| 1 |
kstocke1 |
3933 |
(* Content-type: application/vnd.wolfram.mathematica *) |
| 2 |
|
|
|
| 3 |
|
|
(*** Wolfram Notebook File ***) |
| 4 |
|
|
(* http://www.wolfram.com/nb *) |
| 5 |
|
|
|
| 6 |
|
|
(* CreatedBy='Mathematica 8.0' *) |
| 7 |
|
|
|
| 8 |
|
|
(*CacheID: 234*) |
| 9 |
|
|
(* Internal cache information: |
| 10 |
|
|
NotebookFileLineBreakTest |
| 11 |
|
|
NotebookFileLineBreakTest |
| 12 |
|
|
NotebookDataPosition[ 157, 7] |
| 13 |
kstocke1 |
3973 |
NotebookDataLength[ 19104, 539] |
| 14 |
|
|
NotebookOptionsPosition[ 17047, 466] |
| 15 |
|
|
NotebookOutlinePosition[ 17401, 482] |
| 16 |
|
|
CellTagsIndexPosition[ 17358, 479] |
| 17 |
kstocke1 |
3933 |
WindowFrame->Normal*) |
| 18 |
|
|
|
| 19 |
|
|
(* Beginning of Notebook Content *) |
| 20 |
|
|
Notebook[{ |
| 21 |
kstocke1 |
3943 |
Cell[BoxData[ |
| 22 |
kstocke1 |
3933 |
RowBox[{ |
| 23 |
kstocke1 |
3943 |
RowBox[{"(*", " ", |
| 24 |
|
|
RowBox[{"a", ",", " ", "b", ",", " ", |
| 25 |
|
|
RowBox[{"r", " ", "in", " ", "units", " ", "of", " ", "meters"}]}], " ", |
| 26 |
|
|
"*)"}], "\[IndentingNewLine]", |
| 27 |
|
|
RowBox[{ |
| 28 |
|
|
RowBox[{ |
| 29 |
|
|
RowBox[{"a", " ", "=", " ", "0.0000000033"}], ";"}], |
| 30 |
|
|
"\[IndentingNewLine]", |
| 31 |
|
|
RowBox[{ |
| 32 |
|
|
RowBox[{"b", " ", "=", " ", "0.0000000013"}], ";"}], |
| 33 |
|
|
"\[IndentingNewLine]", |
| 34 |
|
|
RowBox[{ |
| 35 |
|
|
RowBox[{"r", " ", "=", " ", "0.0000000040"}], ";"}], |
| 36 |
|
|
"\[IndentingNewLine]", |
| 37 |
|
|
RowBox[{"(*", " ", |
| 38 |
kstocke1 |
3933 |
RowBox[{ |
| 39 |
kstocke1 |
3943 |
"eta", " ", "in", " ", "units", " ", "of", " ", "Pa", "*", "s", " ", "or", |
| 40 |
|
|
" ", "N", "*", |
| 41 |
|
|
RowBox[{"s", "/", |
| 42 |
|
|
RowBox[{"m", "^", "2"}]}]}], " ", "*)"}], "\[IndentingNewLine]", |
| 43 |
|
|
RowBox[{ |
| 44 |
kstocke1 |
3947 |
RowBox[{"eta", " ", "=", " ", "0.000305"}], ";"}], "\n", |
| 45 |
kstocke1 |
3943 |
RowBox[{ |
| 46 |
|
|
RowBox[{"ab", " ", "=", " ", |
| 47 |
|
|
RowBox[{"Sqrt", "[", |
| 48 |
|
|
RowBox[{ |
| 49 |
|
|
RowBox[{"(", |
| 50 |
|
|
RowBox[{"a", "^", "2"}], ")"}], "-", |
| 51 |
|
|
RowBox[{"(", |
| 52 |
|
|
RowBox[{"b", "^", "2"}], ")"}]}], "]"}]}], ";"}], |
| 53 |
|
|
"\[IndentingNewLine]", |
| 54 |
|
|
RowBox[{ |
| 55 |
|
|
RowBox[{"v", " ", "=", " ", |
| 56 |
|
|
RowBox[{"32", "*", "Pi", "*", |
| 57 |
|
|
RowBox[{"eta", "/", "3"}]}]}], ";"}]}]}]], "Input", |
| 58 |
kstocke1 |
3933 |
CellChangeTimes->{{3.584807426161751*^9, 3.584807453166168*^9}, { |
| 59 |
|
|
3.5848098994271517`*^9, 3.58480990098132*^9}, {3.584890669262165*^9, |
| 60 |
|
|
3.5848906732045937`*^9}, 3.5848942046023273`*^9, 3.5848942364960403`*^9, { |
| 61 |
|
|
3.584894394914665*^9, 3.584894407017727*^9}, {3.584894867879013*^9, |
| 62 |
kstocke1 |
3943 |
3.5848948703643208`*^9}, {3.584895906363385*^9, 3.584895906913582*^9}, { |
| 63 |
|
|
3.586699807267563*^9, 3.586699811802783*^9}, {3.5867045314674397`*^9, |
| 64 |
|
|
3.586704560779134*^9}, {3.586704640818076*^9, 3.586704681909463*^9}, { |
| 65 |
|
|
3.5867047559862347`*^9, 3.586704766892249*^9}, {3.586704828026332*^9, |
| 66 |
|
|
3.586704834460175*^9}, {3.586705096638748*^9, 3.586705109311314*^9}, { |
| 67 |
kstocke1 |
3947 |
3.586706477114703*^9, 3.58670647750175*^9}, {3.587302011140431*^9, |
| 68 |
|
|
3.5873020120979347`*^9}}], |
| 69 |
kstocke1 |
3933 |
|
| 70 |
|
|
Cell[BoxData[ |
| 71 |
|
|
RowBox[{"\[IndentingNewLine]", |
| 72 |
|
|
RowBox[{"(*", " ", |
| 73 |
|
|
RowBox[{"RESISTANCE", " ", "TENSORS"}], " ", "*)"}]}]], "Input", |
| 74 |
|
|
CellChangeTimes->{{3.5848081048411083`*^9, 3.584808114547517*^9}}], |
| 75 |
|
|
|
| 76 |
|
|
Cell[BoxData[ |
| 77 |
|
|
RowBox[{"(*", " ", |
| 78 |
|
|
RowBox[{"sphere", " ", "rotation"}], " ", "*)"}]], "Input", |
| 79 |
|
|
CellChangeTimes->{{3.5848955452222424`*^9, 3.584895552580024*^9}}], |
| 80 |
|
|
|
| 81 |
|
|
Cell[CellGroupData[{ |
| 82 |
|
|
|
| 83 |
|
|
Cell[BoxData[ |
| 84 |
|
|
RowBox[{"XiS", " ", "=", " ", |
| 85 |
|
|
RowBox[{"8.", "*", "Pi", "*", "eta", "*", |
| 86 |
|
|
RowBox[{"(", |
| 87 |
|
|
RowBox[{"r", "^", "3"}], ")"}]}]}]], "Input", |
| 88 |
|
|
CellChangeTimes->{{3.584895562690569*^9, 3.584895581538089*^9}}], |
| 89 |
|
|
|
| 90 |
kstocke1 |
3947 |
Cell[BoxData["4.905911087845821`*^-28"], "Output", |
| 91 |
kstocke1 |
3943 |
CellChangeTimes->{3.5848955833332977`*^9, 3.584895910460045*^9, |
| 92 |
|
|
3.586699817892194*^9, 3.586704684940571*^9, 3.586704772274445*^9, |
| 93 |
kstocke1 |
3947 |
3.586704844305737*^9, 3.586705113459869*^9, 3.586706480803813*^9, |
| 94 |
kstocke1 |
3973 |
3.5873020194381523`*^9, 3.592229882745839*^9}] |
| 95 |
kstocke1 |
3933 |
}, Open ]], |
| 96 |
|
|
|
| 97 |
|
|
Cell[BoxData[ |
| 98 |
|
|
RowBox[{ |
| 99 |
|
|
RowBox[{"S", " ", "=", " ", |
| 100 |
|
|
RowBox[{ |
| 101 |
|
|
RowBox[{"(", |
| 102 |
|
|
RowBox[{"2", "/", "ab"}], ")"}], "*", |
| 103 |
|
|
RowBox[{"Log", "[", |
| 104 |
|
|
RowBox[{ |
| 105 |
|
|
RowBox[{"(", |
| 106 |
|
|
RowBox[{"a", "+", "ab"}], ")"}], "/", "b"}], "]"}]}]}], ";"}]], "Input",\ |
| 107 |
|
|
|
| 108 |
|
|
CellChangeTimes->{{3.584895591890572*^9, 3.584895628889739*^9}}], |
| 109 |
|
|
|
| 110 |
|
|
Cell[BoxData[ |
| 111 |
|
|
RowBox[{"(*", " ", |
| 112 |
|
|
RowBox[{"ellipsoid", " ", "axial", " ", |
| 113 |
|
|
RowBox[{"rotation", " ", "--"}], " ", "about", " ", "long", " ", "axis"}], |
| 114 |
|
|
" ", "*)"}]], "Input", |
| 115 |
|
|
CellChangeTimes->{{3.584807845501628*^9, 3.584807881963066*^9}, |
| 116 |
|
|
3.58480810065349*^9, {3.584810005255805*^9, 3.584810006597301*^9}}], |
| 117 |
|
|
|
| 118 |
|
|
Cell[BoxData[{ |
| 119 |
|
|
RowBox[{ |
| 120 |
|
|
RowBox[{"nXiA", " ", "=", " ", |
| 121 |
|
|
RowBox[{ |
| 122 |
|
|
RowBox[{"(", |
| 123 |
|
|
RowBox[{"ab", "^", "2"}], ")"}], "*", |
| 124 |
|
|
RowBox[{"(", |
| 125 |
|
|
RowBox[{"b", "^", "2"}], ")"}]}]}], ";"}], "\[IndentingNewLine]", |
| 126 |
|
|
RowBox[{ |
| 127 |
|
|
RowBox[{"dXiA", " ", "=", " ", |
| 128 |
|
|
RowBox[{"(", |
| 129 |
|
|
RowBox[{ |
| 130 |
|
|
RowBox[{"2", "*", "a"}], " ", "-", " ", |
| 131 |
|
|
RowBox[{ |
| 132 |
|
|
RowBox[{"(", |
| 133 |
|
|
RowBox[{"b", "^", "2"}], ")"}], "*", "S"}]}], ")"}]}], ";"}]}], "Input",\ |
| 134 |
|
|
|
| 135 |
|
|
CellChangeTimes->{{3.584894479745336*^9, 3.584894547193737*^9}}], |
| 136 |
|
|
|
| 137 |
|
|
Cell[CellGroupData[{ |
| 138 |
|
|
|
| 139 |
|
|
Cell[BoxData[ |
| 140 |
|
|
RowBox[{"XiA", " ", "=", " ", |
| 141 |
|
|
RowBox[{"v", " ", "*", |
| 142 |
|
|
RowBox[{"(", " ", |
| 143 |
|
|
RowBox[{"nXiA", "/", "dXiA"}], ")"}]}]}]], "Input", |
| 144 |
|
|
CellChangeTimes->{{3.584807580926756*^9, 3.5848076774271517`*^9}, { |
| 145 |
|
|
3.584893446441492*^9, 3.584893456926993*^9}, {3.584893513019639*^9, |
| 146 |
|
|
3.5848935374433117`*^9}, {3.5848937295629377`*^9, 3.5848937320361967`*^9}, { |
| 147 |
|
|
3.5848940598863373`*^9, 3.5848940827349033`*^9}, {3.584894124697816*^9, |
| 148 |
|
|
3.584894131830501*^9}, {3.5848944118465767`*^9, 3.584894413689575*^9}, { |
| 149 |
|
|
3.584894553484161*^9, 3.5848945620889597`*^9}}], |
| 150 |
|
|
|
| 151 |
kstocke1 |
3947 |
Cell[BoxData["3.286335727454394`*^-29"], "Output", |
| 152 |
kstocke1 |
3933 |
CellChangeTimes->{ |
| 153 |
|
|
3.58480767838589*^9, 3.584812369332225*^9, 3.58489067890679*^9, |
| 154 |
|
|
3.584893466947144*^9, {3.584893515809536*^9, 3.5848935380765*^9}, |
| 155 |
|
|
3.584893667613534*^9, 3.584893745846806*^9, 3.584893991496749*^9, { |
| 156 |
|
|
3.5848940686270847`*^9, 3.584894083689426*^9}, 3.584894132885084*^9, |
| 157 |
|
|
3.584894209263301*^9, 3.5848944220659027`*^9, 3.584894562584774*^9, |
| 158 |
kstocke1 |
3943 |
3.5848956426941223`*^9, 3.584895912816411*^9, 3.586699824159266*^9, |
| 159 |
|
|
3.586704688787434*^9, 3.5867047762806807`*^9, 3.58670484784446*^9, |
| 160 |
kstocke1 |
3973 |
3.586705115994009*^9, 3.586706483628399*^9, 3.587302022625839*^9, { |
| 161 |
|
|
3.592229884604623*^9, 3.592229886190812*^9}}] |
| 162 |
kstocke1 |
3933 |
}, Open ]], |
| 163 |
|
|
|
| 164 |
|
|
Cell[BoxData[ |
| 165 |
|
|
RowBox[{"\[IndentingNewLine]", |
| 166 |
|
|
RowBox[{"(*", " ", |
| 167 |
|
|
RowBox[{"ellipsoid", " ", "equatorial", " ", |
| 168 |
|
|
RowBox[{"rotation", " ", "--"}], " ", "about", " ", "short", " ", |
| 169 |
|
|
"axes"}], " ", "*)"}]}]], "Input", |
| 170 |
|
|
CellChangeTimes->{{3.5848078641082973`*^9, 3.584807887971993*^9}, { |
| 171 |
|
|
3.584810008477813*^9, 3.58481001069223*^9}}], |
| 172 |
|
|
|
| 173 |
|
|
Cell[BoxData[{ |
| 174 |
|
|
RowBox[{ |
| 175 |
|
|
RowBox[{"nXiB", " ", "=", " ", |
| 176 |
|
|
RowBox[{ |
| 177 |
|
|
RowBox[{"(", |
| 178 |
|
|
RowBox[{"a", "^", "4"}], ")"}], "-", |
| 179 |
|
|
RowBox[{"(", |
| 180 |
|
|
RowBox[{"b", "^", "4"}], ")"}]}]}], ";"}], "\[IndentingNewLine]", |
| 181 |
|
|
RowBox[{ |
| 182 |
|
|
RowBox[{"dXiB", " ", "=", " ", |
| 183 |
|
|
RowBox[{ |
| 184 |
|
|
RowBox[{ |
| 185 |
|
|
RowBox[{"(", |
| 186 |
|
|
RowBox[{ |
| 187 |
|
|
RowBox[{"2", "*", |
| 188 |
|
|
RowBox[{"(", |
| 189 |
|
|
RowBox[{"a", "^", "2"}], ")"}]}], "-", |
| 190 |
|
|
RowBox[{"(", |
| 191 |
|
|
RowBox[{"b", "^", "2"}], ")"}]}], ")"}], "*", "S"}], " ", "-", " ", |
| 192 |
|
|
RowBox[{"(", |
| 193 |
|
|
RowBox[{"2", "*", "a"}], ")"}]}]}], ";"}]}], "Input", |
| 194 |
|
|
CellChangeTimes->{{3.584894566445219*^9, 3.5848945876718807`*^9}, { |
| 195 |
|
|
3.5848946888115788`*^9, 3.5848947150455017`*^9}}], |
| 196 |
|
|
|
| 197 |
|
|
Cell[CellGroupData[{ |
| 198 |
|
|
|
| 199 |
|
|
Cell[BoxData[ |
| 200 |
|
|
RowBox[{"XiB", " ", "=", " ", |
| 201 |
|
|
RowBox[{"v", " ", "*", " ", |
| 202 |
|
|
RowBox[{"(", |
| 203 |
|
|
RowBox[{"nXiB", "/", "dXiB"}], ")"}]}]}]], "Input", |
| 204 |
|
|
CellChangeTimes->{{3.584807667200397*^9, 3.5848076699441557`*^9}, { |
| 205 |
|
|
3.5848077499771643`*^9, 3.584807786900511*^9}, {3.584893547107358*^9, |
| 206 |
|
|
3.584893579226317*^9}, {3.58489389632187*^9, 3.584893901176014*^9}, { |
| 207 |
|
|
3.584893943459343*^9, 3.584893946518909*^9}, {3.584894088000602*^9, |
| 208 |
|
|
3.5848941203441153`*^9}, 3.5848944172115498`*^9, {3.584894722257359*^9, |
| 209 |
|
|
3.584894733911747*^9}}], |
| 210 |
|
|
|
| 211 |
kstocke1 |
3947 |
Cell[BoxData["8.228464473085094`*^-29"], "Output", |
| 212 |
kstocke1 |
3933 |
CellChangeTimes->{ |
| 213 |
|
|
3.584807788832862*^9, 3.584812370076736*^9, 3.5848906801945047`*^9, |
| 214 |
|
|
3.5848935801190357`*^9, 3.5848936688170233`*^9, 3.5848939033674097`*^9, { |
| 215 |
|
|
3.58489396555275*^9, 3.584893992584134*^9}, 3.5848940700482283`*^9, { |
| 216 |
|
|
3.584894103054511*^9, 3.584894120965992*^9}, 3.584894210383068*^9, |
| 217 |
|
|
3.584894423252715*^9, 3.584894734499061*^9, 3.58489564491859*^9, |
| 218 |
kstocke1 |
3943 |
3.584895914221643*^9, 3.5866998271353817`*^9, 3.586704693130818*^9, |
| 219 |
|
|
3.586704778769905*^9, 3.586704850366987*^9, 3.586705118085232*^9, |
| 220 |
kstocke1 |
3973 |
3.586706485967189*^9, 3.587302024980714*^9, 3.592229888275922*^9}] |
| 221 |
kstocke1 |
3933 |
}, Open ]], |
| 222 |
|
|
|
| 223 |
|
|
Cell[BoxData["\[IndentingNewLine]"], "Input", |
| 224 |
|
|
CellChangeTimes->{3.584887428382176*^9, 3.584891660811152*^9}], |
| 225 |
|
|
|
| 226 |
|
|
Cell[BoxData[ |
| 227 |
|
|
RowBox[{"\[IndentingNewLine]", |
| 228 |
|
|
RowBox[{"(*", " ", |
| 229 |
|
|
RowBox[{"FRICTION", " ", "FACTORS", " ", "via", " ", "Wikipedia"}], " ", |
| 230 |
|
|
"*)"}]}]], "Input", |
| 231 |
|
|
CellChangeTimes->{{3.584887434985119*^9, 3.58488743942144*^9}, { |
| 232 |
|
|
3.5848907429833384`*^9, 3.584890746521543*^9}}], |
| 233 |
|
|
|
| 234 |
|
|
Cell[BoxData[{ |
| 235 |
|
|
RowBox[{ |
| 236 |
|
|
RowBox[{"xi", " ", "=", |
| 237 |
|
|
RowBox[{ |
| 238 |
|
|
RowBox[{"Sqrt", "[", |
| 239 |
|
|
RowBox[{ |
| 240 |
|
|
RowBox[{"(", |
| 241 |
|
|
RowBox[{"p", "^", "2"}], ")"}], "-", "1"}], "]"}], "/", "p"}]}], |
| 242 |
|
|
";"}], "\[IndentingNewLine]", |
| 243 |
|
|
RowBox[{ |
| 244 |
|
|
RowBox[{"s", " ", "=", " ", |
| 245 |
|
|
RowBox[{"2", "*", |
| 246 |
|
|
RowBox[{ |
| 247 |
|
|
RowBox[{"ArcTanh", "[", "xi", "]"}], "/", "xi"}]}]}], |
| 248 |
|
|
";"}], "\[IndentingNewLine]", |
| 249 |
|
|
RowBox[{ |
| 250 |
|
|
RowBox[{"p", " ", "=", " ", |
| 251 |
|
|
RowBox[{"a", "/", "b"}]}], ";"}], "\[IndentingNewLine]", |
| 252 |
|
|
RowBox[{ |
| 253 |
|
|
RowBox[{"re", " ", "=", " ", |
| 254 |
|
|
RowBox[{ |
| 255 |
|
|
RowBox[{"(", |
| 256 |
|
|
RowBox[{"a", "*", |
| 257 |
|
|
RowBox[{"(", |
| 258 |
|
|
RowBox[{"b", "^", "2"}], ")"}]}], ")"}], "^", |
| 259 |
|
|
RowBox[{"(", |
| 260 |
|
|
RowBox[{"1", "/", "3"}], ")"}]}]}], ";"}], "\[IndentingNewLine]", |
| 261 |
|
|
RowBox[{ |
| 262 |
|
|
RowBox[{"eqSphere", " ", "=", " ", |
| 263 |
|
|
RowBox[{"8", "*", "Pi", "*", "eta", "*", |
| 264 |
|
|
RowBox[{"(", |
| 265 |
|
|
RowBox[{"re", "^", "3"}], ")"}]}]}], ";"}]}], "Input", |
| 266 |
|
|
CellChangeTimes->{{3.584887453255073*^9, 3.584887474611525*^9}, { |
| 267 |
|
|
3.584887518352754*^9, 3.5848875201183167`*^9}, {3.5848875705654163`*^9, |
| 268 |
|
|
3.584887612684559*^9}, {3.584891207938551*^9, 3.5848912105877657`*^9}, { |
| 269 |
|
|
3.58489477575947*^9, 3.584894789206271*^9}, {3.5848948909071417`*^9, |
| 270 |
|
|
3.5848949045983353`*^9}, {3.584895894748207*^9, 3.58489594161933*^9}, { |
| 271 |
|
|
3.584895989916945*^9, 3.584896035299241*^9}}], |
| 272 |
|
|
|
| 273 |
|
|
Cell[BoxData[""], "Input", |
| 274 |
|
|
CellChangeTimes->{{3.5848876347988167`*^9, 3.584887638277546*^9}}], |
| 275 |
|
|
|
| 276 |
|
|
Cell[BoxData[ |
| 277 |
|
|
RowBox[{"(*", " ", |
| 278 |
|
|
RowBox[{"ellipsoid", " ", "axial", " ", "friction", " ", |
| 279 |
|
|
RowBox[{"factor", " ", "--"}], " ", "about", " ", "long", " ", "axis"}], |
| 280 |
|
|
" ", "*)"}]], "Input", |
| 281 |
|
|
CellChangeTimes->{{3.58488764265452*^9, 3.584887652272901*^9}, { |
| 282 |
|
|
3.58489128903328*^9, 3.5848912914194727`*^9}}], |
| 283 |
|
|
|
| 284 |
|
|
Cell[CellGroupData[{ |
| 285 |
|
|
|
| 286 |
|
|
Cell[BoxData[ |
| 287 |
|
|
RowBox[{"Fax", " ", "=", " ", |
| 288 |
|
|
RowBox[{ |
| 289 |
|
|
RowBox[{"(", |
| 290 |
|
|
RowBox[{"4", "/", "3"}], ")"}], "*", |
| 291 |
|
|
RowBox[{ |
| 292 |
|
|
RowBox[{"(", |
| 293 |
|
|
RowBox[{"xi", "^", "2"}], ")"}], "/", |
| 294 |
|
|
RowBox[{"(", |
| 295 |
|
|
RowBox[{"2", "-", |
| 296 |
|
|
RowBox[{"(", |
| 297 |
|
|
RowBox[{"s", "/", |
| 298 |
|
|
RowBox[{"(", |
| 299 |
|
|
RowBox[{"p", "^", "2"}], ")"}]}], ")"}]}], ")"}]}]}]}]], "Input", |
| 300 |
|
|
CellChangeTimes->{{3.58488765759788*^9, 3.584887700018955*^9}, { |
| 301 |
|
|
3.5848879174727783`*^9, 3.584887938981941*^9}, {3.584890603482909*^9, |
| 302 |
|
|
3.5848906063233852`*^9}, 3.584890946638309*^9, {3.584894926277274*^9, |
| 303 |
|
|
3.584894983989938*^9}}], |
| 304 |
|
|
|
| 305 |
|
|
Cell[BoxData["0.7687260259259584`"], "Output", |
| 306 |
|
|
CellChangeTimes->{ |
| 307 |
|
|
3.58488770586084*^9, {3.58488792206218*^9, 3.584887939492504*^9}, |
| 308 |
|
|
3.584890608261299*^9, 3.5848906924156*^9, 3.584890948261269*^9, |
| 309 |
|
|
3.584891214003551*^9, 3.584893997414321*^9, 3.584894794095375*^9, |
| 310 |
|
|
3.5848948750854387`*^9, 3.584894906946406*^9, {3.584894984628289*^9, |
| 311 |
kstocke1 |
3943 |
3.5848950094024963`*^9}, 3.584895649579417*^9, 3.5848960393110647`*^9, |
| 312 |
|
|
3.586699830645979*^9, 3.5867046965751457`*^9, 3.58670478211369*^9, |
| 313 |
kstocke1 |
3947 |
3.58670485421113*^9, 3.586705120876774*^9, 3.586706489578327*^9, |
| 314 |
kstocke1 |
3973 |
3.587302029126953*^9, 3.592229891604624*^9, 3.592230285429771*^9}] |
| 315 |
kstocke1 |
3933 |
}, Open ]], |
| 316 |
|
|
|
| 317 |
|
|
Cell[BoxData[ |
| 318 |
|
|
RowBox[{"\n", |
| 319 |
|
|
RowBox[{"(*", " ", |
| 320 |
|
|
RowBox[{"ellipsoid", " ", "equatorial", " ", "friction", " ", |
| 321 |
|
|
RowBox[{"factor", " ", "--"}], " ", "about", " ", "short", " ", "axes"}], |
| 322 |
|
|
" ", "*)"}]}]], "Input", |
| 323 |
|
|
CellChangeTimes->{{3.584887710741127*^9, 3.584887713271037*^9}, |
| 324 |
|
|
3.584887813383315*^9, {3.584891294243541*^9, 3.5848912960435057`*^9}}], |
| 325 |
|
|
|
| 326 |
|
|
Cell[CellGroupData[{ |
| 327 |
|
|
|
| 328 |
|
|
Cell[BoxData[ |
| 329 |
|
|
RowBox[{"Feq", " ", "=", " ", |
| 330 |
|
|
RowBox[{ |
| 331 |
|
|
RowBox[{"(", |
| 332 |
|
|
RowBox[{"4", "/", "3"}], ")"}], " ", "*", " ", |
| 333 |
|
|
RowBox[{ |
| 334 |
|
|
RowBox[{"(", |
| 335 |
|
|
RowBox[{ |
| 336 |
|
|
RowBox[{ |
| 337 |
|
|
RowBox[{"(", |
| 338 |
|
|
RowBox[{"1", "/", "p"}], ")"}], "^", "2"}], " ", "-", " ", |
| 339 |
|
|
RowBox[{"p", "^", "2"}]}], ")"}], "/", |
| 340 |
|
|
RowBox[{"(", |
| 341 |
|
|
RowBox[{"2", " ", "-", " ", |
| 342 |
|
|
RowBox[{"s", "*", |
| 343 |
|
|
RowBox[{"(", |
| 344 |
|
|
RowBox[{"2", " ", "-", " ", |
| 345 |
|
|
RowBox[{ |
| 346 |
|
|
RowBox[{"(", |
| 347 |
|
|
RowBox[{"1", "/", "p"}], ")"}], "^", "2"}]}], ")"}]}]}], |
| 348 |
|
|
")"}]}]}]}]], "Input", |
| 349 |
|
|
CellChangeTimes->{{3.584887727157157*^9, 3.584887769116691*^9}, { |
| 350 |
|
|
3.584887926989279*^9, 3.584887942885796*^9}, {3.584890609957733*^9, |
| 351 |
|
|
3.584890611532776*^9}, 3.584890951791182*^9}], |
| 352 |
|
|
|
| 353 |
kstocke1 |
3943 |
Cell[BoxData["1.924768288590935`"], "Output", |
| 354 |
kstocke1 |
3933 |
CellChangeTimes->{ |
| 355 |
|
|
3.5848877700852623`*^9, {3.584887929629698*^9, 3.5848879434378977`*^9}, |
| 356 |
|
|
3.584890612056086*^9, 3.5848906935323477`*^9, 3.584890952137286*^9, |
| 357 |
|
|
3.584891216311064*^9, 3.584893998534431*^9, 3.584894876538658*^9, |
| 358 |
kstocke1 |
3943 |
3.5848950109231567`*^9, 3.584895650617403*^9, 3.584896040714982*^9, |
| 359 |
|
|
3.5866998334559813`*^9, 3.586704697863037*^9, 3.5867047835855827`*^9, |
| 360 |
kstocke1 |
3947 |
3.586704856869244*^9, 3.586705122378854*^9, 3.5867064906482763`*^9, |
| 361 |
kstocke1 |
3973 |
3.587302031033265*^9, 3.5922298926407747`*^9, 3.592230287769177*^9}] |
| 362 |
kstocke1 |
3933 |
}, Open ]], |
| 363 |
|
|
|
| 364 |
|
|
Cell[BoxData[ |
| 365 |
|
|
RowBox[{"\[IndentingNewLine]", |
| 366 |
|
|
RowBox[{"(*", " ", |
| 367 |
|
|
RowBox[{"ellipsoid", " ", "axial", " ", "rotational", " ", "friction"}], |
| 368 |
|
|
" ", "*)"}]}]], "Input", |
| 369 |
|
|
CellChangeTimes->{{3.58489104521352*^9, 3.584891053491618*^9}, { |
| 370 |
|
|
3.584891299813236*^9, 3.5848913004309483`*^9}}], |
| 371 |
|
|
|
| 372 |
|
|
Cell[CellGroupData[{ |
| 373 |
|
|
|
| 374 |
|
|
Cell[BoxData[ |
| 375 |
|
|
RowBox[{"fAx", " ", "=", " ", |
| 376 |
|
|
RowBox[{"Fax", " ", "*", " ", "eqSphere"}]}]], "Input", |
| 377 |
|
|
CellChangeTimes->{{3.584891056631095*^9, 3.584891064865149*^9}}], |
| 378 |
|
|
|
| 379 |
kstocke1 |
3947 |
Cell[BoxData["3.2863357274544055`*^-29"], "Output", |
| 380 |
kstocke1 |
3933 |
CellChangeTimes->{3.5848910656263733`*^9, 3.584891217398337*^9, |
| 381 |
|
|
3.58489400012298*^9, 3.584895019483296*^9, 3.584895652455336*^9, |
| 382 |
kstocke1 |
3943 |
3.584896042503642*^9, 3.586699834607826*^9, 3.586704699166651*^9, |
| 383 |
|
|
3.586704785006289*^9, 3.586704858291555*^9, 3.5867051235852127`*^9, |
| 384 |
kstocke1 |
3973 |
3.586706492338463*^9, 3.5873020329225597`*^9, 3.5922298941614933`*^9, |
| 385 |
|
|
3.592230289358754*^9}] |
| 386 |
kstocke1 |
3933 |
}, Open ]], |
| 387 |
|
|
|
| 388 |
|
|
Cell[BoxData[ |
| 389 |
|
|
RowBox[{"(*", " ", |
| 390 |
|
|
RowBox[{ |
| 391 |
|
|
"ellipsoid", " ", "equatorial", " ", "rotational", " ", "friction"}], " ", |
| 392 |
|
|
"*)"}]], "Input", |
| 393 |
|
|
CellChangeTimes->{{3.5848910141246853`*^9, 3.584891022193733*^9}, { |
| 394 |
|
|
3.5848913017358427`*^9, 3.5848913022309103`*^9}}], |
| 395 |
|
|
|
| 396 |
|
|
Cell[CellGroupData[{ |
| 397 |
|
|
|
| 398 |
|
|
Cell[BoxData[ |
| 399 |
|
|
RowBox[{"fEq", " ", "=", " ", |
| 400 |
|
|
RowBox[{"Feq", " ", "*", " ", "eqSphere"}]}]], "Input", |
| 401 |
|
|
CellChangeTimes->{{3.584891025068652*^9, 3.584891029821259*^9}}], |
| 402 |
|
|
|
| 403 |
kstocke1 |
3947 |
Cell[BoxData["8.228464473085123`*^-29"], "Output", |
| 404 |
kstocke1 |
3933 |
CellChangeTimes->{3.584891030572219*^9, 3.584891218233328*^9, |
| 405 |
|
|
3.584894001208784*^9, 3.584895020435354*^9, 3.584895653375164*^9, |
| 406 |
kstocke1 |
3943 |
3.58489604404213*^9, 3.5866998356785097`*^9, 3.586704701890503*^9, |
| 407 |
|
|
3.5867047871298437`*^9, 3.586704859378227*^9, 3.586705125437768*^9, |
| 408 |
kstocke1 |
3973 |
3.586706494141871*^9, 3.587302037451337*^9, 3.592229895414654*^9, |
| 409 |
|
|
3.5922301525824823`*^9, 3.592230291731276*^9}] |
| 410 |
|
|
}, Open ]], |
| 411 |
|
|
|
| 412 |
|
|
Cell[CellGroupData[{ |
| 413 |
|
|
|
| 414 |
|
|
Cell[BoxData[ |
| 415 |
|
|
RowBox[{"sphere20", " ", "=", " ", |
| 416 |
|
|
RowBox[{"8.", "*", "Pi", "*", "eta", "*", |
| 417 |
|
|
RowBox[{"(", |
| 418 |
|
|
RowBox[{"0.000000002", "^", "3"}], ")"}]}]}]], "Input", |
| 419 |
|
|
CellChangeTimes->{{3.59222982607369*^9, 3.592229856411433*^9}, { |
| 420 |
|
|
3.5922299746610317`*^9, 3.592229974997485*^9}, {3.592230008276516*^9, |
| 421 |
|
|
3.592230018198002*^9}}], |
| 422 |
|
|
|
| 423 |
|
|
Cell[BoxData["6.132388859807276`*^-29"], "Output", |
| 424 |
|
|
CellChangeTimes->{{3.592229849445587*^9, 3.5922298567993317`*^9}, |
| 425 |
|
|
3.592229896417653*^9, {3.592230012116171*^9, 3.592230019100162*^9}, |
| 426 |
|
|
3.59223015505754*^9, 3.592230292819572*^9}] |
| 427 |
|
|
}, Open ]], |
| 428 |
|
|
|
| 429 |
|
|
Cell[CellGroupData[{ |
| 430 |
|
|
|
| 431 |
|
|
Cell[BoxData[ |
| 432 |
|
|
RowBox[{"sphere30", " ", "=", " ", |
| 433 |
|
|
RowBox[{"8.", "*", "Pi", "*", "eta", "*", |
| 434 |
|
|
RowBox[{"(", |
| 435 |
|
|
RowBox[{"0.000000003", "^", "3"}], ")"}]}]}]], "Input", |
| 436 |
|
|
CellChangeTimes->{{3.5922300231785307`*^9, 3.592230041833757*^9}}], |
| 437 |
|
|
|
| 438 |
|
|
Cell[BoxData["2.0696812401849554`*^-28"], "Output", |
| 439 |
|
|
CellChangeTimes->{{3.5922300382599373`*^9, 3.592230042239984*^9}, |
| 440 |
|
|
3.592230155927438*^9, 3.592230293654245*^9}] |
| 441 |
|
|
}, Open ]], |
| 442 |
|
|
|
| 443 |
|
|
Cell[CellGroupData[{ |
| 444 |
|
|
|
| 445 |
|
|
Cell[BoxData[ |
| 446 |
|
|
RowBox[{"sphere40", " ", "=", " ", |
| 447 |
|
|
RowBox[{"8.", "*", "Pi", "*", "eta", "*", |
| 448 |
|
|
RowBox[{"(", |
| 449 |
|
|
RowBox[{"0.000000004", "^", "3"}], ")"}]}]}]], "Input", |
| 450 |
|
|
CellChangeTimes->{{3.592230072390108*^9, 3.592230087171822*^9}}], |
| 451 |
|
|
|
| 452 |
|
|
Cell[BoxData["4.905911087845821`*^-28"], "Output", |
| 453 |
|
|
CellChangeTimes->{3.5922300877395563`*^9, 3.592230156546358*^9, |
| 454 |
|
|
3.592230294507525*^9}] |
| 455 |
|
|
}, Open ]], |
| 456 |
|
|
|
| 457 |
|
|
Cell[CellGroupData[{ |
| 458 |
|
|
|
| 459 |
|
|
Cell[BoxData["eqSphere"], "Input", |
| 460 |
|
|
CellChangeTimes->{{3.592230118312943*^9, 3.5922301195153713`*^9}}], |
| 461 |
|
|
|
| 462 |
|
|
Cell[BoxData["4.275041583893163`*^-29"], "Output", |
| 463 |
|
|
CellChangeTimes->{3.592230120102518*^9, 3.592230158066312*^9, |
| 464 |
|
|
3.592230295963499*^9}] |
| 465 |
kstocke1 |
3933 |
}, Open ]] |
| 466 |
|
|
}, |
| 467 |
|
|
WindowSize->{740, 876}, |
| 468 |
kstocke1 |
3947 |
WindowMargins->{{Automatic, 110}, {12, Automatic}}, |
| 469 |
kstocke1 |
3933 |
FrontEndVersion->"8.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (July 22, \ |
| 470 |
|
|
2012)", |
| 471 |
|
|
StyleDefinitions->"Default.nb" |
| 472 |
|
|
] |
| 473 |
|
|
(* End of Notebook Content *) |
| 474 |
|
|
|
| 475 |
|
|
(* Internal cache information *) |
| 476 |
|
|
(*CellTagsOutline |
| 477 |
|
|
CellTagsIndex->{} |
| 478 |
|
|
*) |
| 479 |
|
|
(*CellTagsIndex |
| 480 |
|
|
CellTagsIndex->{} |
| 481 |
|
|
*) |
| 482 |
|
|
(*NotebookFileOutline |
| 483 |
|
|
Notebook[{ |
| 484 |
kstocke1 |
3947 |
Cell[557, 20, 1972, 47, 133, "Input"], |
| 485 |
|
|
Cell[2532, 69, 204, 4, 43, "Input"], |
| 486 |
|
|
Cell[2739, 75, 164, 3, 27, "Input"], |
| 487 |
kstocke1 |
3933 |
Cell[CellGroupData[{ |
| 488 |
kstocke1 |
3947 |
Cell[2928, 82, 223, 5, 27, "Input"], |
| 489 |
kstocke1 |
3973 |
Cell[3154, 89, 303, 4, 30, "Output"] |
| 490 |
kstocke1 |
3933 |
}, Open ]], |
| 491 |
kstocke1 |
3973 |
Cell[3472, 96, 335, 11, 27, "Input"], |
| 492 |
|
|
Cell[3810, 109, 318, 6, 27, "Input"], |
| 493 |
|
|
Cell[4131, 117, 524, 17, 43, "Input"], |
| 494 |
kstocke1 |
3933 |
Cell[CellGroupData[{ |
| 495 |
kstocke1 |
3973 |
Cell[4680, 138, 568, 10, 27, "Input"], |
| 496 |
|
|
Cell[5251, 150, 686, 10, 30, "Output"] |
| 497 |
kstocke1 |
3933 |
}, Open ]], |
| 498 |
kstocke1 |
3973 |
Cell[5952, 163, 343, 7, 43, "Input"], |
| 499 |
|
|
Cell[6298, 172, 717, 22, 43, "Input"], |
| 500 |
kstocke1 |
3933 |
Cell[CellGroupData[{ |
| 501 |
kstocke1 |
3973 |
Cell[7040, 198, 540, 10, 27, "Input"], |
| 502 |
|
|
Cell[7583, 210, 643, 9, 30, "Output"] |
| 503 |
kstocke1 |
3933 |
}, Open ]], |
| 504 |
kstocke1 |
3973 |
Cell[8241, 222, 109, 1, 43, "Input"], |
| 505 |
|
|
Cell[8353, 225, 284, 6, 43, "Input"], |
| 506 |
|
|
Cell[8640, 233, 1342, 37, 88, "Input"], |
| 507 |
|
|
Cell[9985, 272, 94, 1, 27, "Input"], |
| 508 |
|
|
Cell[10082, 275, 311, 6, 27, "Input"], |
| 509 |
kstocke1 |
3933 |
Cell[CellGroupData[{ |
| 510 |
kstocke1 |
3973 |
Cell[10418, 285, 615, 17, 27, "Input"], |
| 511 |
|
|
Cell[11036, 304, 631, 9, 27, "Output"] |
| 512 |
kstocke1 |
3933 |
}, Open ]], |
| 513 |
kstocke1 |
3973 |
Cell[11682, 316, 364, 7, 43, "Input"], |
| 514 |
kstocke1 |
3933 |
Cell[CellGroupData[{ |
| 515 |
kstocke1 |
3973 |
Cell[12071, 327, 782, 23, 27, "Input"], |
| 516 |
|
|
Cell[12856, 352, 572, 8, 27, "Output"] |
| 517 |
kstocke1 |
3933 |
}, Open ]], |
| 518 |
kstocke1 |
3973 |
Cell[13443, 363, 289, 6, 43, "Input"], |
| 519 |
kstocke1 |
3933 |
Cell[CellGroupData[{ |
| 520 |
kstocke1 |
3973 |
Cell[13757, 373, 169, 3, 27, "Input"], |
| 521 |
|
|
Cell[13929, 378, 423, 6, 30, "Output"] |
| 522 |
kstocke1 |
3933 |
}, Open ]], |
| 523 |
kstocke1 |
3973 |
Cell[14367, 387, 264, 6, 27, "Input"], |
| 524 |
kstocke1 |
3933 |
Cell[CellGroupData[{ |
| 525 |
kstocke1 |
3973 |
Cell[14656, 397, 169, 3, 27, "Input"], |
| 526 |
|
|
Cell[14828, 402, 442, 6, 30, "Output"] |
| 527 |
|
|
}, Open ]], |
| 528 |
|
|
Cell[CellGroupData[{ |
| 529 |
|
|
Cell[15307, 413, 337, 7, 27, "Input"], |
| 530 |
|
|
Cell[15647, 422, 237, 3, 30, "Output"] |
| 531 |
|
|
}, Open ]], |
| 532 |
|
|
Cell[CellGroupData[{ |
| 533 |
|
|
Cell[15921, 430, 240, 5, 27, "Input"], |
| 534 |
|
|
Cell[16164, 437, 167, 2, 30, "Output"] |
| 535 |
|
|
}, Open ]], |
| 536 |
|
|
Cell[CellGroupData[{ |
| 537 |
|
|
Cell[16368, 444, 238, 5, 27, "Input"], |
| 538 |
|
|
Cell[16609, 451, 141, 2, 30, "Output"] |
| 539 |
|
|
}, Open ]], |
| 540 |
|
|
Cell[CellGroupData[{ |
| 541 |
|
|
Cell[16787, 458, 102, 1, 27, "Input"], |
| 542 |
|
|
Cell[16892, 461, 139, 2, 30, "Output"] |
| 543 |
kstocke1 |
3933 |
}, Open ]] |
| 544 |
|
|
} |
| 545 |
|
|
] |
| 546 |
|
|
*) |
| 547 |
|
|
|
| 548 |
|
|
(* End of internal cache information *) |