ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.bib
Revision: 4076
Committed: Fri Mar 14 17:54:47 2014 UTC (11 years, 6 months ago) by gezelter
File size: 102868 byte(s)
Log Message:
Fixes, new language, new figure

File Contents

# User Rev Content
1 kstocke1 4059 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 gezelter 4076 %% Created for Dan Gezelter at 2014-03-14 13:52:48 -0400
6 kstocke1 4059
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11     @string{acp = {Adv. Chem. Phys.}}
12    
13     @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76 gezelter 4076 @article{Lervik:2009fk,
77     Abstract = {We investigate{,} using transient non-equilibrium molecular-dynamics simulations{,} heat-transfer through nanometer-scale interfaces consisting of n-decane (2-12 nm diameter) droplets in water. Using computer simulation results of the temperature relaxation of the nanodroplet as a function of time we have computed the thermal conductivity and the interfacial conductance of the droplet and the droplet/water interface respectively. We find that the thermal conductivity of the n-decane droplets is insensitive to droplet size{,} whereas the interfacial conductance shows a strong dependence on the droplet radius. We rationalize this behavior in terms of a modification of the n-decane/water surface-tension with droplet curvature. This enhancement in interfacial conductance would contribute{,} in the case of a suspension{,} to an increase in the thermal conductivity with decreasing particle radius. This notion is consistent with recent experimental studies of nanofluids. We also investigate the accuracy of different diffusion equations to model the temperature relaxation in non stationary non equilibrium processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires the consideration of the thermal conductivity of the nanodroplet as well as the temperature discontinuity across the interface. The relevance of this result in diffusion models that neglect thermal conductivity effects in the modeling of the temperature relaxation is discussed.},
78     Author = {Lervik, Anders and Bresme, Fernando and Kjelstrup, Signe},
79     Date-Added = {2014-03-14 17:33:22 +0000},
80     Date-Modified = {2014-03-14 17:33:22 +0000},
81     Doi = {10.1039/B817666C},
82     Issue = {12},
83     Journal = {Soft Matter},
84     Pages = {2407-2414},
85     Publisher = {The Royal Society of Chemistry},
86     Title = {Heat transfer in soft nanoscale interfaces: the influence of interface curvature},
87     Url = {http://dx.doi.org/10.1039/B817666C},
88     Volume = {5},
89     Year = {2009},
90     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B817666C}}
91    
92 gezelter 4064 @article{Vogelsang:1988qv,
93     Author = {Vogelsang, R. and Hoheisel, G. and Luckas, M.},
94     Date-Added = {2014-03-13 20:40:44 +0000},
95     Date-Modified = {2014-03-13 20:40:58 +0000},
96     Doi = {10.1080/00268978800100813},
97     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268978800100813},
98     Journal = {Molecular Physics},
99     Number = {6},
100     Pages = {1203-1213},
101     Title = {Shear viscosity and thermal conductivity of the Lennard-Jones liquid computed using molecular dynamics and predicted by a memory function model for a large number of states},
102     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268978800100813},
103     Volume = {64},
104     Year = {1988},
105     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268978800100813},
106     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268978800100813}}
107    
108 gezelter 4063 @article{Berendsen87,
109     Author = {Berendsen, H. J. C. and Grigera, J. R. and Straatsma, T. P.},
110     Date-Added = {2014-03-13 15:02:07 +0000},
111     Date-Modified = {2014-03-13 15:02:07 +0000},
112     Doi = {10.1021/j100308a038},
113     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100308a038},
114     Journal = {The Journal of Physical Chemistry},
115     Number = {24},
116     Pages = {6269-6271},
117     Title = {The missing term in effective pair potentials},
118     Url = {http://pubs.acs.org/doi/abs/10.1021/j100308a038},
119     Volume = {91},
120     Year = {1987},
121     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100308a038},
122     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100308a038}}
123    
124     @article{Stocker:2013cl,
125     Author = {Stocker, Kelsey M. and Gezelter, J. Daniel},
126     Date-Added = {2014-03-13 14:20:18 +0000},
127     Date-Modified = {2014-03-13 14:21:57 +0000},
128     Doi = {10.1021/jp312734f},
129     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp312734f},
130     Journal = {The Journal of Physical Chemistry C},
131     Number = {15},
132     Pages = {7605-7612},
133     Title = {Simulations of Heat Conduction at Thiolate-Capped Gold Surfaces: The Role of Chain Length and Solvent Penetration},
134     Url = {http://pubs.acs.org/doi/abs/10.1021/jp312734f},
135     Volume = {117},
136     Year = {2013},
137     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp312734f},
138     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp312734f}}
139    
140     @article{Picalek:2009rz,
141     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
142     hexafluorophosphate is investigated by non-equilibrium molecular
143     dynamics simulations with cosine-modulated force in the temperature
144     range from 360 to 480K. It is shown that this method is able to
145     correctly predict the shear viscosity. The simulation setting and
146     choice of the force field are discussed in detail. The all-atom force
147     field exhibits a bad convergence and the shear viscosity is
148     overestimated, while the simple united atom model predicts the kinetics
149     very well. The results are compared with the equilibrium molecular
150     dynamics simulations. The relationship between the diffusion
151     coefficient and viscosity is examined by means of the hydrodynamic
152     radii calculated from the Stokes-Einstein equation and the solvation
153     properties are discussed.},
154     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
155     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
156     Author = {Picalek, Jan and Kolafa, Jiri},
157     Author-Email = {jiri.kolafa@vscht.cz},
158     Date-Added = {2014-03-13 14:11:53 +0000},
159     Date-Modified = {2014-03-13 14:12:08 +0000},
160     Doc-Delivery-Number = {448FD},
161     Doi = {10.1080/08927020802680703},
162     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
163     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
164     Issn = {0892-7022},
165     Journal = {Mol. Simul.},
166     Journal-Iso = {Mol. Simul.},
167     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
168     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
169     Language = {English},
170     Number = {8},
171     Number-Of-Cited-References = {50},
172     Pages = {685-690},
173     Publisher = {TAYLOR \& FRANCIS LTD},
174     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
175     Times-Cited = {2},
176     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
177     Type = {Article},
178     Unique-Id = {ISI:000266247600008},
179     Volume = {35},
180     Year = {2009},
181     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
182    
183     @article{Backer:2005sf,
184     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
185     Date-Added = {2014-03-13 14:11:38 +0000},
186     Date-Modified = {2014-03-13 14:12:08 +0000},
187     Doi = {10.1063/1.1883163},
188     Eid = {154503},
189     Journal = {J. Chem. Phys.},
190     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
191     Number = {15},
192     Numpages = {6},
193     Pages = {154503},
194     Publisher = {AIP},
195     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
196     Url = {http://link.aip.org/link/?JCP/122/154503/1},
197     Volume = {122},
198     Year = {2005},
199     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
200     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
201    
202     @article{Vasquez:2004ty,
203     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
204     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
205     Date = {2004/11/02/},
206     Date-Added = {2014-03-13 14:11:31 +0000},
207     Date-Modified = {2014-03-13 14:12:08 +0000},
208     Day = {02},
209     Journal = {Int. J. Thermophys.},
210     M3 = {10.1007/s10765-004-7736-3},
211     Month = {11},
212     Number = {6},
213     Pages = {1799--1818},
214     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
215     Ty = {JOUR},
216     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
217     Volume = {25},
218     Year = {2004},
219     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
220    
221     @article{Hess:2002nr,
222     Author = {Berk Hess},
223     Date-Added = {2014-03-13 14:11:23 +0000},
224     Date-Modified = {2014-03-13 14:12:08 +0000},
225     Doi = {10.1063/1.1421362},
226     Journal = {J. Chem. Phys.},
227     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
228     Number = {1},
229     Pages = {209-217},
230     Publisher = {AIP},
231     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
232     Url = {http://link.aip.org/link/?JCP/116/209/1},
233     Volume = {116},
234     Year = {2002},
235     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
236     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
237    
238 kstocke1 4059 @article{Romer2012,
239     Author = {R{\"o}mer, Frank and Lervik, Anders and Bresme, Fernando},
240     Date-Added = {2014-01-08 20:51:36 +0000},
241     Date-Modified = {2014-01-08 20:53:28 +0000},
242     Journal = {J. Chem. Phys.},
243     Pages = {074503-1 - 8},
244     Title = {Nonequilibrium Molecular Dynamics Simulations of the Thermal Conductivity of Water: A Systematic Investigation of the SPC/E and TIP4P/2005 Models},
245     Volume = {137},
246     Year = {2012}}
247    
248     @article{Zhang2005,
249     Author = {Zhang, Meimei and Lussetti, Enrico and de Souza, Lu{\'\i}s and M\"{u}ller-Plathe, Florian},
250     Date-Added = {2014-01-08 20:49:09 +0000},
251     Date-Modified = {2014-01-08 20:51:28 +0000},
252     Journal = {J. Phys. Chem. B},
253     Pages = {15060-15067},
254     Title = {Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium Molecular Dynamics},
255     Volume = {109},
256     Year = {2005}}
257    
258     @article{Vardeman2011,
259     Author = {Charles F. Vardeman and Kelsey M. Stocker and J. Daniel Gezelter},
260     Date-Added = {2013-09-05 23:48:02 +0000},
261     Date-Modified = {2013-09-05 23:48:02 +0000},
262     Journal = {J. Chem. Theory Comput.},
263     Keywords = {Langevin Hull},
264     Pages = {834-842},
265     Title = {The Langevin Hull: Constant Pressure and Temperature Dynamics for Nonperiodic Systems},
266     Volume = {7},
267     Year = {2011},
268 gezelter 4063 Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUGJCVYJHZlcnNpb25YJG9iamVjdHNZJGFyY2hpdmVyVCR0b3ASAAGGoKgHCBMUFRYaIVUkbnVsbNMJCgsMDxJXTlMua2V5c1pOUy5vYmplY3RzViRjbGFzc6INDoACgAOiEBGABIAFgAdccmVsYXRpdmVQYXRoWWFsaWFzRGF0YV8QOS4uLy4uLy4uLy4uL1ZvbHVtZXMvVGltZSBNYWNoaW5lIEJhY2t1cHMvVmFyZGVtYW4yMDExLnBkZtIXCxgZV05TLmRhdGFPEQGEAAAAAAGEAAIAABRUaW1lIE1hY2hpbmUgQmFja3VwcwAAAAAAAADMiTMXSCsAAAAAAAIQVmFyZGVtYW4yMDExLnBkZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvNWMnJ/r4AAAAAAAAAAP////8AAAkAAAAAAAAAAAAAAAAAAAAAFFRpbWUgTWFjaGluZSBCYWNrdXBzABAACAAAzIlrVwAAABEACAAAyco2/gAAAAEAAAACACVUaW1lIE1hY2hpbmUgQmFja3VwczpWYXJkZW1hbjIwMTEucGRmAAAOACIAEABWAGEAcgBkAGUAbQBhAG4AMgAwADEAMQAuAHAAZABmAA8AKgAUAFQAaQBtAGUAIABNAGEAYwBoAGkAbgBlACAAQgBhAGMAawB1AHAAcwASABEvVmFyZGVtYW4yMDExLnBkZgAAEwAdL1ZvbHVtZXMvVGltZSBNYWNoaW5lIEJhY2t1cHMA//8AAIAG0hscHR5aJGNsYXNzbmFtZVgkY2xhc3Nlc11OU011dGFibGVEYXRhox0fIFZOU0RhdGFYTlNPYmplY3TSGxwiI1xOU0RpY3Rpb25hcnmiIiBfEA9OU0tleWVkQXJjaGl2ZXLRJidUcm9vdIABAAgAEQAaACMALQAyADcAQABGAE0AVQBgAGcAagBsAG4AcQBzAHUAdwCEAI4AygDPANcCXwJhAmYCcQJ6AogCjAKTApwCoQKuArECwwLGAssAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAACzQ==}}
269 kstocke1 4059
270     @article{EDELSBRUNNER:1994oq,
271     Abstract = {Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ''shape'' of the set. For that purpose, this article introduces the formal notion of the family of alpha-shapes of a finite point set in R3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter alpha is-an-element-of R controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size n in time O(n2), worst case. A robust implementation of the algorithm is discussed, and several applications in the area of scientific computing are mentioned.},
272     Address = {1515 BROADWAY, NEW YORK, NY 10036},
273     Author = {Edelsbrunner, H and Mucke, E.~P.},
274     Date = {JAN 1994},
275     Date-Added = {2013-09-05 23:47:03 +0000},
276     Date-Modified = {2013-09-05 23:47:03 +0000},
277     Journal = {ACM Trans. Graphics},
278     Keywords = {COMPUTATIONAL GRAPHICS; DELAUNAY TRIANGULATIONS; GEOMETRIC ALGORITHMS; POINT SETS; POLYTOPES; ROBUST IMPLEMENTATION; SCIENTIFIC COMPUTING; SCIENTIFIC VISUALIZATION; SIMPLICIAL COMPLEXES; SIMULATED PERTURBATION; 3-DIMENSIONAL SPACE},
279     Pages = {43-72},
280     Publisher = {ASSOC COMPUTING MACHINERY},
281     Timescited = {270},
282     Title = {3-DIMENSIONAL ALPHA-SHAPES},
283     Volume = {13},
284     Year = {1994}}
285    
286     @article{Barber96,
287     Author = {C.~B. Barber and D.~P. Dobkin and H.~T. Huhdanpaa},
288     Date-Added = {2013-09-05 23:46:55 +0000},
289     Date-Modified = {2013-09-05 23:46:55 +0000},
290     Journal = {ACM Trans. Math. Software},
291     Pages = {469-483},
292     Title = {The Quickhull Algorithm for Convex Hulls},
293     Volume = 22,
294     Year = 1996}
295    
296     @article{Sun2008,
297     Author = {Xiuquan Sun and Teng Lin and J. Daniel Gezelter},
298     Date-Added = {2013-09-05 20:13:18 +0000},
299     Date-Modified = {2013-09-05 20:14:17 +0000},
300     Journal = {J. Chem. Phys.},
301     Pages = {234107},
302     Title = {Langevin Dynamics for Rigid Bodies of Arbitrary Shape},
303     Volume = {128},
304     Year = {2008}}
305    
306     @article{Zwanzig,
307     Author = {ChihMing Hu and Robert Zwanzig},
308     Date-Added = {2013-09-05 20:11:32 +0000},
309     Date-Modified = {2013-09-05 20:12:42 +0000},
310     Journal = {J. Chem. Phys.},
311     Number = {11},
312     Pages = {4353-4357},
313     Title = {Rotational Friction Coefficients for Spheroids with the Slipping Boundary Condition},
314     Volume = {60},
315     Year = {1974}}
316    
317     @article{hartland2011,
318     Author = {Hartland, Gregory V.},
319     Date-Added = {2013-02-11 22:54:29 +0000},
320     Date-Modified = {2013-02-18 17:56:29 +0000},
321     Journal = {Chem. Rev.},
322     Pages = {3858-3887},
323     Title = {Optical Studies of Dynamics in Noble Metal Nanostructures},
324     Volume = {11},
325     Year = {2011}}
326    
327     @article{hase:2010,
328     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
329     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
330     Date-Added = {2012-12-25 17:47:40 +0000},
331     Date-Modified = {2012-12-25 17:47:40 +0000},
332     Doi = {10.1039/B923858C},
333     Issue = {17},
334     Journal = {Phys. Chem. Chem. Phys.},
335     Pages = {4435-4445},
336     Publisher = {The Royal Society of Chemistry},
337     Title = {Model Non-Equilibrium Molecular Dynamics Simulations of Heat Transfer from a Hot Gold Surface to an Alkylthiolate Self-Assembled Monolayer},
338     Url = {http://dx.doi.org/10.1039/B923858C},
339     Volume = {12},
340     Year = {2010},
341     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
342    
343     @article{hase:2011,
344     Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
345     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
346     Date-Added = {2012-12-25 17:47:40 +0000},
347     Date-Modified = {2013-02-18 17:57:24 +0000},
348     Doi = {10.1021/jp200672e},
349     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
350     Journal = {J. Phys. Chem. C},
351     Number = {19},
352     Pages = {9622-9628},
353     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
354     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
355     Volume = {115},
356     Year = {2011},
357     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
358     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
359    
360     @article{RevModPhys.61.605,
361     Author = {Swartz, E. T. and Pohl, R. O.},
362     Date-Added = {2012-12-21 20:34:12 +0000},
363     Date-Modified = {2012-12-21 20:34:12 +0000},
364     Doi = {10.1103/RevModPhys.61.605},
365     Issue = {3},
366     Journal = {Rev. Mod. Phys.},
367     Month = {Jul},
368     Pages = {605--668},
369     Publisher = {American Physical Society},
370     Title = {Thermal Boundary Resistance},
371     Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
372     Volume = {61},
373     Year = {1989},
374     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
375     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
376    
377     @article{packmol,
378     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
379     Bibsource = {DBLP, http://dblp.uni-trier.de},
380     Date-Added = {2011-02-01 15:13:02 -0500},
381     Date-Modified = {2013-02-18 18:01:34 +0000},
382     Ee = {http://dx.doi.org/10.1002/jcc.21224},
383     Journal = {J. Comput. Chem.},
384     Number = {13},
385     Pages = {2157-2164},
386     Title = {PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations},
387     Volume = {30},
388     Year = {2009}}
389    
390     @article{doi:10.1021/jp034405s,
391     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
392     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
393     Date-Added = {2012-12-17 18:38:38 +0000},
394     Date-Modified = {2012-12-17 18:38:38 +0000},
395     Doi = {10.1021/jp034405s},
396     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
397     Journal = {J. Phys. Chem. B},
398     Number = {43},
399     Pages = {11940-11950},
400     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
401     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
402     Volume = {107},
403     Year = {2003},
404     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
405     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
406    
407     @article{hautman:4994,
408     Author = {Joseph Hautman and Michael L. Klein},
409     Date-Added = {2012-12-17 18:38:26 +0000},
410     Date-Modified = {2012-12-17 18:38:26 +0000},
411     Doi = {10.1063/1.457621},
412     Journal = {J. Chem. Phys.},
413     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
414     Number = {8},
415     Pages = {4994-5001},
416     Publisher = {AIP},
417     Title = {Simulation of a Monolayer of Alkyl Thiol Chains},
418     Url = {http://link.aip.org/link/?JCP/91/4994/1},
419     Volume = {91},
420     Year = {1989},
421     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
422     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
423    
424     @article{vlugt:cpc2007154,
425     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
426     Date-Added = {2012-12-17 18:38:20 +0000},
427     Date-Modified = {2013-02-18 18:04:43 +0000},
428     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
429     Issn = {0010-4655},
430     Journal = {Comput. Phys. Commun.},
431     Keywords = {Gold nanocrystals},
432     Note = {Proceedings of the Conference on Computational Physics 2006: CCP 2006 - Conference on Computational Physics 2006},
433     Number = {1-2},
434     Pages = {154 - 157},
435     Title = {Selective Adsorption of Alkyl Thiols on Gold in Different Geometries},
436     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
437     Volume = {177},
438     Year = {2007},
439     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
440     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
441    
442     @article{landman:1998,
443     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
444     Author = {Luedtke, W. D. and Landman, Uzi},
445     Date-Added = {2012-12-17 18:38:13 +0000},
446     Date-Modified = {2012-12-17 18:38:13 +0000},
447     Doi = {10.1021/jp981745i},
448     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
449     Journal = {J. Phys. Chem. B},
450     Number = {34},
451     Pages = {6566-6572},
452     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
453     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
454     Volume = {102},
455     Year = {1998},
456     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
457     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
458    
459     @article{PhysRevLett.96.186101,
460     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
461     Date-Added = {2012-12-17 17:44:53 +0000},
462     Date-Modified = {2012-12-17 17:44:53 +0000},
463     Doi = {10.1103/PhysRevLett.96.186101},
464     Journal = prl,
465     Month = {May},
466     Number = {18},
467     Numpages = {4},
468     Pages = {186101},
469     Publisher = {American Physical Society},
470     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
471     Volume = {96},
472     Year = {2006},
473     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
474    
475     @article{Larson:2007hw,
476     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
477     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
478     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
479     Date = {AUG 15 2007},
480     Date-Added = {2012-12-17 17:44:44 +0000},
481     Date-Modified = {2013-02-18 17:34:30 +0000},
482     Doi = {ARTN 325101},
483     Journal = {Nanotechnology},
484     Pages = {325101},
485     Publisher = {IOP PUBLISHING LTD},
486     Timescited = {5},
487     Title = {Hybrid Plasmonic Magnetic Nanoparticles as Molecular Specific Agents for MRI/Optical Imaging and Photothermal Therapy of Cancer Cells},
488     Volume = {18},
489     Year = {2007},
490     Bdsk-Url-1 = {http://dx.doi.org/325101}}
491    
492     @article{Huff:2007ye,
493     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
494     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
495     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
496     Date = {FEB 2007},
497     Date-Added = {2012-12-17 17:44:36 +0000},
498     Date-Modified = {2012-12-17 17:44:36 +0000},
499     Doi = {DOI 10.2217/17435889.2.1.125},
500     Journal = {Nanomedicine},
501     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
502     Pages = {125-132},
503     Publisher = {FUTURE MEDICINE LTD},
504     Timescited = {13},
505     Title = {Hyperthermic Effects of Gold Nanorods on Tumor Cells},
506     Volume = {2},
507     Year = {2007},
508     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
509    
510 gezelter 4063 @article{Jiang:2008hc,
511 kstocke1 4059 Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
512     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
513     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
514     Date-Added = {2012-12-17 16:57:19 +0000},
515 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
516 kstocke1 4059 Doi = {10.1021/jp802942v},
517     Issn = {1520-6106},
518     Journal = jpcb,
519     Pages = {10207-10216},
520     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
521     Volume = {112},
522     Year = {2008},
523     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
524    
525     @article{Schelling:2002dp,
526     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
527     Date = {APR 1 2002},
528     Date-Added = {2012-12-17 16:57:10 +0000},
529 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
530 kstocke1 4059 Doi = {10.1103/PhysRevB.65.144306},
531     Isi = {WOS:000174980300055},
532     Issn = {1098-0121},
533     Journal = prb,
534     Month = {Apr},
535     Number = {14},
536     Pages = {144306},
537     Publication-Type = {J},
538     Times-Cited = {288},
539     Title = {Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity},
540     Volume = {65},
541     Year = {2002},
542     Z8 = {12},
543     Z9 = {296},
544     Zb = {0},
545     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
546    
547 gezelter 4063 @article{Evans:2002tg,
548 kstocke1 4059 Author = {Evans, D. J. and Searles, D. J.},
549     Date = {NOV 2002},
550     Date-Added = {2012-12-17 16:56:59 +0000},
551 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
552 kstocke1 4059 Doi = {10.1080/00018730210155133},
553     Isi = {WOS:000179448200001},
554     Issn = {0001-8732},
555     Journal = {Adv. Phys.},
556     Month = {Nov},
557     Number = {7},
558     Pages = {1529--1585},
559     Publication-Type = {J},
560     Times-Cited = {309},
561     Title = {The Fluctuation Theorem},
562     Volume = {51},
563     Year = {2002},
564     Z8 = {3},
565     Z9 = {311},
566     Zb = {9},
567     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
568    
569 gezelter 4063 @article{Berthier:2002ai,
570 kstocke1 4059 Author = {Berthier, L. and Barrat, J. L.},
571     Date = {APR 8 2002},
572     Date-Added = {2012-12-17 16:56:47 +0000},
573 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
574 kstocke1 4059 Doi = {10.1063/1.1460862},
575     Isi = {WOS:000174634200036},
576     Issn = {0021-9606},
577     Journal = jcp,
578     Month = {Apr},
579     Number = {14},
580     Pages = {6228--6242},
581     Publication-Type = {J},
582     Times-Cited = {172},
583     Title = {Nonequilibrium Dynamics and Fluctuation-Dissipation Relation in a Sheared Fluid},
584     Volume = {116},
585     Year = {2002},
586     Z8 = {0},
587     Z9 = {172},
588     Zb = {1},
589     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
590    
591 gezelter 4063 @article{Maginn:1993kl,
592 kstocke1 4059 Author = {Maginn, E. J. and Bell, A. T. and Theodorou, D. N.},
593     Date = {APR 22 1993},
594     Date-Added = {2012-12-17 16:56:40 +0000},
595 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
596 kstocke1 4059 Doi = {10.1021/j100118a038},
597     Isi = {WOS:A1993KY46600039},
598     Issn = {0022-3654},
599     Journal = jpc,
600     Month = {Apr},
601     Number = {16},
602     Pages = {4173--4181},
603     Publication-Type = {J},
604     Times-Cited = {198},
605     Title = {Transport Diffusivity of Methane in Silicalite from Equilibrium and Nonequilibrium Simulations},
606     Volume = {97},
607     Year = {1993},
608     Z8 = {4},
609     Z9 = {201},
610     Zb = {0},
611     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
612    
613 gezelter 4063 @article{Erpenbeck:1984qe,
614 kstocke1 4059 Author = {Erpenbeck, J. J.},
615     Date = {1984},
616     Date-Added = {2012-12-17 16:56:32 +0000},
617 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
618 kstocke1 4059 Doi = {10.1103/PhysRevLett.52.1333},
619     Isi = {WOS:A1984SK96700021},
620     Issn = {0031-9007},
621     Journal = prl,
622     Number = {15},
623     Pages = {1333--1335},
624     Publication-Type = {J},
625     Times-Cited = {189},
626     Title = {Shear Viscosity of the Hard-Sphere Fluid via Nonequilibrium Molecular Dynamics},
627     Volume = {52},
628     Year = {1984},
629     Z8 = {0},
630     Z9 = {189},
631     Zb = {1},
632     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
633    
634 gezelter 4063 @article{Evans:1982oq,
635 kstocke1 4059 Author = {Evans, Denis J.},
636     Date-Added = {2012-12-17 16:56:24 +0000},
637 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
638 kstocke1 4059 Journal = {Phys. Lett. A},
639     Number = {9},
640     Pages = {457--460},
641     Title = {Homogeneous NEMD Algorithm for Thermal Conductivity -- Application of Non-Canonical Linear Response Theory},
642     Ty = {JOUR},
643     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
644     Volume = {91},
645     Year = {1982},
646     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
647    
648 gezelter 4063 @article{Ashurst:1975eu,
649 kstocke1 4059 Author = {Ashurst, W. T. and Hoover, W. G.},
650     Date = {1975},
651     Date-Added = {2012-12-17 16:56:05 +0000},
652 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
653 kstocke1 4059 Doi = {10.1103/PhysRevA.11.658},
654     Isi = {WOS:A1975V548400036},
655     Issn = {1050-2947},
656     Journal = pra,
657     Number = {2},
658     Pages = {658--678},
659     Publication-Type = {J},
660     Times-Cited = {295},
661     Title = {Dense-Fluid Shear Viscosity via Nonequilibrium Molecular Dynamics},
662     Volume = {11},
663     Year = {1975},
664     Z8 = {3},
665     Z9 = {298},
666     Zb = {1},
667     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
668    
669     @article{kinaci:014106,
670     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
671     Date-Added = {2012-12-17 16:55:56 +0000},
672     Date-Modified = {2012-12-17 16:55:56 +0000},
673     Doi = {10.1063/1.4731450},
674     Eid = {014106},
675     Journal = jcp,
676     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
677     Number = {1},
678     Numpages = {8},
679     Pages = {014106},
680     Publisher = {AIP},
681     Title = {On Calculation of Thermal Conductivity from Einstein Relation in Equilibrium Molecular Dynamics},
682     Url = {http://link.aip.org/link/?JCP/137/014106/1},
683     Volume = {137},
684     Year = {2012},
685     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
686     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
687    
688     @article{che:6888,
689     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
690     Date-Added = {2012-12-17 16:55:48 +0000},
691     Date-Modified = {2012-12-17 16:55:48 +0000},
692     Doi = {10.1063/1.1310223},
693     Journal = jcp,
694     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
695     Number = {16},
696     Pages = {6888-6900},
697     Publisher = {AIP},
698     Title = {Thermal Conductivity of Diamond and Related Materials from Molecular Dynamics Simulations},
699     Url = {http://link.aip.org/link/?JCP/113/6888/1},
700     Volume = {113},
701     Year = {2000},
702     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
703     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
704    
705     @article{Viscardy:2007rp,
706     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
707     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
708     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
709     Date = {MAY 14 2007},
710     Date-Added = {2012-12-17 16:55:32 +0000},
711     Date-Modified = {2013-02-18 17:58:40 +0000},
712     Doi = {ARTN 184513},
713     Journal = jcp,
714     Pages = {184513},
715     Publisher = {AMER INST PHYSICS},
716     Timescited = {1},
717     Title = {Transport and Helfand Moments in the Lennard-Jones Fluid. II. Thermal Conductivity},
718     Volume = {126},
719     Year = {2007},
720     Bdsk-Url-1 = {http://dx.doi.org/184513}}
721    
722     @article{PhysRev.119.1,
723     Author = {Helfand, Eugene},
724     Date-Added = {2012-12-17 16:55:19 +0000},
725     Date-Modified = {2012-12-17 16:55:19 +0000},
726     Doi = {10.1103/PhysRev.119.1},
727     Journal = {Phys. Rev.},
728     Month = {Jul},
729     Number = {1},
730     Numpages = {8},
731     Pages = {1--9},
732     Publisher = {American Physical Society},
733     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
734     Volume = {119},
735     Year = {1960},
736     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
737    
738 gezelter 4063 @article{Evans:1986nx,
739 kstocke1 4059 Author = {Evans, Denis J.},
740     Date-Added = {2012-12-17 16:55:19 +0000},
741 gezelter 4063 Date-Modified = {2014-03-13 14:15:48 +0000},
742 kstocke1 4059 Doi = {10.1103/PhysRevA.34.1449},
743     Journal = {Phys. Rev. A},
744     Month = {Aug},
745     Number = {2},
746     Numpages = {4},
747     Pages = {1449--1453},
748     Publisher = {American Physical Society},
749     Title = {Thermal Conductivity of the Lennard-Jones Fluid},
750     Volume = {34},
751     Year = {1986},
752     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
753    
754     @article{MASSOBRIO:1984bl,
755     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
756     Author = {Massobrio, C and Ciccotti, G},
757     Date = {1984},
758     Date-Added = {2012-12-17 16:55:03 +0000},
759     Date-Modified = {2012-12-21 22:42:02 +0000},
760     Journal = pra,
761     Pages = {3191-3197},
762     Publisher = {AMERICAN PHYSICAL SOC},
763     Timescited = {29},
764     Title = {Lennard-Jones Triple-Point Conductivity via Weak External Fields},
765     Volume = {30},
766     Year = {1984}}
767    
768     @article{PhysRevB.37.5677,
769     Author = {Heyes, David M.},
770     Date-Added = {2012-12-17 16:54:55 +0000},
771     Date-Modified = {2012-12-17 16:54:55 +0000},
772     Doi = {10.1103/PhysRevB.37.5677},
773     Journal = prb,
774     Month = {Apr},
775     Number = {10},
776     Numpages = {19},
777     Pages = {5677--5696},
778     Publisher = {American Physical Society},
779     Title = {Transport Coefficients of Lennard-Jones Fluids: A Molecular-Dynamics and Effective-Hard-Sphere Treatment},
780     Volume = {37},
781     Year = {1988},
782     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
783    
784     @article{PhysRevB.80.195406,
785     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
786     Date-Added = {2012-12-17 16:54:55 +0000},
787     Date-Modified = {2012-12-17 16:54:55 +0000},
788     Doi = {10.1103/PhysRevB.80.195406},
789     Journal = prb,
790     Month = {Nov},
791     Number = {19},
792     Numpages = {6},
793     Pages = {195406},
794     Publisher = {American Physical Society},
795     Title = {Cooling Dynamics and Thermal Interface Resistance of Glass-Embedded Metal Nanoparticles},
796     Volume = {80},
797     Year = {2009},
798     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
799    
800     @article{Wang10082007,
801     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
802     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
803     Date-Added = {2012-12-17 16:54:31 +0000},
804     Date-Modified = {2012-12-17 16:54:31 +0000},
805     Doi = {10.1126/science.1145220},
806     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
807     Journal = {Science},
808     Number = {5839},
809     Pages = {787-790},
810     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
811     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
812     Volume = {317},
813     Year = {2007},
814     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
815     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
816    
817     @article{doi:10.1021/la904855s,
818     Annote = {PMID: 20166728},
819     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
820     Date-Added = {2012-12-17 16:54:12 +0000},
821     Date-Modified = {2013-02-18 17:57:03 +0000},
822     Doi = {10.1021/la904855s},
823     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
824     Journal = {Langmuir},
825     Number = {6},
826     Pages = {3786-3789},
827     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
828     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
829     Volume = {26},
830     Year = {2010},
831     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
832     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
833    
834     @article{doi:10.1021/jp048375k,
835     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
836     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
837     Date-Added = {2012-12-17 16:54:03 +0000},
838     Date-Modified = {2012-12-17 16:54:03 +0000},
839     Doi = {10.1021/jp048375k},
840     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
841     Journal = jpcb,
842     Number = {49},
843     Pages = {18870-18875},
844     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
845     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
846     Volume = {108},
847     Year = {2004},
848     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
849     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
850    
851     @article{doi:10.1021/jp8051888,
852     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
853     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
854     Date-Added = {2012-12-17 16:54:03 +0000},
855     Date-Modified = {2013-02-18 17:54:59 +0000},
856     Doi = {10.1021/jp8051888},
857     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
858     Journal = jpcc,
859     Number = {35},
860     Pages = {13320-13323},
861     Title = {Probing the Gold Nanorod-Ligand-Solvent Interface by Plasmonic Absorption and Thermal Decay},
862     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
863     Volume = {112},
864     Year = {2008},
865     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
866     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
867    
868     @article{PhysRevB.67.054302,
869     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
870     Date-Added = {2012-12-17 16:53:48 +0000},
871     Date-Modified = {2012-12-17 16:53:48 +0000},
872     Doi = {10.1103/PhysRevB.67.054302},
873     Journal = prb,
874     Month = {Feb},
875     Number = {5},
876     Numpages = {5},
877     Pages = {054302},
878     Publisher = {American Physical Society},
879     Title = {Thermal Conductance of Epitaxial Interfaces},
880     Volume = {67},
881     Year = {2003},
882     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
883    
884     @article{cahill:793,
885     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
886     Date-Added = {2012-12-17 16:53:36 +0000},
887     Date-Modified = {2012-12-17 16:53:36 +0000},
888     Doi = {10.1063/1.1524305},
889     Journal = {J. Appl. Phys.},
890     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
891     Number = {2},
892     Pages = {793-818},
893     Publisher = {AIP},
894     Title = {Nanoscale Thermal Transport},
895     Url = {http://link.aip.org/link/?JAP/93/793/1},
896     Volume = {93},
897     Year = {2003},
898     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
899     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
900    
901     @article{Eapen:2007mw,
902     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
903     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
904     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
905     Date = {DEC 2007},
906     Date-Added = {2012-12-17 16:53:30 +0000},
907     Date-Modified = {2013-02-18 17:48:08 +0000},
908     Doi = {ARTN 062501},
909     Journal = pre,
910     Pages = {062501},
911     Publisher = {AMER PHYSICAL SOC},
912     Timescited = {0},
913     Title = {Beyond the Maxwell Limit: Thermal Conduction in Nanofluids with Percolating Fluid Structures},
914     Volume = {76},
915     Year = {2007},
916     Bdsk-Url-1 = {http://dx.doi.org/062501}}
917    
918     @article{Xue:2003ya,
919     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
920     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
921     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
922     Date = {JAN 1 2003},
923     Date-Added = {2012-12-17 16:53:22 +0000},
924     Date-Modified = {2012-12-17 16:53:22 +0000},
925     Doi = {DOI 10.1063/1.1525806},
926     Journal = jcp,
927     Pages = {337-339},
928     Publisher = {AMER INST PHYSICS},
929     Timescited = {19},
930     Title = {Two Regimes of Thermal Resistance at a Liquid-Solid Interface},
931     Volume = {118},
932     Year = {2003},
933     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
934    
935     @article{Xue:2004oa,
936     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
937     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
938     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
939     Date = {SEP 2004},
940     Date-Added = {2012-12-17 16:53:22 +0000},
941     Date-Modified = {2013-02-18 17:47:37 +0000},
942     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
943     Journal = {Int. J. Heat Mass Tran.},
944     Keywords = {interfacial Thermal Resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
945     Pages = {4277-4284},
946     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
947     Timescited = {29},
948     Title = {Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport},
949     Volume = {47},
950     Year = {2004},
951     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
952    
953     @article{Lee:1999ct,
954     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
955     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
956     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
957     Date = {MAY 1999},
958     Date-Added = {2012-12-17 16:53:15 +0000},
959     Date-Modified = {2013-02-18 17:46:57 +0000},
960     Journal = {J. Heat Transf.},
961     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
962     Pages = {280-289},
963     Publisher = {ASME-AMER SOC MECHANICAL ENG},
964     Timescited = {183},
965     Title = {Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles},
966     Volume = {121},
967     Year = {1999}}
968    
969     @article{Keblinski:2002bx,
970     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
971     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
972     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
973     Date = {FEB 2002},
974     Date-Added = {2012-12-17 16:53:06 +0000},
975     Date-Modified = {2013-02-18 17:41:04 +0000},
976     Journal = {Int. J. Heat Mass Tran.},
977     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
978     Pages = {855-863},
979     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
980     Timescited = {161},
981     Title = {Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)},
982     Volume = {45},
983     Year = {2002}}
984    
985     @article{Eastman:2001wb,
986     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
987     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
988     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
989     Date = {FEB 5 2001},
990     Date-Added = {2012-12-17 16:52:55 +0000},
991     Date-Modified = {2013-02-18 17:40:41 +0000},
992     Journal = {Appl. Phys. Lett.},
993     Pages = {718-720},
994     Publisher = {AMER INST PHYSICS},
995     Timescited = {246},
996     Title = {Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles},
997     Volume = {78},
998     Year = {2001}}
999    
1000     @article{Eapen:2007th,
1001     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
1002     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1003     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
1004     Date = {AUG 31 2007},
1005     Date-Added = {2012-12-17 16:52:46 +0000},
1006     Date-Modified = {2013-02-18 17:40:15 +0000},
1007     Doi = {ARTN 095901},
1008     Journal = prl,
1009     Pages = {095901},
1010     Publisher = {AMER PHYSICAL SOC},
1011     Timescited = {8},
1012     Title = {Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction},
1013     Volume = {99},
1014     Year = {2007},
1015     Bdsk-Url-1 = {http://dx.doi.org/095901}}
1016    
1017     @article{Plech:2005kx,
1018     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
1019     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
1020     Date-Added = {2012-12-17 16:52:34 +0000},
1021     Date-Modified = {2012-12-17 16:52:34 +0000},
1022     Doi = {DOI 10.1016/j.cplett.2004.11.072},
1023     Journal = cpl,
1024     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
1025     Pages = {565-569},
1026     Title = {Thermal Dynamics in Laser Excited Metal Nanoparticles},
1027     Volume = {401},
1028     Year = {2005},
1029     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
1030    
1031     @article{Wilson:2002uq,
1032     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
1033     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
1034     Date-Added = {2012-12-17 16:52:22 +0000},
1035     Date-Modified = {2013-02-18 17:34:52 +0000},
1036     Doi = {ARTN 224301},
1037     Journal = {Phys. Rev. B},
1038     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
1039     Pages = {224301},
1040     Title = {Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids},
1041     Volume = {66},
1042     Year = {2002},
1043     Bdsk-Url-1 = {http://dx.doi.org/224301}}
1044    
1045     @article{Mazzaglia:2008to,
1046     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
1047     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1048     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
1049     Date = {MAY 1 2008},
1050     Date-Added = {2012-12-17 16:52:15 +0000},
1051     Date-Modified = {2012-12-17 16:52:15 +0000},
1052     Doi = {DOI 10.1021/jp7120033},
1053     Journal = jpcc,
1054     Pages = {6764-6769},
1055     Publisher = {AMER CHEMICAL SOC},
1056     Timescited = {0},
1057     Title = {Amphiphilic Cyclodextrins as Capping Agents for Gold Colloids: A Spectroscopic Investigation with Perspectives in Photothermal Therapy},
1058     Volume = {112},
1059     Year = {2008},
1060     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
1061    
1062     @article{Gnyawali:2008lp,
1063     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
1064     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
1065     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
1066     Date = {FEB 2008},
1067     Date-Added = {2012-12-17 16:52:08 +0000},
1068     Date-Modified = {2013-02-18 17:32:43 +0000},
1069     Doi = {DOI 10.1007/s11517-007-0251-5},
1070     Journal = {Med. Biol. Eng. Comput.},
1071     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
1072     Pages = {159-168},
1073     Publisher = {SPRINGER HEIDELBERG},
1074     Timescited = {0},
1075     Title = {Temperature Measurement on Tissue Surface During Laser Irradiation},
1076     Volume = {46},
1077     Year = {2008},
1078     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
1079    
1080     @article{Petrova:2007ad,
1081     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
1082     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
1083     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
1084     Date = {2007},
1085     Date-Added = {2012-12-17 16:52:01 +0000},
1086     Date-Modified = {2013-02-18 17:32:23 +0000},
1087     Doi = {DOI 10.1524/zpch.2007.221.3.361},
1088     Journal = {Z Phys. Chem.},
1089     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
1090     Pages = {361-376},
1091     Publisher = {OLDENBOURG VERLAG},
1092     Timescited = {2},
1093     Title = {Photothermal Properties of Gold Nanoparticles},
1094     Volume = {221},
1095     Year = {2007},
1096     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
1097    
1098     @article{Jain:2007ux,
1099     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
1100     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
1101     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
1102     Date = {SEP 2007},
1103     Date-Added = {2012-12-17 16:51:52 +0000},
1104     Date-Modified = {2013-02-18 17:25:37 +0000},
1105     Doi = {DOI 10.1007/s11468-007-9031-1},
1106     Journal = {Plasmonics},
1107     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
1108     Number = {3},
1109     Pages = {107-118},
1110     Publisher = {SPRINGER},
1111     Timescited = {2},
1112     Title = {Review of Some Interesting Surface Plasmon Resonance-Enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems},
1113     Volume = {2},
1114     Year = {2007},
1115     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
1116    
1117     @techreport{Goddard1998,
1118     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
1119     Date-Added = {2012-12-05 22:18:01 +0000},
1120     Date-Modified = {2012-12-05 22:18:01 +0000},
1121     Institution = {California Institute of Technology},
1122     Lastchecked = {January 19, 2011},
1123     Number = {003},
1124     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
1125     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
1126     Year = {1998},
1127     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
1128    
1129 gezelter 4063 @article{Kuang:2010if,
1130 kstocke1 4059 Author = {Shenyu Kuang and J. Daniel Gezelter},
1131     Date-Added = {2012-12-05 22:18:01 +0000},
1132 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1133 kstocke1 4059 Journal = {J. Chem. Phys.},
1134     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
1135     Month = {October},
1136     Pages = {164101-1 - 164101-9},
1137     Title = {A Gentler Approach to RNEMD: Nonisotropic Velocity Scaling for Computing Thermal Conductivity and Shear Viscosity},
1138     Volume = {133},
1139     Year = {2010}}
1140    
1141 gezelter 4063 @article{Kuang:2012fe,
1142 kstocke1 4059 Author = {Shenyu Kuang and J. Daniel Gezelter},
1143     Date-Added = {2012-12-05 22:18:01 +0000},
1144 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1145 kstocke1 4059 Journal = {Mol. Phys.},
1146     Keywords = {VSS, RNEMD, VSS-RNEMD},
1147     Month = {May},
1148     Number = {9-10},
1149     Pages = {691-701},
1150     Title = {Velocity Shearing and Scaling RNEMD: A Minimally Perturbing Method for Simulating Temperature and Momentum Gradients},
1151     Volume = {110},
1152     Year = {2012}}
1153    
1154     @article{doi:10.1080/0026897031000068578,
1155     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
1156     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
1157     Date-Added = {2011-12-13 17:17:05 -0500},
1158     Date-Modified = {2011-12-13 17:17:05 -0500},
1159     Doi = {10.1080/0026897031000068578},
1160     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
1161     Journal = {Mol. Phys.},
1162     Number = {11},
1163     Pages = {1605-1610},
1164     Title = {Kapitza Resistance at the Liquid--Solid Interface},
1165     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1166     Volume = {101},
1167     Year = {2003},
1168     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
1169     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
1170    
1171     @article{Medina2011,
1172     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
1173     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
1174     Date-Added = {2011-12-13 17:08:34 -0500},
1175     Date-Modified = {2011-12-13 17:08:49 -0500},
1176     Doi = {10.1016/j.chemphys.2011.07.001},
1177     Issn = {0301-0104},
1178     Journal = {Chemical Physics},
1179     Keywords = {Viscosity calculations},
1180     Number = {1-3},
1181     Pages = {9 - 18},
1182     Title = {Molecular Dynamics Simulations of Rigid and Flexible Water Models: Temperature Dependence of Viscosity},
1183     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1184     Volume = {388},
1185     Year = {2011},
1186     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
1187     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
1188    
1189     @book{WagnerKruse,
1190     Address = {Berlin},
1191     Author = {W. Wagner and A. Kruse},
1192     Date-Added = {2011-12-13 14:57:08 -0500},
1193     Date-Modified = {2011-12-13 14:57:08 -0500},
1194     Publisher = {Springer-Verlag},
1195     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
1196     Year = {1998}}
1197    
1198 gezelter 4063 @article{Shenogina:2009ix,
1199 kstocke1 4059 Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
1200     Date-Added = {2011-12-13 12:48:51 -0500},
1201 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1202 kstocke1 4059 Doi = {10.1103/PhysRevLett.102.156101},
1203     Journal = {Phys. Rev. Lett.},
1204     Month = {Apr},
1205     Number = {15},
1206     Numpages = {4},
1207     Pages = {156101},
1208     Publisher = {American Physical Society},
1209     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
1210     Volume = {102},
1211     Year = {2009},
1212     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
1213    
1214 gezelter 4063 @article{Patel:2005zm,
1215 kstocke1 4059 Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
1216     Annote = {PMID: 16277458},
1217     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
1218     Date-Added = {2011-12-13 12:48:51 -0500},
1219 gezelter 4064 Date-Modified = {2014-03-13 20:42:07 +0000},
1220 kstocke1 4059 Doi = {10.1021/nl051526q},
1221     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
1222     Journal = {Nano Lett.},
1223     Number = {11},
1224     Pages = {2225-2231},
1225 gezelter 4064 Title = {Thermal Resistance of Nanoscopic Liquid-Liquid Interfaces: Dependence on Chemistry and Molecular Architecture},
1226 kstocke1 4059 Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1227     Volume = {5},
1228     Year = {2005},
1229     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
1230     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
1231    
1232     @article{melchionna93,
1233     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
1234     Date-Added = {2011-12-12 17:52:15 -0500},
1235     Date-Modified = {2011-12-12 17:52:15 -0500},
1236     Journal = {Mol. Phys.},
1237     Pages = {533-544},
1238     Title = {Hoover {\sc NPT} Dynamics for Systems Varying in Shape and Size},
1239     Volume = 78,
1240     Year = 1993}
1241    
1242     @article{TraPPE-UA.thiols,
1243     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
1244     Date-Added = {2011-12-07 15:06:12 -0500},
1245     Date-Modified = {2011-12-07 15:06:12 -0500},
1246     Doi = {10.1021/jp0549125},
1247     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
1248     Journal = {J. Phys. Chem. B},
1249     Number = {50},
1250     Pages = {24100-24107},
1251     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
1252     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1253     Volume = {109},
1254     Year = {2005},
1255     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1256     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
1257    
1258     @article{TraPPE-UA.alkylbenzenes,
1259     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
1260     Date-Added = {2011-12-07 15:06:12 -0500},
1261     Date-Modified = {2011-12-07 15:06:12 -0500},
1262     Doi = {10.1021/jp001044x},
1263     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
1264     Journal = {J. Phys. Chem. B},
1265     Number = {33},
1266     Pages = {8008-8016},
1267     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
1268     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1269     Volume = {104},
1270     Year = {2000},
1271     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1272     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
1273    
1274     @article{TraPPE-UA.alkanes,
1275     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
1276     Date-Added = {2011-12-07 15:06:12 -0500},
1277     Date-Modified = {2011-12-07 15:06:12 -0500},
1278     Doi = {10.1021/jp972543+},
1279     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
1280     Journal = {J. Phys. Chem. B},
1281     Number = {14},
1282     Pages = {2569-2577},
1283     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
1284     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
1285     Volume = {102},
1286     Year = {1998},
1287     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
1288     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
1289     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
1290    
1291     @article{ISI:000167766600035,
1292     Abstract = {Molecular dynamics simulations are used to
1293     investigate the separation of water films adjacent
1294     to a hot metal surface. The simulations clearly show
1295     that the water layers nearest the surface overheat
1296     and undergo explosive boiling. For thick films, the
1297     expansion of the vaporized molecules near the
1298     surface forces the outer water layers to move away
1299     from the surface. These results are of interest for
1300     mass spectrometry of biological molecules, steam
1301     cleaning of surfaces, and medical procedures.},
1302     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1303     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1304     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1305     Date-Added = {2011-12-07 15:02:32 -0500},
1306     Date-Modified = {2011-12-07 15:02:32 -0500},
1307     Doc-Delivery-Number = {416ED},
1308     Issn = {1089-5639},
1309     Journal = {J. Phys. Chem. A},
1310     Journal-Iso = {J. Phys. Chem. A},
1311     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1312     Language = {English},
1313     Month = {MAR 29},
1314     Number = {12},
1315     Number-Of-Cited-References = {65},
1316     Pages = {2748-2755},
1317     Publisher = {AMER CHEMICAL SOC},
1318     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1319     Times-Cited = {66},
1320     Title = {Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description},
1321     Type = {Article},
1322     Unique-Id = {ISI:000167766600035},
1323     Volume = {105},
1324     Year = {2001}}
1325    
1326     @article{Chen90,
1327     Author = {A.~P. Sutton and J. Chen},
1328     Date-Added = {2011-12-07 15:01:59 -0500},
1329     Date-Modified = {2013-02-18 18:01:16 +0000},
1330     Journal = {Phil. Mag. Lett.},
1331     Pages = {139-146},
1332     Title = {Long-Range Finnis Sinclair Potentials},
1333     Volume = 61,
1334     Year = {1990}}
1335    
1336     @article{PhysRevB.59.3527,
1337     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1338     Date-Added = {2011-12-07 15:01:36 -0500},
1339     Date-Modified = {2013-02-18 18:00:57 +0000},
1340     Doi = {10.1103/PhysRevB.59.3527},
1341     Journal = {Phys. Rev. B},
1342     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1343     Month = {Feb},
1344     Number = {5},
1345     Numpages = {6},
1346     Pages = {3527-3533},
1347     Publisher = {American Physical Society},
1348     Title = {Molecular-Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: {C}u-{A}g and {C}u-{N}i},
1349     Volume = {59},
1350     Year = {1999},
1351     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1352    
1353     @article{Bedrov:2000,
1354     Abstract = {We have applied a new nonequilibrium molecular
1355     dynamics (NEMD) method {[}F. Muller-Plathe,
1356     J. Chem. Phys. 106, 6082 (1997)] previously applied
1357     to monatomic Lennard-Jones fluids in the
1358     determination of the thermal conductivity of
1359     molecular fluids. The method was modified in order
1360     to be applicable to systems with holonomic
1361     constraints. Because the method involves imposing a
1362     known heat flux it is particularly attractive for
1363     systems involving long-range and many-body
1364     interactions where calculation of the microscopic
1365     heat flux is difficult. The predicted thermal
1366     conductivities of liquid n-butane and water using
1367     the imposed-flux NEMD method were found to be in a
1368     good agreement with previous simulations and
1369     experiment. (C) 2000 American Institute of
1370     Physics. {[}S0021-9606(00)50841-1].},
1371     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1372     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1373     Author = {Bedrov, D and Smith, GD},
1374     Date-Added = {2011-12-07 15:00:27 -0500},
1375     Date-Modified = {2011-12-07 15:00:27 -0500},
1376     Doc-Delivery-Number = {369BF},
1377     Issn = {0021-9606},
1378     Journal = {J. Chem. Phys.},
1379     Journal-Iso = {J. Chem. Phys.},
1380     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1381     Language = {English},
1382     Month = {NOV 8},
1383     Number = {18},
1384     Number-Of-Cited-References = {26},
1385     Pages = {8080-8084},
1386     Publisher = {AMER INST PHYSICS},
1387     Read = {1},
1388     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1389     Times-Cited = {23},
1390     Title = {Thermal Conductivity of Molecular Fluids from Molecular Dynamics Simulations: Application of a New Imposed-Flux Method},
1391     Type = {Article},
1392     Unique-Id = {ISI:000090151400044},
1393     Volume = {113},
1394     Year = {2000}}
1395    
1396     @article{10.1063/1.3330544,
1397     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1398     Coden = {JCPSA6},
1399     Date-Added = {2011-12-07 14:59:20 -0500},
1400     Date-Modified = {2011-12-15 13:10:11 -0500},
1401     Doi = {DOI:10.1063/1.3330544},
1402     Eissn = {10897690},
1403     Issn = {00219606},
1404     Journal = {J. Chem. Phys.},
1405     Keywords = {shear strength; viscosity;},
1406     Number = {9},
1407     Pages = {096101},
1408     Publisher = {AIP},
1409     Title = {The Shear Viscosity of Rigid Water Models},
1410     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1411     Volume = {132},
1412     Year = {2010},
1413     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1414     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1415    
1416     @article{doi:10.1021/jp048434u,
1417     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1418     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1419     Date-Added = {2011-12-07 14:38:30 -0500},
1420     Date-Modified = {2011-12-07 14:38:30 -0500},
1421     Doi = {10.1021/jp048434u},
1422     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1423     Journal = {J. Phys. Chem. B},
1424     Number = {40},
1425     Pages = {15856-15864},
1426     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1427     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1428     Volume = {108},
1429     Year = {2004},
1430     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1431     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1432    
1433     @article{Meineke:2005gd,
1434     Abstract = {OOPSE is a new molecular dynamics simulation program
1435     that is capable of efficiently integrating equations
1436     of motion for atom types with orientational degrees
1437     of freedom (e.g. #sticky# atoms and point
1438     dipoles). Transition metals can also be simulated
1439     using the embedded atom method (EAM) potential
1440     included in the code. Parallel simulations are
1441     carried out using the force-based decomposition
1442     method. Simulations are specified using a very
1443     simple C-based meta-data language. A number of
1444     advanced integrators are included, and the basic
1445     integrator for orientational dynamics provides
1446     substantial improvements over older quaternion-based
1447     schemes.},
1448     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1449     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1450     Date-Added = {2011-12-07 13:33:04 -0500},
1451     Date-Modified = {2011-12-07 13:33:04 -0500},
1452     Doi = {DOI 10.1002/jcc.20161},
1453     Isi = {000226558200006},
1454     Isi-Recid = {142688207},
1455     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1456     Journal = {J. Comput. Chem.},
1457     Keywords = {OOPSE; molecular dynamics},
1458     Month = feb,
1459     Number = {3},
1460     Pages = {252-271},
1461     Publisher = {JOHN WILEY \& SONS INC},
1462     Times-Cited = {9},
1463     Title = {OOPSE: An Object-Oriented Parallel Simulation Engine for Molecular Dynamics},
1464     Volume = {26},
1465     Year = {2005},
1466     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1467     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1468    
1469     @article{hoover85,
1470     Author = {W.~G. Hoover},
1471     Date-Added = {2011-12-06 14:23:41 -0500},
1472     Date-Modified = {2011-12-06 14:23:41 -0500},
1473     Journal = {Phys. Rev. A},
1474     Pages = 1695,
1475     Title = {Canonical Dynamics: Equilibrium Phase-Space Distributions},
1476     Volume = 31,
1477     Year = 1985}
1478    
1479 gezelter 4063 @article{Tenney:2010rp,
1480 kstocke1 4059 Abstract = {The reverse nonequilibrium molecular dynamics
1481     (RNEMD) method calculates the shear viscosity of a
1482     fluid by imposing a nonphysical exchange of momentum
1483     and measuring the resulting shear velocity
1484     gradient. In this study we investigate the range of
1485     momentum flux values over which RNEMD yields usable
1486     (linear) velocity gradients. We find that nonlinear
1487     velocity profiles result primarily from gradients in
1488     fluid temperature and density. The temperature
1489     gradient results from conversion of heat into bulk
1490     kinetic energy, which is transformed back into heat
1491     elsewhere via viscous heating. An expression is
1492     derived to predict the temperature profile resulting
1493     from a specified momentum flux for a given fluid and
1494     simulation cell. Although primarily bounded above,
1495     we also describe milder low-flux limitations. RNEMD
1496     results for a Lennard-Jones fluid agree with
1497     equilibrium molecular dynamics and conventional
1498     nonequilibrium molecular dynamics calculations at
1499     low shear, but RNEMD underpredicts viscosity
1500     relative to conventional NEMD at high shear.},
1501     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1502     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1503     Article-Number = {014103},
1504     Author = {Tenney, Craig M. and Maginn, Edward J.},
1505     Author-Email = {ed@nd.edu},
1506     Date-Added = {2011-12-05 18:29:08 -0500},
1507 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1508 kstocke1 4059 Doc-Delivery-Number = {542DQ},
1509     Doi = {10.1063/1.3276454},
1510     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1511     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1512     Issn = {0021-9606},
1513     Journal = {J. Chem. Phys.},
1514     Journal-Iso = {J. Chem. Phys.},
1515     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1516     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1517     Language = {English},
1518     Month = {JAN 7},
1519     Number = {1},
1520     Number-Of-Cited-References = {20},
1521     Pages = {014103},
1522     Publisher = {AMER INST PHYSICS},
1523     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1524     Times-Cited = {0},
1525     Title = {Limitations and Recommendations for the Calculation of Shear Viscosity using Reverse Nonequilibrium Molecular Dynamics},
1526     Type = {Article},
1527     Unique-Id = {ISI:000273472300004},
1528     Volume = {132},
1529     Year = {2010},
1530     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1531    
1532 gezelter 4063 @article{Muller-Plathe:1999ao,
1533 kstocke1 4059 Abstract = {A nonequilibrium method for calculating the shear
1534     viscosity is presented. It reverses the
1535     cause-and-effect picture customarily used in
1536     nonequilibrium molecular dynamics: the effect, the
1537     momentum flux or stress, is imposed, whereas the
1538     cause, the velocity gradient or shear rate, is
1539     obtained from the simulation. It differs from other
1540     Norton-ensemble methods by the way in which the
1541     steady-state momentum flux is maintained. This
1542     method involves a simple exchange of particle
1543     momenta, which is easy to implement. Moreover, it
1544     can be made to conserve the total energy as well as
1545     the total linear momentum, so no coupling to an
1546     external temperature bath is needed. The resulting
1547     raw data, the velocity profile, is a robust and
1548     rapidly converging property. The method is tested on
1549     the Lennard-Jones fluid near its triple point. It
1550     yields a viscosity of 3.2-3.3, in Lennard-Jones
1551     reduced units, in agreement with literature
1552     results. {[}S1063-651X(99)03105-0].},
1553     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1554     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1555     Author = {M\"{u}ller-Plathe, F},
1556     Date-Added = {2011-12-05 18:18:37 -0500},
1557 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1558 kstocke1 4059 Doc-Delivery-Number = {197TX},
1559     Issn = {1063-651X},
1560     Journal = {Phys. Rev. E},
1561     Journal-Iso = {Phys. Rev. E},
1562     Language = {English},
1563     Month = {MAY},
1564     Number = {5, Part A},
1565     Number-Of-Cited-References = {17},
1566     Pages = {4894-4898},
1567     Publisher = {AMERICAN PHYSICAL SOC},
1568     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1569     Times-Cited = {57},
1570     Title = {Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids},
1571     Type = {Article},
1572     Unique-Id = {ISI:000080382700030},
1573     Volume = {59},
1574     Year = {1999}}
1575    
1576 gezelter 4063 @article{Muller-Plathe:1997wq,
1577 kstocke1 4059 Abstract = {A nonequilibrium molecular dynamics method for
1578     calculating the thermal conductivity is
1579     presented. It reverses the usual cause and effect
1580     picture. The ''effect,'' the heat flux, is imposed
1581     on the system and the ''cause,'' the temperature
1582     gradient is obtained from the simulation. Besides
1583     being very simple to implement, the scheme offers
1584     several advantages such as compatibility with
1585     periodic boundary conditions, conservation of total
1586     energy and total linear momentum, and the sampling
1587     of a rapidly converging quantity (temperature
1588     gradient) rather than a slowly converging one (heat
1589     flux). The scheme is tested on the Lennard-Jones
1590     fluid. (C) 1997 American Institute of Physics.},
1591     Address = {WOODBURY},
1592     Author = {M\"{u}ller-Plathe, F.},
1593     Cited-Reference-Count = {13},
1594     Date = {APR 8},
1595     Date-Added = {2011-12-05 18:18:37 -0500},
1596 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1597 kstocke1 4059 Document-Type = {Article},
1598     Isi = {ISI:A1997WR62000032},
1599     Isi-Document-Delivery-Number = {WR620},
1600     Iso-Source-Abbreviation = {J. Chem. Phys.},
1601     Issn = {0021-9606},
1602     Journal = {J. Chem. Phys.},
1603     Language = {English},
1604     Month = {Apr},
1605     Number = {14},
1606     Page-Count = {4},
1607     Pages = {6082--6085},
1608     Publication-Type = {J},
1609     Publisher = {AMER INST PHYSICS},
1610     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1611     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1612     Source = {J CHEM PHYS},
1613     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1614     Times-Cited = {106},
1615     Title = {A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity},
1616     Volume = {106},
1617     Year = {1997}}
1618    
1619     @article{priezjev:204704,
1620     Author = {Nikolai V. Priezjev},
1621     Date-Added = {2011-11-28 14:39:18 -0500},
1622     Date-Modified = {2011-11-28 14:39:18 -0500},
1623     Doi = {10.1063/1.3663384},
1624     Eid = {204704},
1625     Journal = {J. Chem. Phys.},
1626     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1627     Number = {20},
1628     Numpages = {9},
1629     Pages = {204704},
1630     Publisher = {AIP},
1631     Title = {Molecular Diffusion and Slip Boundary Conditions at Smooth Surfaces with Periodic and Random Nanoscale Textures},
1632     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1633     Volume = {135},
1634     Year = {2011},
1635     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1636     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1637    
1638     @article{bryk:10258,
1639     Author = {Taras Bryk and A. D. J. Haymet},
1640     Date-Added = {2011-11-22 17:06:35 -0500},
1641     Date-Modified = {2011-11-22 17:06:35 -0500},
1642     Doi = {10.1063/1.1519538},
1643     Journal = {J. Chem. Phys.},
1644     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1645     Number = {22},
1646     Pages = {10258-10268},
1647     Publisher = {AIP},
1648     Title = {Ice 1h/Water Interface of the SPC/E Model: Molecular Dynamics Simulations of the Equilibrium Basal and Prism Interfaces},
1649     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1650     Volume = {117},
1651     Year = {2002},
1652     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1653     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1654    
1655     @misc{openmd,
1656     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1657     Date-Added = {2011-11-18 15:32:23 -0500},
1658 gezelter 4064 Date-Modified = {2014-03-13 20:42:36 +0000},
1659     Howpublished = {Available at {\tt http://openmd.org}},
1660 kstocke1 4059 Title = {{OpenMD, an Open Source Engine for Molecular Dynamics}}}
1661    
1662 gezelter 4063 @article{Kuang:2011ef,
1663 kstocke1 4059 Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1664     Date-Added = {2011-11-18 13:03:06 -0500},
1665 gezelter 4063 Date-Modified = {2014-03-13 14:21:57 +0000},
1666 kstocke1 4059 Doi = {10.1021/jp2073478},
1667     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1668     Journal = {J. Phys. Chem. C},
1669     Number = {45},
1670     Pages = {22475-22483},
1671     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1672     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1673     Volume = {115},
1674     Year = {2011},
1675     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1676     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1677    
1678     @article{10.1063/1.2772547,
1679     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1680     Coden = {JAPIAU},
1681     Date-Added = {2011-11-01 16:46:32 -0400},
1682     Date-Modified = {2011-11-01 16:46:32 -0400},
1683     Doi = {DOI:10.1063/1.2772547},
1684     Eissn = {10897550},
1685     Issn = {00218979},
1686     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1687     Number = {4},
1688     Pages = {043514},
1689     Publisher = {AIP},
1690     Title = {Dynamical Thermal Conductivity of Argon Crystal},
1691     Url = {http://dx.doi.org/10.1063/1.2772547},
1692     Volume = {102},
1693     Year = {2007},
1694     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1695    
1696     @article{PhysRevLett.82.4671,
1697     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1698     Date-Added = {2011-11-01 16:44:29 -0400},
1699     Date-Modified = {2011-11-01 16:44:29 -0400},
1700     Doi = {10.1103/PhysRevLett.82.4671},
1701     Issue = {23},
1702     Journal = {Phys. Rev. Lett.},
1703     Month = {Jun},
1704     Pages = {4671--4674},
1705     Publisher = {American Physical Society},
1706     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1707     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1708     Volume = {82},
1709     Year = {1999},
1710     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1711     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1712    
1713     @article{10.1063/1.1610442,
1714     Author = {J. R. Schmidt and J. L. Skinner},
1715     Coden = {JCPSA6},
1716     Date-Added = {2011-10-13 16:28:43 -0400},
1717     Date-Modified = {2011-12-15 13:11:53 -0500},
1718     Doi = {DOI:10.1063/1.1610442},
1719     Eissn = {10897690},
1720     Issn = {00219606},
1721     Journal = {J. Chem. Phys.},
1722     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1723     Number = {15},
1724     Pages = {8062-8068},
1725     Publisher = {AIP},
1726     Title = {Hydrodynamic Boundary Conditions, the Stokes?Einstein Law, and Long-Time Tails in the Brownian Limit},
1727     Url = {http://dx.doi.org/10.1063/1.1610442},
1728     Volume = {119},
1729     Year = {2003},
1730     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1731    
1732     @article{10.1063/1.3274802,
1733     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1734     Coden = {JCPSA6},
1735     Doi = {DOI:10.1063/1.3274802},
1736     Eissn = {10897690},
1737     Issn = {00219606},
1738     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1739     Number = {24},
1740     Pages = {246101},
1741     Publisher = {AIP},
1742     Title = {Are Pressure Fluctuation-Based Equilibrium Methods Really Worse than Nonequilibrium Methods for Calculating Viscosities?},
1743     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1744     Volume = {131},
1745     Year = {2009},
1746     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1747     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}
1748 gezelter 4063
1749     @comment{BibDesk Static Groups{
1750     <?xml version="1.0" encoding="UTF-8"?>
1751     <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
1752     <plist version="1.0">
1753     <array>
1754     <dict>
1755     <key>group name</key>
1756     <string>NEMD</string>
1757     <key>keys</key>
1758 gezelter 4064 <string>Ashurst:1975eu,Hess:2002nr,Evans:2002tg,Picalek:2009rz,Backer:2005sf,Erpenbeck:1984qe,Schelling:2002dp,Maginn:1993kl,Berthier:2002ai,Evans:1986nx,Jiang:2008hc,Vasquez:2004ty,Evans:1982oq</string>
1759 gezelter 4063 </dict>
1760     <dict>
1761     <key>group name</key>
1762     <string>RNEMD</string>
1763     <key>keys</key>
1764 gezelter 4076 <string>Kuang:2010if,Tenney:2010rp,Kuang:2011ef,Muller-Plathe:1997wq,Muller-Plathe:1999ao,Shenogina:2009ix,Patel:2005zm,Stocker:2013cl,Kuang:2012fe</string>
1765 gezelter 4063 </dict>
1766     </array>
1767     </plist>
1768     }}

Properties

Name Value
svn:executable *