ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/nonperiodicVSS/nonperiodicVSS.aux
Revision: 3995
Committed: Tue Jan 14 19:50:22 2014 UTC (11 years, 6 months ago) by kstocke1
File size: 6897 byte(s)
Log Message:

File Contents

# Content
1 \relax
2 \citation{achemso-control}
3 \providecommand{\mciteSetMaxWidth}[3]{\relax}
4 \providecommand{\mciteSetMaxCount}[3]{\relax}
5 \bibstyle{achemso}
6 \citation{ASHURST:1975tg}
7 \citation{Evans:1982zk}
8 \citation{ERPENBECK:1984sp}
9 \citation{MAGINN:1993hc}
10 \citation{Berthier:2002ij}
11 \citation{Evans:2002ai}
12 \citation{Schelling:2002dp}
13 \citation{PhysRevA.34.1449}
14 \citation{JiangHao_jp802942v}
15 \citation{ASHURST:1975tg,Evans:1982zk,ERPENBECK:1984sp,MAGINN:1993hc,Berthier:2002ij,Evans:2002ai,Schelling:2002dp,PhysRevA.34.1449,JiangHao_jp802942v}
16 \citation{MullerPlathe:1997xw}
17 \citation{ISI:000080382700030}
18 \citation{Kuang:2010uq}
19 \citation{MullerPlathe:1997xw,ISI:000080382700030,Kuang:2010uq}
20 \citation{Maginn:2010}
21 \citation{MullerPlathe:1997xw,ISI:000080382700030,Maginn:2010}
22 \citation{garde:nl2005}
23 \citation{garde:PhysRevLett2009}
24 \citation{kuang:AuThl}
25 \citation{garde:nl2005,garde:PhysRevLett2009,kuang:AuThl}
26 \citation{2012MolPh.110..691K}
27 \citation{2012MolPh.110..691K}
28 \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}}
29 \@writefile{toc}{\contentsline {section}{\numberline {2}Velocity Shearing and Scaling (VSS) for non-periodic systems}{2}}
30 \newlabel{eq:bc}{{1}{3}}
31 \newlabel{eq:bh}{{2}{3}}
32 \citation{Vardeman2011}
33 \citation{Vardeman2011}
34 \newlabel{eq:Kc}{{3}{4}}
35 \newlabel{eq:Kh}{{4}{4}}
36 \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dynamics for non-periodic systems}{4}}
37 \citation{Bedrov:2000}
38 \citation{Kuang2010}
39 \citation{Bedrov:2000,Kuang2010}
40 \citation{PhysRevB.59.3527}
41 \citation{PhysRevB.59.3527}
42 \citation{TraPPE-UA.alkanes}
43 \citation{TraPPE-UA.alkanes}
44 \citation{Kuang2012}
45 \citation{kuang:AuThl,Kuang2012}
46 \citation{vlugt:cpc2007154}
47 \citation{vlugt:cpc2007154}
48 \citation{hautman:4994}
49 \citation{hautman:4994}
50 \@writefile{toc}{\contentsline {section}{\numberline {3}Computational Details}{5}}
51 \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Simulation protocol}{5}}
52 \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Force field parameters}{5}}
53 \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Thermal conductivities}{6}}
54 \newlabel{eq:fourier}{{6}{6}}
55 \newlabel{eq:Q}{{7}{6}}
56 \newlabel{eq:lambda}{{8}{6}}
57 \newlabel{eq:heat}{{9}{6}}
58 \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Interfacial thermal conductance}{7}}
59 \newlabel{eq:G}{{10}{7}}
60 \@writefile{toc}{\contentsline {subsection}{\numberline {3.5}Interfacial friction}{7}}
61 \newlabel{eq:Xistick}{{11}{7}}
62 \newlabel{eq:S}{{12}{7}}
63 \citation{Kuang2010}
64 \newlabel{eq:Xia}{{13}{8}}
65 \newlabel{eq:Xibc}{{14}{8}}
66 \newlabel{eq:Xieff}{{15}{8}}
67 \newlabel{eq:tau}{{16}{8}}
68 \@writefile{toc}{\contentsline {section}{\numberline {4}Tests and Applications}{8}}
69 \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Thermal conductivities}{8}}
70 \gdef \LT@i {\LT@entry
71 {1}{80.25342pt}\LT@entry
72 {1}{53.69913pt}\LT@entry
73 {1}{72.96097pt}}
74 \citation{Romer2012}
75 \citation{Zhang2005}
76 \citation{Romer2012,Zhang2005}
77 \citation{WagnerKruse}
78 \citation{WagnerKruse}
79 \citation{Zhang2005}
80 \citation{Romer2012}
81 \citation{WagnerKruse}
82 \gdef \LT@ii {\LT@entry
83 {1}{80.25342pt}\LT@entry
84 {1}{53.69913pt}\LT@entry
85 {1}{72.96097pt}}
86 \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Calculated thermal conductivity of a crystalline gold nanoparticle of radius 40 \r A. Calculations were performed at 300 K and ambient density. Gold-gold interactions are described by the Quantum Sutton-Chen potential.}}{9}}
87 \newlabel{table:goldTC}{{1}{9}}
88 \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Calculated thermal conductivity of a cluster of 6912 SPC/E water molecules. Calculations were performed at 300 K and 5 atm.}}{9}}
89 \gdef \LT@iii {\LT@entry
90 {1}{110.31483pt}\LT@entry
91 {1}{82.6954pt}\LT@entry
92 {1}{0.0pt}}
93 \newlabel{table:waterTC}{{2}{10}}
94 \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Interfacial thermal conductance}{10}}
95 \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Calculated interfacial thermal conductance (G) values for gold nanoparticles of varying radii solvated in explicit TraPPE-UA hexane. The nanoparticle G values are compared to previous results for a gold slab in TraPPE-UA hexane, revealing increased interfacial thermal conductance for non-planar interfaces.}}{10}}
96 \newlabel{table:interfacialconductance}{{3}{10}}
97 \gdef \LT@iv {\LT@entry
98 {1}{96.74344pt}\LT@entry
99 {1}{92.00313pt}\LT@entry
100 {1}{74.65077pt}\LT@entry
101 {1}{74.65077pt}\LT@entry
102 {1}{64.43709pt}}
103 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Interfacial friction}{11}}
104 \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Comparison of rotational friction coefficients under ideal ``stick'' conditions ($\Xi ^{rr}_{\mathit {stick}}$) calculated via Stokes' and Perrin's laws and effective rotational friction coefficients ($\Xi ^{rr}_{\mathit {eff}}$) of gold nanostructures solvated in TraPPE-UA hexane at 230 K. The ellipsoid is oriented with the long axis along the $z$ direction.}}{11}}
105 \newlabel{table:couple}{{4}{11}}
106 \@writefile{toc}{\contentsline {section}{\numberline {5}Discussion}{11}}
107 \bibdata{acs-nonperiodicVSS,nonperiodicVSS}
108 \bibcite{Vardeman2011}{{1}{2011}{{Vardeman et~al.}}{{Vardeman, Stocker, and Gezelter}}}
109 \bibcite{Barber96}{{2}{1996}{{Barber et~al.}}{{Barber, Dobkin, and Huhdanpaa}}}
110 \bibcite{EDELSBRUNNER:1994oq}{{3}{1994}{{Edelsbrunner and Mucke}}{{Edelsbrunner, and Mucke}}}
111 \bibcite{openmd}{{4}{}{{Gezelter et~al.}}{{Gezelter, Kuang, Marr, Stocker, Li, Vardeman, Lin, Fennell, Sun, Daily, Zheng, and Meineke}}}
112 \bibcite{Kuang2012}{{5}{2012}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
113 \bibcite{Bedrov:2000}{{6}{2000}{{Bedrov and Smith}}{{Bedrov, and Smith}}}
114 \bibcite{Kuang2010}{{7}{2010}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
115 \bibcite{PhysRevB.59.3527}{{8}{1999}{{Qi et~al.}}{{Qi, \c {C}a\v {g}in, Kimura, and {Goddard III}}}}
116 \bibcite{TraPPE-UA.alkanes}{{9}{1998}{{Martin and Siepmann}}{{Martin, and Siepmann}}}
117 \bibcite{kuang:AuThl}{{10}{2011}{{Kuang and Gezelter}}{{Kuang, and Gezelter}}}
118 \bibcite{vlugt:cpc2007154}{{11}{2007}{{Schapotschnikow et~al.}}{{Schapotschnikow, Pool, and Vlugt}}}
119 \bibcite{hautman:4994}{{12}{1989}{{Hautman and Klein}}{{Hautman, and Klein}}}
120 \mciteSetMaxCount{main}{bibitem}{12}
121 \mciteSetMaxCount{main}{subitem}{1}
122 \mciteSetMaxWidth{main}{bibitem}{786432}
123 \mciteSetMaxWidth{main}{subitem}{0}
124 \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Schematics of periodic (left) and non-periodic (right) Velocity Shearing and Scaling RNEMD. A kinetic energy or momentum flux is applied from region B to region A. Thermal gradients are depicted by a color gradient. Linear or angular velocity gradients are shown as arrows.\relax }}{15}}
125 \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
126 \newlabel{fig:VSS}{{1}{15}}

Properties

Name Value
svn:executable