
1135     Pages = {107-118},
1136     Publisher = {SPRINGER},
1137     Timescited = {2},
1138     Title = {Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems},
1139     Volume = {2},
1140     Year = {2007},
1141     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
1142    
1143     @techreport{Goddard1998,
1144     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
1145     Date-Added = {2012-12-05 22:18:01 +0000},
1146     Date-Modified = {2012-12-05 22:18:01 +0000},
1147     Institution = {California Institute of Technology},
1148     Lastchecked = {January 19, 2011},
1149     Number = {003},
1150     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
1151     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
1152     Year = {1998},
1153     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
1154    
1155 gezelter 4063 @article{Kuang:2010if,
1156 kstocke1 4059 Author = {Shenyu Kuang and J. Daniel Gezelter},
1157     Date-Added = {2012-12-05 22:18:01 +0000},
1158 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1159 kstocke1 4059 Journal = {J. Chem. Phys.},
1160     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
1161     Month = {October},
1162     Pages = {164101-1 - 164101-9},
1163     Title = {A Gentler Approach to RNEMD: Nonisotropic Velocity Scaling for Computing Thermal Conductivity and Shear Viscosity},
1164     Volume = {133},
1165     Year = {2010}}
1166    
1167 gezelter 4063 @article{Kuang:2012fe,
1168 kstocke1 4059 Author = {Shenyu Kuang and J. Daniel Gezelter},
1169     Date-Added = {2012-12-05 22:18:01 +0000},
1170 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1171 kstocke1 4059 Journal = {Mol. Phys.},
1172     Keywords = {VSS, RNEMD, VSS-RNEMD},
1173     Month = {May},
1174     Number = {9-10},
1175     Pages = {691-701},
1176     Title = {Velocity Shearing and Scaling RNEMD: A Minimally Perturbing Method for Simulating Temperature and Momentum Gradients},
1177     Volume = {110},
1178     Year = {2012}}
1179    
1180     @article{doi:10.1080/0026897031000068578,
1181     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
1182     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
1183     Date-Added = {2011-12-13 17:17:05 -0500},
1184     Date-Modified = {2011-12-13 17:17:05 -0500},
1185     Doi = {10.1080/0026897031000068578},
1186     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
1187     Journal = {Mol. Phys.},
1188     Number = {11},
1189     Pages = {1605-1610},
1190     Title = {Kapitza Resistance at the Liquid--Solid Interface},
1191     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1192     Volume = {101},
1193     Year = {2003},
1194     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1195     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
1196    
1197     @article{Medina2011,
1198     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
1199     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
1200     Date-Added = {2011-12-13 17:08:34 -0500},
1201     Date-Modified = {2011-12-13 17:08:49 -0500},
1202     Doi = {10.1016/j.chemphys.2011.07.001},
1203     Issn = {0301-0104},
1204     Journal = {Chemical Physics},
1205     Keywords = {Viscosity calculations},
1206     Number = {1-3},
1207     Pages = {9 - 18},
1208     Title = {Molecular Dynamics Simulations of Rigid and Flexible Water Models: Temperature Dependence of Viscosity},
1209     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1210     Volume = {388},
1211     Year = {2011},
1212     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1213     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
1214    
1215     @book{WagnerKruse,
1216     Address = {Berlin},
1217     Author = {W. Wagner and A. Kruse},
1218     Date-Added = {2011-12-13 14:57:08 -0500},
1219     Date-Modified = {2011-12-13 14:57:08 -0500},
1220     Publisher = {Springer-Verlag},
1221     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
1222     Year = {1998}}
1223    
1224 gezelter 4063 @article{Shenogina:2009ix,
1225 kstocke1 4059 Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
1226     Date-Added = {2011-12-13 12:48:51 -0500},
1227 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1228 kstocke1 4059 Doi = {10.1103/PhysRevLett.102.156101},
1229     Journal = {Phys. Rev. Lett.},
1230     Month = {Apr},
1231     Number = {15},
1232     Numpages = {4},
1233     Pages = {156101},
1234     Publisher = {American Physical Society},
1235     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
1236     Volume = {102},
1237     Year = {2009},
1238     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
1239    
1240 gezelter 4063 @article{Patel:2005zm,
1241 kstocke1 4059 Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
1242     Annote = {PMID: 16277458},
1243     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
1244     Date-Added = {2011-12-13 12:48:51 -0500},
1245 gezelter 4064 Date-Modified = {2014-03-13 20:42:07 +0000},
1246 kstocke1 4059 Doi = {10.1021/nl051526q},
1247     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
1248     Journal = {Nano Lett.},
1249     Number = {11},
1250     Pages = {2225-2231},
1251 gezelter 4064 Title = {Thermal Resistance of Nanoscopic Liquid-Liquid Interfaces: Dependence on Chemistry and Molecular Architecture},
1252 kstocke1 4059 Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1253     Volume = {5},
1254     Year = {2005},
1255     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1256     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
1257    
1258     @article{melchionna93,
1259     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
1260     Date-Added = {2011-12-12 17:52:15 -0500},
1261     Date-Modified = {2011-12-12 17:52:15 -0500},
1262     Journal = {Mol. Phys.},
1263     Pages = {533-544},
1264     Title = {Hoover {\sc NPT} Dynamics for Systems Varying in Shape and Size},
1265     Volume = 78,
1266     Year = 1993}
1267    
1268     @article{TraPPE-UA.thiols,
1269     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
1270     Date-Added = {2011-12-07 15:06:12 -0500},
1271     Date-Modified = {2011-12-07 15:06:12 -0500},
1272     Doi = {10.1021/jp0549125},
1273     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
1274     Journal = {J. Phys. Chem. B},
1275     Number = {50},
1276     Pages = {24100-24107},
1277     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
1278     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1279     Volume = {109},
1280     Year = {2005},
1281     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1282     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
1283    
1284     @article{TraPPE-UA.alkylbenzenes,
1285     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
1286     Date-Added = {2011-12-07 15:06:12 -0500},
1287     Date-Modified = {2011-12-07 15:06:12 -0500},
1288     Doi = {10.1021/jp001044x},
1289     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
1290     Journal = {J. Phys. Chem. B},
1291     Number = {33},
1292     Pages = {8008-8016},
1293     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
1294     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1295     Volume = {104},
1296     Year = {2000},
1297     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1298     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
1299    
1300     @article{TraPPE-UA.alkanes,
1301     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
1302     Date-Added = {2011-12-07 15:06:12 -0500},
1303     Date-Modified = {2011-12-07 15:06:12 -0500},
1304     Doi = {10.1021/jp972543+},
1305     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
1306     Journal = {J. Phys. Chem. B},
1307     Number = {14},
1308     Pages = {2569-2577},
1309     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
1310     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
1311     Volume = {102},
1312     Year = {1998},
1313     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
1314     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
1315     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
1316    
1317     @article{ISI:000167766600035,
1318     Abstract = {Molecular dynamics simulations are used to
1319     investigate the separation of water films adjacent
1320     to a hot metal surface. The simulations clearly show
1321     that the water layers nearest the surface overheat
1322     and undergo explosive boiling. For thick films, the
1323     expansion of the vaporized molecules near the
1324     surface forces the outer water layers to move away
1325     from the surface. These results are of interest for
1326     mass spectrometry of biological molecules, steam
1327     cleaning of surfaces, and medical procedures.},
1328     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1329     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1330     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1331     Date-Added = {2011-12-07 15:02:32 -0500},
1332     Date-Modified = {2011-12-07 15:02:32 -0500},
1333     Doc-Delivery-Number = {416ED},
1334     Issn = {1089-5639},
1335     Journal = {J. Phys. Chem. A},
1336     Journal-Iso = {J. Phys. Chem. A},
1337     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1338     Language = {English},
1339     Month = {MAR 29},
1340     Number = {12},
1341     Number-Of-Cited-References = {65},
1342     Pages = {2748-2755},
1343     Publisher = {AMER CHEMICAL SOC},
1344     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1345     Times-Cited = {66},
1346     Title = {Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description},
1347     Type = {Article},
1348     Unique-Id = {ISI:000167766600035},
1349     Volume = {105},
1350     Year = {2001}}
1351    
1352     @article{Chen90,
1353     Author = {A.~P. Sutton and J. Chen},
1354     Date-Added = {2011-12-07 15:01:59 -0500},
1355     Date-Modified = {2013-02-18 18:01:16 +0000},
1356     Journal = {Phil. Mag. Lett.},
1357     Pages = {139-146},
1358     Title = {Long-Range Finnis Sinclair Potentials},
1359     Volume = 61,
1360     Year = {1990}}
1361    
1362     @article{PhysRevB.59.3527,
1363     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1364     Date-Added = {2011-12-07 15:01:36 -0500},
1365     Date-Modified = {2013-02-18 18:00:57 +0000},
1366     Doi = {10.1103/PhysRevB.59.3527},
1367     Journal = {Phys. Rev. B},
1368     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1369     Month = {Feb},
1370     Number = {5},
1371     Numpages = {6},
1372     Pages = {3527-3533},
1373     Publisher = {American Physical Society},
1374     Title = {Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: {C}u-{A}g and {C}u-{N}i},
1375     Volume = {59},
1376     Year = {1999},
1377     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1378    
1379     @article{Bedrov:2000,
1380     Abstract = {We have applied a new nonequilibrium molecular
1381     dynamics (NEMD) method {[}F. Muller-Plathe,
1382     J. Chem. Phys. 106, 6082 (1997)] previously applied
1383     to monatomic Lennard-Jones fluids in the
1384     determination of the thermal conductivity of
1385     molecular fluids. The method was modified in order
1386     to be applicable to systems with holonomic
1387     constraints. Because the method involves imposing a
1388     known heat flux it is particularly attractive for
1389     systems involving long-range and many-body
1390     interactions where calculation of the microscopic
1391     heat flux is difficult. The predicted thermal
1392     conductivities of liquid n-butane and water using
1393     the imposed-flux NEMD method were found to be in a
1394     good agreement with previous simulations and
1395     experiment. (C) 2000 American Institute of
1396     Physics. {[}S0021-9606(00)50841-1].},
1397     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1398     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1399     Author = {Bedrov, D and Smith, GD},
1400     Date-Added = {2011-12-07 15:00:27 -0500},
1401     Date-Modified = {2011-12-07 15:00:27 -0500},
1402     Doc-Delivery-Number = {369BF},
1403     Issn = {0021-9606},
1404     Journal = {J. Chem. Phys.},
1405     Journal-Iso = {J. Chem. Phys.},
1406     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1407     Language = {English},
1408     Month = {NOV 8},
1409     Number = {18},
1410     Number-Of-Cited-References = {26},
1411     Pages = {8080-8084},
1412     Publisher = {AMER INST PHYSICS},
1413     Read = {1},
1414     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1415     Times-Cited = {23},
1416     Title = {Thermal Conductivity of Molecular Fluids from Molecular Dynamics Simulations: Application of a New Imposed-Flux Method},
1417     Type = {Article},
1418     Unique-Id = {ISI:000090151400044},
1419     Volume = {113},
1420     Year = {2000}}
1421    
1422     @article{10.1063/1.3330544,
1423     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1424     Coden = {JCPSA6},
1425     Date-Added = {2011-12-07 14:59:20 -0500},
1426     Date-Modified = {2011-12-15 13:10:11 -0500},
1427     Doi = {DOI:10.1063/1.3330544},
1428     Eissn = {10897690},
1429     Issn = {00219606},
1430     Journal = {J. Chem. Phys.},
1431     Keywords = {shear strength; viscosity;},
1432     Number = {9},
1433     Pages = {096101},
1434     Publisher = {AIP},
1435     Title = {The Shear Viscosity of Rigid Water Models},
1436     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1437     Volume = {132},
1438     Year = {2010},
1439     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1440     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1441    
1442     @article{doi:10.1021/jp048434u,
1443     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1444     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1445     Date-Added = {2011-12-07 14:38:30 -0500},
1446     Date-Modified = {2011-12-07 14:38:30 -0500},
1447     Doi = {10.1021/jp048434u},
1448     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1449     Journal = {J. Phys. Chem. B},
1450     Number = {40},
1451     Pages = {15856-15864},
1452     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1453     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1454     Volume = {108},
1455     Year = {2004},
1456     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1457     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1458    
1459     @article{Meineke:2005gd,
1460     Abstract = {OOPSE is a new molecular dynamics simulation program
1461     that is capable of efficiently integrating equations
1462     of motion for atom types with orientational degrees
1463     of freedom (e.g. #sticky# atoms and point
1464     dipoles). Transition metals can also be simulated
1465     using the embedded atom method (EAM) potential
1466     included in the code. Parallel simulations are
1467     carried out using the force-based decomposition
1468     method. Simulations are specified using a very
1469     simple C-based meta-data language. A number of
1470     advanced integrators are included, and the basic
1471     integrator for orientational dynamics provides
1472     substantial improvements over older quaternion-based
1473     schemes.},
1474     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1475     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1476     Date-Added = {2011-12-07 13:33:04 -0500},
1477     Date-Modified = {2011-12-07 13:33:04 -0500},
1478     Doi = {DOI 10.1002/jcc.20161},
1479     Isi = {000226558200006},
1480     Isi-Recid = {142688207},
1481     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1482     Journal = {J. Comput. Chem.},
1483     Keywords = {OOPSE; molecular dynamics},
1484     Month = feb,
1485     Number = {3},
1486     Pages = {252-271},
1487     Publisher = {JOHN WILEY \& SONS INC},
1488     Times-Cited = {9},
1489     Title = {OOPSE: An Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
1490     Volume = {26},
1491     Year = {2005},
1492     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1493     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1494    
1495     @article{hoover85,
1496     Author = {W.~G. Hoover},
1497     Date-Added = {2011-12-06 14:23:41 -0500},
1498     Date-Modified = {2011-12-06 14:23:41 -0500},
1499     Journal = {Phys. Rev. A},
1500     Pages = 1695,
1501     Title = {Canonical Dynamics: Equilibrium Phase-Space Distributions},
1502     Volume = 31,
1503     Year = 1985}
1504    
1505 gezelter 4063 @article{Tenney:2010rp,
1506 kstocke1 4059 Abstract = {The reverse nonequilibrium molecular dynamics
1507     (RNEMD) method calculates the shear viscosity of a
1508     fluid by imposing a nonphysical exchange of momentum
1509     and measuring the resulting shear velocity
1510     gradient. In this study we investigate the range of
1511     momentum flux values over which RNEMD yields usable
1512     (linear) velocity gradients. We find that nonlinear
1513     velocity profiles result primarily from gradients in
1514     fluid temperature and density. The temperature
1515     gradient results from conversion of heat into bulk
1516     kinetic energy, which is transformed back into heat
1517     elsewhere via viscous heating. An expression is
1518     derived to predict the temperature profile resulting
1519     from a specified momentum flux for a given fluid and
1520     simulation cell. Although primarily bounded above,
1521     we also describe milder low-flux limitations. RNEMD
1522     results for a Lennard-Jones fluid agree with
1523     equilibrium molecular dynamics and conventional
1524     nonequilibrium molecular dynamics calculations at
1525     low shear, but RNEMD underpredicts viscosity
1526     relative to conventional NEMD at high shear.},
1527     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1528     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1529     Article-Number = {014103},
1530     Author = {Tenney, Craig M. and Maginn, Edward J.},
1531     Author-Email = {ed@nd.edu},
1532     Date-Added = {2011-12-05 18:29:08 -0500},
1533 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1534 kstocke1 4059 Doc-Delivery-Number = {542DQ},
1535     Doi = {10.1063/1.3276454},
1536     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1537     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1538     Issn = {0021-9606},
1539     Journal = {J. Chem. Phys.},
1540     Journal-Iso = {J. Chem. Phys.},
1541     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1542     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1543     Language = {English},
1544     Month = {JAN 7},
1545     Number = {1},
1546     Number-Of-Cited-References = {20},
1547     Pages = {014103},
1548     Publisher = {AMER INST PHYSICS},
1549     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1550     Times-Cited = {0},
1551     Title = {Limitations and Recommendations for the Calculation of Shear Viscosity using Reverse Nonequilibrium Molecular Dynamics},
1552     Type = {Article},
1553     Unique-Id = {ISI:000273472300004},
1554     Volume = {132},
1555     Year = {2010},
1556     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1557    
1558 gezelter 4063 @article{Muller-Plathe:1999ao,
1559 kstocke1 4059 Abstract = {A nonequilibrium method for calculating the shear
1560     viscosity is presented. It reverses the
1561     cause-and-effect picture customarily used in
1562     nonequilibrium molecular dynamics: the effect, the
1563     momentum flux or stress, is imposed, whereas the
1564     cause, the velocity gradient or shear rate, is
1565     obtained from the simulation. It differs from other
1566     Norton-ensemble methods by the way in which the
1567     steady-state momentum flux is maintained. This
1568     method involves a simple exchange of particle
1569     momenta, which is easy to implement. Moreover, it
1570     can be made to conserve the total energy as well as
1571     the total linear momentum, so no coupling to an
1572     external temperature bath is needed. The resulting
1573     raw data, the velocity profile, is a robust and
1574     rapidly converging property. The method is tested on
1575     the Lennard-Jones fluid near its triple point. It
1576     yields a viscosity of 3.2-3.3, in Lennard-Jones
1577     reduced units, in agreement with literature
1578     results. {[}S1063-651X(99)03105-0].},
1579     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1580     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1581     Author = {M\"{u}ller-Plathe, F},
1582     Date-Added = {2011-12-05 18:18:37 -0500},
1583 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1584 kstocke1 4059 Doc-Delivery-Number = {197TX},
1585     Issn = {1063-651X},
1586     Journal = {Phys. Rev. E},
1587     Journal-Iso = {Phys. Rev. E},
1588     Language = {English},
1589     Month = {MAY},
1590     Number = {5, Part A},
1591     Number-Of-Cited-References = {17},
1592     Pages = {4894-4898},
1593     Publisher = {AMERICAN PHYSICAL SOC},
1594     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1595     Times-Cited = {57},
1596     Title = {Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids},
1597     Type = {Article},
1598     Unique-Id = {ISI:000080382700030},
1599     Volume = {59},
1600     Year = {1999}}
1601    
1602 gezelter 4063 @article{Muller-Plathe:1997wq,
1603 kstocke1 4059 Abstract = {A nonequilibrium molecular dynamics method for
1604     calculating the thermal conductivity is
1605     presented. It reverses the usual cause and effect
1606     picture. The ''effect,'' the heat flux, is imposed
1607     on the system and the ''cause,'' the temperature
1608     gradient is obtained from the simulation. Besides
1609     being very simple to implement, the scheme offers
1610     several advantages such as compatibility with
1611     periodic boundary conditions, conservation of total
1612     energy and total linear momentum, and the sampling
1613     of a rapidly converging quantity (temperature
1614     gradient) rather than a slowly converging one (heat
1615     flux). The scheme is tested on the Lennard-Jones
1616     fluid. (C) 1997 American Institute of Physics.},
1617     Address = {WOODBURY},
1618     Author = {M\"{u}ller-Plathe, F.},
1619     Cited-Reference-Count = {13},
1620     Date = {APR 8},
1621     Date-Added = {2011-12-05 18:18:37 -0500},
1622 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1623 kstocke1 4059 Document-Type = {Article},
1624     Isi = {ISI:A1997WR62000032},
1625     Isi-Document-Delivery-Number = {WR620},
1626     Iso-Source-Abbreviation = {J. Chem. Phys.},
1627     Issn = {0021-9606},
1628     Journal = {J. Chem. Phys.},
1629     Language = {English},
1630     Month = {Apr},
1631     Number = {14},
1632     Page-Count = {4},
1633     Pages = {6082--6085},
1634     Publication-Type = {J},
1635     Publisher = {AMER INST PHYSICS},
1636     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1637     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1638     Source = {J CHEM PHYS},
1639     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1640     Times-Cited = {106},
1641     Title = {A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity},
1642     Volume = {106},
1643     Year = {1997}}
1644    
1645     @article{priezjev:204704,
1646     Author = {Nikolai V. Priezjev},
1647     Date-Added = {2011-11-28 14:39:18 -0500},
1648     Date-Modified = {2011-11-28 14:39:18 -0500},
1649     Doi = {10.1063/1.3663384},
1650     Eid = {204704},
1651     Journal = {J. Chem. Phys.},
1652     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1653     Number = {20},
1654     Numpages = {9},
1655     Pages = {204704},
1656     Publisher = {AIP},
1657     Title = {Molecular Diffusion and Slip Boundary Conditions at Smooth Surfaces with Periodic and Random Nanoscale Textures},
1658     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1659     Volume = {135},
1660     Year = {2011},
1661     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1662     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1663    
1664     @article{bryk:10258,
1665     Author = {Taras Bryk and A. D. J. Haymet},
1666     Date-Added = {2011-11-22 17:06:35 -0500},
1667     Date-Modified = {2011-11-22 17:06:35 -0500},
1668     Doi = {10.1063/1.1519538},
1669     Journal = {J. Chem. Phys.},
1670     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1671     Number = {22},
1672     Pages = {10258-10268},
1673     Publisher = {AIP},
1674     Title = {Ice 1h/Water Interface of the SPC/E Model: Molecular Dynamics Simulations of the Equilibrium Basal and Prism Interfaces},
1675     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1676     Volume = {117},
1677     Year = {2002},
1678     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1679     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1680    
1681     @misc{openmd,
1682     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1683     Date-Added = {2011-11-18 15:32:23 -0500},
1684 gezelter 4064 Date-Modified = {2014-03-13 20:42:36 +0000},
1685     Howpublished = {Available at {\tt http://openmd.org}},
1686 kstocke1 4059 Title = {{OpenMD, an Open Source Engine for Molecular Dynamics}}}
1687    
1688 gezelter 4063 @article{Kuang:2011ef,
1689 kstocke1 4059 Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1690     Date-Added = {2011-11-18 13:03:06 -0500},
1691 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1692 kstocke1 4059 Doi = {10.1021/jp2073478},
1693     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1694     Journal = {J. Phys. Chem. C},
1695     Number = {45},
1696     Pages = {22475-22483},
1697     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1698     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1699     Volume = {115},
1700     Year = {2011},
1701     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1702     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1703    
1704     @article{10.1063/1.2772547,
1705     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1706     Coden = {JAPIAU},
1707     Date-Added = {2011-11-01 16:46:32 -0400},
1708     Date-Modified = {2011-11-01 16:46:32 -0400},
1709     Doi = {DOI:10.1063/1.2772547},
1710     Eissn = {10897550},
1711     Issn = {00218979},
1712     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1713     Number = {4},
1714     Pages = {043514},
1715     Publisher = {AIP},
1716     Title = {Dynamical Thermal Conductivity of Argon Crystal},
1717     Url = {http://dx.doi.org/10.1063/1.2772547},
1718     Volume = {102},
1719     Year = {2007},
1720     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1721    
1722     @article{PhysRevLett.82.4671,
1723     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1724     Date-Added = {2011-11-01 16:44:29 -0400},
1725     Date-Modified = {2011-11-01 16:44:29 -0400},
1726     Doi = {10.1103/PhysRevLett.82.4671},
1727     Issue = {23},
1728     Journal = {Phys. Rev. Lett.},
1729     Month = {Jun},
1730     Pages = {4671--4674},
1731     Publisher = {American Physical Society},
1732     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1733     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1734     Volume = {82},
1735     Year = {1999},
1736     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1737     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1738    
1739     @article{10.1063/1.1610442,
1740     Author = {J. R. Schmidt and J. L. Skinner},
1741     Coden = {JCPSA6},
1742     Date-Added = {2011-10-13 16:28:43 -0400},
1743     Date-Modified = {2011-12-15 13:11:53 -0500},
1744     Doi = {DOI:10.1063/1.1610442},
1745     Eissn = {10897690},
1746     Issn = {00219606},
1747     Journal = {J. Chem. Phys.},
1748     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1749     Number = {15},
1750     Pages = {8062-8068},
1751     Publisher = {AIP},
1752     Title = {Hydrodynamic Boundary Conditions, the Stokes?Einstein Law, and Long-Time Tails in the Brownian Limit},
1753     Url = {http://dx.doi.org/10.1063/1.1610442},
1754     Volume = {119},
1755     Year = {2003},
1756     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1757    
1758     @article{10.1063/1.3274802,
1759     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1760     Coden = {JCPSA6},
1761     Doi = {DOI:10.1063/1.3274802},
1762     Eissn = {10897690},
1763     Issn = {00219606},
1764     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1765     Number = {24},
1766     Pages = {246101},
1767     Publisher = {AIP},
1768     Title = {Are Pressure Fluctuation-Based Equilibrium Methods Really Worse than Nonequilibrium Methods for Calculating Viscosities?},
1769     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1770     Volume = {131},
1771     Year = {2009},
1772     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1773     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}
1774 gezelter 4063
1775     @comment{BibDesk Static Groups{
1776     <?xml version="1.0" encoding="UTF-8"?>
1777     <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
1778     <plist version="1.0">
1779     <array>
1780     <dict>
1781     <key>group name</key>
1782     <string>NEMD</string>
1783     <key>keys</key>
1784 gezelter 4064 <string>Ashurst:1975eu,Hess:2002nr,Evans:2002tg,Picalek:2009rz,Backer:2005sf,Erpenbeck:1984qe,Schelling:2002dp,Maginn:1993kl,Berthier:2002ai,Evans:1986nx,Jiang:2008hc,Vasquez:2004ty,Evans:1982oq</string>
1785 gezelter 4063 </dict>
1786     <dict>
1787     <key>group name</key>
1788     <string>RNEMD</string>
1789     <key>keys</key>
1790 gezelter 4076 <string>Kuang:2010if,Tenney:2010rp,Kuang:2011ef,Muller-Plathe:1997wq,Muller-Plathe:1999ao,Shenogina:2009ix,Patel:2005zm,Stocker:2013cl,Kuang:2012fe</string>
1791 gezelter 4063 </dict>
1792     </array>
1793     </plist>
1794     }}

Properties

Name Value
svn:executable *