| 1 |
chuckv |
4 |
module dynamics_velocity_verlet |
| 2 |
|
|
use simulation |
| 3 |
|
|
use definitions, ONLY : DP, NDIM |
| 4 |
|
|
use constants |
| 5 |
|
|
use parameter |
| 6 |
|
|
use force_module, ONLY : calc_forces |
| 7 |
|
|
use velocity, ONLY : scale_velocities |
| 8 |
|
|
use force_utilities, ONLY : check |
| 9 |
|
|
use dynamics_utilities, ONLY : evolve_time, init_dynamics_loop, sim_status, & |
| 10 |
|
|
DT2,DTSQRT,DTSQ2, init_status |
| 11 |
|
|
#ifdef MPI |
| 12 |
|
|
use mpi_module |
| 13 |
|
|
#endif |
| 14 |
|
|
|
| 15 |
|
|
implicit none |
| 16 |
|
|
|
| 17 |
|
|
|
| 18 |
|
|
|
| 19 |
|
|
|
| 20 |
|
|
public :: velocity_verlet_dynamics |
| 21 |
|
|
private :: movea, moveb |
| 22 |
|
|
|
| 23 |
|
|
type (sim_status) :: verlet_status |
| 24 |
|
|
|
| 25 |
|
|
|
| 26 |
|
|
|
| 27 |
|
|
contains |
| 28 |
|
|
|
| 29 |
|
|
|
| 30 |
|
|
|
| 31 |
|
|
|
| 32 |
|
|
subroutine velocity_verlet_dynamics() |
| 33 |
|
|
use velocity, ONLY: calc_temp |
| 34 |
|
|
|
| 35 |
|
|
|
| 36 |
|
|
|
| 37 |
|
|
logical :: update_nlist |
| 38 |
|
|
logical :: do_pot |
| 39 |
|
|
logical :: not_done |
| 40 |
|
|
logical :: nmflag |
| 41 |
|
|
|
| 42 |
|
|
integer :: step, i |
| 43 |
|
|
|
| 44 |
|
|
call init_status(verlet_status) |
| 45 |
|
|
call init_dynamics_loop(verlet_status) |
| 46 |
|
|
|
| 47 |
|
|
! Start the main simulation loop. |
| 48 |
|
|
|
| 49 |
|
|
not_done = .true. |
| 50 |
|
|
nmflag = .false. |
| 51 |
|
|
step = 0 |
| 52 |
|
|
|
| 53 |
|
|
|
| 54 |
|
|
dynamics: do |
| 55 |
|
|
if (.not.not_done) exit dynamics |
| 56 |
|
|
|
| 57 |
|
|
step = step + 1 |
| 58 |
|
|
|
| 59 |
|
|
|
| 60 |
|
|
if (checktemp.and.(mod(step,check_temp_steps).eq.0)) then |
| 61 |
|
|
call calc_temp(verlet_status%temp) |
| 62 |
|
|
if (dabs(verlet_status%temp-target_temp).gt.therm_variance) then |
| 63 |
|
|
call scale_velocities(target_temp) |
| 64 |
|
|
end if |
| 65 |
|
|
end if |
| 66 |
|
|
|
| 67 |
|
|
call movea() |
| 68 |
|
|
|
| 69 |
|
|
|
| 70 |
|
|
call check(update_nlist) |
| 71 |
|
|
|
| 72 |
|
|
|
| 73 |
|
|
if (do_pot) then |
| 74 |
|
|
call calc_forces(update_nlist,nmflag,pe = verlet_status%pot_e) |
| 75 |
|
|
else |
| 76 |
|
|
call calc_forces(update_nlist,nmflag) |
| 77 |
|
|
endif |
| 78 |
|
|
|
| 79 |
|
|
call moveb() |
| 80 |
|
|
|
| 81 |
|
|
|
| 82 |
|
|
call evolve_time(step,verlet_status,do_pot,not_done) |
| 83 |
|
|
|
| 84 |
|
|
|
| 85 |
|
|
#ifdef MPI |
| 86 |
|
|
call mpi_barrier(mpi_comm_world,mpi_err) |
| 87 |
|
|
#endif |
| 88 |
|
|
end do dynamics |
| 89 |
|
|
end subroutine velocity_verlet_dynamics |
| 90 |
|
|
|
| 91 |
|
|
! ******************************************************************* |
| 92 |
|
|
! ** FICHE F.4 ** |
| 93 |
|
|
! ** TWO ROUTINES THAT TOGETHER IMPLEMENT VELOCITY VERLET METHOD. ** |
| 94 |
|
|
! ** ** |
| 95 |
|
|
! ** REFERENCE: ** |
| 96 |
|
|
! ** ** |
| 97 |
|
|
! ** SWOPE ET AL., J. CHEM. PHYS. 76, 637, 1982. ** |
| 98 |
|
|
! ** ** |
| 99 |
|
|
! ** ROUTINES SUPPLIED: ** |
| 100 |
|
|
! ** ** |
| 101 |
|
|
! ** SUBROUTINE MOVEA ( DT, M ) ** |
| 102 |
|
|
! ** MOVES POSITIONS AND PARTIALLY UPDATES VELOCITIES. ** |
| 103 |
|
|
! ** SUBROUTINE MOVEB ( DT, M, K ) ** |
| 104 |
|
|
! ** COMPLETES VELOCITY MOVE AND CALCULATES KINETIC ENERGY. ** |
| 105 |
|
|
! ** ** |
| 106 |
|
|
! ** PRINCIPAL VARIABLES: ** |
| 107 |
|
|
! ** ** |
| 108 |
|
|
! ** INTEGER N NUMBER OF MOLECULES ** |
| 109 |
|
|
! ** REAL DT TIMESTEP ** |
| 110 |
|
|
! ** REAL M ATOMIC MASS ** |
| 111 |
|
|
! ** REAL K KINETIC ENERGY ** |
| 112 |
|
|
! ** REAL RX(N),RY(N),RZ(N) POSITIONS ** |
| 113 |
|
|
! ** REAL VX(N),VY(N),VZ(N) VELOCITIES ** |
| 114 |
|
|
! ** REAL FX(N),FY(N),FZ(N) FORCES ** |
| 115 |
|
|
! ** ** |
| 116 |
|
|
! ** USAGE: ** |
| 117 |
|
|
! ** ** |
| 118 |
|
|
! ** AT THE START OF A TIMESTEP, MOVEA IS CALLED TO ADVANCE THE ** |
| 119 |
|
|
! ** POSITIONS AND 'HALF-ADVANCE' THE VELOCITIES. THEN THE FORCE ** |
| 120 |
|
|
! ** ROUTINE IS CALLED, AND THIS IS FOLLOWED BY MOVEB WHICH ** |
| 121 |
|
|
! ** COMPLETES THE ADVANCEMENT OF VELOCITIES. ** |
| 122 |
|
|
! ******************************************************************* |
| 123 |
|
|
|
| 124 |
|
|
|
| 125 |
|
|
|
| 126 |
|
|
subroutine movea( ) |
| 127 |
|
|
|
| 128 |
|
|
! ******************************************************************* |
| 129 |
|
|
! ** FIRST PART OF VELOCITY VERLET ALGORITHM ** |
| 130 |
|
|
! ** ** |
| 131 |
|
|
! ** USAGE: ** |
| 132 |
|
|
! ** ** |
| 133 |
|
|
! ** THE FIRST PART OF THE ALGORITHM IS A TAYLOR SERIES WHICH ** |
| 134 |
|
|
! ** ADVANCES POSITIONS FROM T TO T + DT AND VELOCITIES FROM ** |
| 135 |
|
|
! ** T TO T + DT/2. AFTER THIS, THE FORCE ROUTINE IS CALLED. ** |
| 136 |
|
|
! ******************************************************************* |
| 137 |
|
|
|
| 138 |
|
|
|
| 139 |
|
|
|
| 140 |
|
|
|
| 141 |
|
|
integer :: i, dim |
| 142 |
|
|
! |
| 143 |
|
|
! units for time are femtosec (10^-15 sec) |
| 144 |
|
|
! units for distance are angstroms (10^-10 m) |
| 145 |
|
|
! units for velocity are angstroms femtosec^-1 |
| 146 |
|
|
! units for mass are a.m.u. (1.661 * 10^-27 kg) |
| 147 |
|
|
! units for force are kcal mol^-1 angstrom^-1 |
| 148 |
|
|
! |
| 149 |
|
|
! converter will put the final terms into angstroms. |
| 150 |
|
|
! or angstrom/femtosecond. |
| 151 |
|
|
|
| 152 |
|
|
! converter = 1.0d0/2.390664d3 |
| 153 |
|
|
|
| 154 |
|
|
! ******************************************************************* |
| 155 |
|
|
|
| 156 |
|
|
|
| 157 |
|
|
|
| 158 |
|
|
do i = 1,nlocal |
| 159 |
|
|
do dim = 1, 3 |
| 160 |
|
|
|
| 161 |
|
|
q(dim,i) = q(dim,i) + dt*v(dim,i) + (dtsq2*f(dim,i)/mass(i))*KCALMOL_TO_AMUA2FS2 |
| 162 |
|
|
|
| 163 |
|
|
v(dim,i) = v(dim,i) + (dt2*f(dim,i)/mass(i))*KCALMOL_TO_AMUA2FS2 |
| 164 |
|
|
|
| 165 |
|
|
end do |
| 166 |
|
|
end do |
| 167 |
|
|
|
| 168 |
|
|
end subroutine movea |
| 169 |
|
|
|
| 170 |
|
|
|
| 171 |
|
|
|
| 172 |
|
|
subroutine moveb() |
| 173 |
|
|
#ifdef MPI |
| 174 |
|
|
use mpi_module |
| 175 |
|
|
#endif |
| 176 |
|
|
! ******************************************************************* |
| 177 |
|
|
! ** SECOND PART OF VELOCITY VERLET ALGORITHM ** |
| 178 |
|
|
! ** ** |
| 179 |
|
|
! ** USAGE: ** |
| 180 |
|
|
! ** ** |
| 181 |
|
|
! ** THE SECOND PART OF THE ALGORITHM ADVANCES VELOCITIES FROM ** |
| 182 |
|
|
! ** T + DT/2 TO T + DT. THIS ASSUMES THAT FORCES HAVE BEEN ** |
| 183 |
|
|
! ** COMPUTED IN THE FORCE ROUTINE AND STORED IN FX, FY, FZ. ** |
| 184 |
|
|
! ******************************************************************* |
| 185 |
|
|
|
| 186 |
|
|
|
| 187 |
|
|
|
| 188 |
|
|
integer :: i, dim |
| 189 |
|
|
! |
| 190 |
|
|
! units for time are femtosec (10^-15 sec) |
| 191 |
|
|
! units for distance are angstroms (10^-10 m) |
| 192 |
|
|
! units for velocity are angstroms femtosec^-1 |
| 193 |
|
|
! units for mass are a.m.u. (1.661 * 10^-27 kg) |
| 194 |
|
|
! units for force are kcal mol^-1 angstrom^-1 |
| 195 |
|
|
! |
| 196 |
|
|
! converter will put the final terms into kcal/mol |
| 197 |
|
|
! or angstrom/femtosecond. |
| 198 |
|
|
|
| 199 |
|
|
! converter = 1.0d0/2.390664d3 |
| 200 |
|
|
|
| 201 |
|
|
! ******************************************************************* |
| 202 |
|
|
|
| 203 |
|
|
|
| 204 |
|
|
|
| 205 |
|
|
|
| 206 |
|
|
do i = 1, nlocal |
| 207 |
|
|
do dim = 1, 3 |
| 208 |
|
|
v(dim,i) = v(dim,i) + (dt2*f(dim,i)/mass(i))*KCALMOL_TO_AMUA2FS2 |
| 209 |
|
|
end do |
| 210 |
|
|
end do |
| 211 |
|
|
|
| 212 |
|
|
end subroutine moveb |
| 213 |
|
|
|
| 214 |
|
|
!! modified to be used in a mpi simulation..... |
| 215 |
|
|
|
| 216 |
|
|
|
| 217 |
|
|
|
| 218 |
|
|
|
| 219 |
|
|
end module dynamics_velocity_verlet |