| 1 |
gezelter |
3906 |
% ****** Start of file aipsamp.tex ****** |
| 2 |
|
|
% |
| 3 |
|
|
% This file is part of the AIP files in the AIP distribution for REVTeX 4. |
| 4 |
|
|
% Version 4.1 of REVTeX, October 2009 |
| 5 |
|
|
% |
| 6 |
|
|
% Copyright (c) 2009 American Institute of Physics. |
| 7 |
|
|
% |
| 8 |
|
|
% See the AIP README file for restrictions and more information. |
| 9 |
|
|
% |
| 10 |
|
|
% TeX'ing this file requires that you have AMS-LaTeX 2.0 installed |
| 11 |
|
|
% as well as the rest of the prerequisites for REVTeX 4.1 |
| 12 |
|
|
% |
| 13 |
|
|
% It also requires running BibTeX. The commands are as follows: |
| 14 |
|
|
% |
| 15 |
|
|
% 1) latex aipsamp |
| 16 |
|
|
% 2) bibtex aipsamp |
| 17 |
|
|
% 3) latex aipsamp |
| 18 |
|
|
% 4) latex aipsamp |
| 19 |
|
|
% |
| 20 |
|
|
% Use this file as a source of example code for your aip document. |
| 21 |
|
|
% Use the file aiptemplate.tex as a template for your document. |
| 22 |
|
|
\documentclass[% |
| 23 |
|
|
aip, |
| 24 |
|
|
jmp, |
| 25 |
|
|
amsmath,amssymb, |
| 26 |
|
|
preprint,% |
| 27 |
|
|
% reprint,% |
| 28 |
|
|
%author-year,% |
| 29 |
|
|
%author-numerical,% |
| 30 |
|
|
]{revtex4-1} |
| 31 |
|
|
|
| 32 |
|
|
\usepackage{graphicx}% Include figure files |
| 33 |
|
|
\usepackage{dcolumn}% Align table columns on decimal point |
| 34 |
|
|
\usepackage{bm}% bold math |
| 35 |
|
|
%\usepackage[mathlines]{lineno}% Enable numbering of text and display math |
| 36 |
|
|
%\linenumbers\relax % Commence numbering lines |
| 37 |
|
|
|
| 38 |
|
|
\begin{document} |
| 39 |
|
|
|
| 40 |
|
|
\preprint{AIP/123-QED} |
| 41 |
|
|
|
| 42 |
|
|
\title[Generalization of the Shifted-Force Potential to Higher-Order Potentials] |
| 43 |
|
|
{Generalization of the Shifted-Force Potential to Higher-Order Potentials} |
| 44 |
|
|
|
| 45 |
|
|
\author{Madan Lamichhane} |
| 46 |
|
|
\affiliation{Department of Physics, University |
| 47 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 48 |
|
|
|
| 49 |
|
|
\author{J. Daniel Gezelter} |
| 50 |
|
|
\email{gezelter@nd.edu.} |
| 51 |
|
|
\affiliation{Department of Chemistry and Biochemistry, University |
| 52 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 53 |
|
|
|
| 54 |
|
|
\author{Kathie E. Newman} |
| 55 |
|
|
\affiliation{Department of Physics, University |
| 56 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 57 |
|
|
|
| 58 |
|
|
|
| 59 |
|
|
\date{\today}% It is always \today, today, |
| 60 |
|
|
% but any date may be explicitly specified |
| 61 |
|
|
|
| 62 |
|
|
\begin{abstract} |
| 63 |
|
|
Over the past several years, there has been increasing interest |
| 64 |
|
|
in real space methods for calculating electrostatic interactions |
| 65 |
|
|
in computer simulations of condensed molecular systems. We |
| 66 |
|
|
have extended our original damped-shifted force (DSF) |
| 67 |
|
|
electrostatic kernel and have been able to derive a set of |
| 68 |
|
|
interaction models for higher-order multipoles based on |
| 69 |
|
|
truncated Taylor expansions around the cutoff. For multipolemultipole |
| 70 |
|
|
interactions, we find that each of the distinct |
| 71 |
|
|
orientational contributions has a separate radial function to |
| 72 |
|
|
ensure that the overall forces and torques vanish at the cutoff |
| 73 |
|
|
radius. |
| 74 |
|
|
\end{abstract} |
| 75 |
|
|
|
| 76 |
|
|
\pacs{Valid PACS appear here}% PACS, the Physics and Astronomy |
| 77 |
|
|
% Classification Scheme. |
| 78 |
|
|
\keywords{Suggested keywords}%Use showkeys class option if keyword |
| 79 |
|
|
%display desired |
| 80 |
|
|
\maketitle |
| 81 |
|
|
|
| 82 |
|
|
\section{Introduction} |
| 83 |
|
|
|
| 84 |
|
|
The Coulomb electrostatic interaction is of importance in a number of physical chemistry problems |
| 85 |
|
|
[background needed, do we mention gases, liquids, solids?]. |
| 86 |
|
|
|
| 87 |
|
|
[...] |
| 88 |
|
|
|
| 89 |
|
|
The methods that we develop in this paper are meant specifically for problems involving interacting rigid molecules which will be described |
| 90 |
|
|
in terms of classical mechanics and electrodynamics. From mechanics, the molecule's mass distribution |
| 91 |
|
|
determines its total mass and moment of inertia tensor. |
| 92 |
|
|
From electrostatics, its charge distribution is conveniently described using multipoles. |
| 93 |
|
|
Our goal is to advance methods for handling inter-molecular interactions in molecular dynamics simulations. |
| 94 |
|
|
To do this, we must develop consistent approximate equations for |
| 95 |
|
|
interaction energies, forces, and torques. |
| 96 |
|
|
|
| 97 |
|
|
[...] |
| 98 |
|
|
|
| 99 |
|
|
This paper extends the shifted-force potential method |
| 100 |
|
|
of Fennel and Gezelter to higher-order multipole interactions. [describe?] |
| 101 |
|
|
Extending an idea from Wolf, multipole images are placed on the surface of a |
| 102 |
|
|
``cutoff'' sphere of radius $r_c$. These images are used to make all interaction energies, forces, and torques |
| 103 |
|
|
be zero for $r < r_c$. |
| 104 |
|
|
Two such methods have been developed, both based on Taylor-series expansions. |
| 105 |
|
|
The first is applied to the Coulomb kernel of the multipole expansion. The second is |
| 106 |
|
|
applied to individual terms for interaction energies in the multipole expansion. |
| 107 |
|
|
Because of differences in the initial assumptions, the two methods yield different results. |
| 108 |
|
|
|
| 109 |
|
|
Also explored here is the effect of replacing the bare Coulomb kernel with that of a smeared |
| 110 |
|
|
charge distribution. Thus four methods are compared in this paper: |
| 111 |
|
|
(1) Shifted force, Coulomb, method 1; |
| 112 |
|
|
(2) Sihfted force, Coulomb, method 2; |
| 113 |
|
|
(3) Shifted force, smeared charge, method 1; and |
| 114 |
|
|
(4) Shifted force, smeared charge, method 2. |
| 115 |
|
|
The last of these methods is our preferred method and is called the Extended Shifted Force Method. |
| 116 |
|
|
Subsequent papers will apply this method to various problems of physical and chemical interest. |
| 117 |
|
|
|
| 118 |
|
|
[...] |
| 119 |
|
|
|
| 120 |
|
|
|
| 121 |
|
|
\section{Development of the Methods} |
| 122 |
|
|
|
| 123 |
|
|
\subsection{Multipole Expansion} |
| 124 |
|
|
|
| 125 |
|
|
Consider two discrete rigid collections of atoms and ions, denoted as objects $\bf a$ and $\bf b$. |
| 126 |
|
|
In the following, we assume |
| 127 |
|
|
that the two objects only interact via electrostatics and describe those interactions in terms of |
| 128 |
|
|
a multipole expansion. Putting the origin of the coordinate system at the center of mass of $\bf a$, we use |
| 129 |
|
|
vectors $\mathbf{r}_k$ to denote the positions of all charges $q_k$ in $\bf a$. |
| 130 |
|
|
Then the electrostatic potential of object $\bf a$ at $\mathbf{r}$ is given by |
| 131 |
|
|
\begin{equation} |
| 132 |
|
|
V_a(\mathbf r) = \frac{1}{4\pi\epsilon_0} |
| 133 |
|
|
\sum_{k \, \text{in \bf a}} \frac{q_k}{\lvert \mathbf{r} - \mathbf{r}_k \rvert}. |
| 134 |
|
|
\end{equation} |
| 135 |
|
|
We write the Taylor series expansion in $r$ using an implied summation notation, |
| 136 |
|
|
Greek indices are used to indicate space coordinates $x$, $y$, $z$ and the subscripts |
| 137 |
|
|
$k$ and $j$ are reserved for labelling specific charges in $\bf a$ and $\bf b$ respectively, and find: |
| 138 |
|
|
\begin{equation} |
| 139 |
|
|
\frac{1}{\lvert \mathbf{r} - \mathbf{r}_k \rvert} = |
| 140 |
|
|
\left( 1 |
| 141 |
|
|
- r_{k\alpha} \frac{\partial}{\partial r_{\alpha}} |
| 142 |
|
|
+ \frac{1}{2} r_{k\alpha} r_{k\beta} \frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} +\dots |
| 143 |
|
|
\right) |
| 144 |
|
|
\frac{1}{r} . |
| 145 |
|
|
\end{equation} |
| 146 |
|
|
We then follow Smith in defining an operator for the expansion: |
| 147 |
|
|
\begin{equation} |
| 148 |
|
|
V_{\bf a}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0}\hat{M}_{\bf a} \frac{1}{r} |
| 149 |
|
|
\end{equation} |
| 150 |
|
|
where |
| 151 |
|
|
\begin{equation} |
| 152 |
|
|
\hat{M}_{\bf a} = C_{\bf a} - D_{{\bf a}\alpha} \frac{\partial}{\partial r_{\alpha}} |
| 153 |
|
|
+ Q_{{\bf a}\alpha\beta} |
| 154 |
|
|
\frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots |
| 155 |
|
|
\end{equation} |
| 156 |
|
|
and the charge $C_{\bf a}$, dipole $D_{{\bf a}\alpha}$, |
| 157 |
|
|
and quadrupole $Q_{{\bf a}\alpha\beta}$ are defined by |
| 158 |
|
|
\begin{equation} |
| 159 |
|
|
C_{\bf a}=\sum_{k \, \text{in \bf a}} q_k , |
| 160 |
|
|
\end{equation} |
| 161 |
|
|
\begin{equation} |
| 162 |
|
|
D_{{\bf a}\alpha} = \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} , |
| 163 |
|
|
\end{equation} |
| 164 |
|
|
\begin{equation} |
| 165 |
|
|
Q_{{\bf a}\alpha\beta} = \frac{1}{2} \sum_{k \, \text{in \bf a}} q_k r_{k\alpha} r_{k\beta} . |
| 166 |
|
|
\end{equation} |
| 167 |
|
|
|
| 168 |
|
|
It is convenient to locate charges $q_j$ relative to the center of mass of $\bf b$. Then with $\bf{r}$ pointing from |
| 169 |
|
|
$\bf a$ to $\bf b$ ($\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $), the interaction energy is given by |
| 170 |
|
|
\begin{eqnarray} |
| 171 |
|
|
U_{\bf{ab}}(r) =&& \frac{1}{4\pi \epsilon_0} |
| 172 |
|
|
\sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}} |
| 173 |
|
|
\frac{q_k q_j}{\vert \bf{r}_k - (\bf{r}+\bf{r}_j) \vert} \nonumber\\ |
| 174 |
|
|
=&& \frac{1}{4\pi \epsilon_0} |
| 175 |
|
|
\sum_{k \, \text{in \bf a}} \sum_{j \, \text{in \bf b}} |
| 176 |
|
|
\frac{q_k q_j}{\vert \bf{r}+ (\bf{r}_j-\bf{r}_k) \vert} \nonumber\\ |
| 177 |
|
|
=&&\frac{1}{4\pi \epsilon_0} \sum_{j \, \text{in \bf b}} q_j V_a(\bf{r}+\bf{r}_j) \nonumber\\ |
| 178 |
|
|
=&&\frac{1}{4\pi \epsilon_0} \hat{M}_a \sum_{j \, \text{in \bf b}} \frac {q_j}{\vert \bf{r}+\bf{r}_j \vert} . |
| 179 |
|
|
\end{eqnarray} |
| 180 |
|
|
The last expression can also be expanded as a Taylor series in $r$. Using a notation similar to before, we define |
| 181 |
|
|
\begin{equation} |
| 182 |
|
|
\hat{M}_{\bf b} = C_{\bf b} + D_{{\bf b}\alpha} \frac{\partial}{\partial r_{\alpha}} |
| 183 |
|
|
+ Q_{{\bf b}\alpha\beta} |
| 184 |
|
|
\frac{\partial^2}{\partial r_{\alpha} \partial r_{\beta}} + \dots |
| 185 |
|
|
\end{equation} |
| 186 |
|
|
and |
| 187 |
|
|
\begin{equation} |
| 188 |
|
|
U_{\bf{ab}}(r)=\frac{\hat{M}_{\bf a} \hat{M}_{\bf b}}{4\pi \epsilon_0} \frac{1}{r} \label{kernel}. |
| 189 |
|
|
\end{equation} |
| 190 |
|
|
Note the ease of separting out the respective energies of interaction of the charge, dipole, and quadrupole of $\bf a$ from those of $\bf b$. |
| 191 |
|
|
|
| 192 |
|
|
\subsection{Bare Coulomb versus smeared charge} |
| 193 |
|
|
|
| 194 |
|
|
With the four types of methods being considered here, it is desirable to list the approximations in as transparent a form |
| 195 |
|
|
as possible. First, one may use the bare Coulomb potential, with radial dependence $1/r$, |
| 196 |
|
|
as shown in Eq.~(\ref{kernel}). Alternatively, one may use |
| 197 |
|
|
a smeared charge distribution, then the``kernel'' $1/r$ of the expansion is replaced with a function: |
| 198 |
|
|
\begin{equation} |
| 199 |
|
|
B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r} |
| 200 |
|
|
\int_{\alpha r}^{\infty} \text{e}^{-s^2} ds . |
| 201 |
|
|
\end{equation} |
| 202 |
|
|
We develop equations using a function $f(r)$ to represent either $1/r$ or $B_0(r)$, dependent on the the type of approach being considered. |
| 203 |
|
|
Smith's convenient functions $B_l(r)$ are summarized in Appendix A. |
| 204 |
|
|
|
| 205 |
|
|
\subsection{Shifting the force, method 1} |
| 206 |
|
|
|
| 207 |
|
|
As discussed in the introduction, it is desirable to cutoff the electrostatic energy at a radius |
| 208 |
|
|
$r_c$. For consistency in approximation, we want the interaction energy as well as the force and |
| 209 |
|
|
torque to go to zero at $r=r_c$. |
| 210 |
|
|
To describe how this goal may be met using a radial approximation, we use two examples, charge-charge |
| 211 |
|
|
and charge-dipole, using the bare Coulomb kernel $f(r)=1/r$ to explain the idea. |
| 212 |
|
|
|
| 213 |
|
|
In the shifted-force approximation, the interaction energy $U_{\bf{ab}}(r_c)=0$ |
| 214 |
|
|
for two charges $C_{\bf a}$ and $C_{\bf b}$ separated by a distance $r$ is written: |
| 215 |
|
|
\begin{equation} |
| 216 |
|
|
U_{C_{\bf a}C_{\bf b}}(r)=\frac{1}{4\pi \epsilon_0} C_{\bf a} C_{\bf b} |
| 217 |
|
|
\left({ \frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} } |
| 218 |
|
|
\right) . |
| 219 |
|
|
\end{equation} |
| 220 |
|
|
Two shifting terms appear in this equations because we want the force to |
| 221 |
|
|
also be shifted due to an image charge located at a distance $r_c$. |
| 222 |
|
|
Since one derivative of the interaction energy is needed for the force, we want a term |
| 223 |
|
|
linear in $(r-r_c)$ in the interaction energy, that is: |
| 224 |
|
|
\begin{equation} |
| 225 |
|
|
\frac{d\,}{dr} |
| 226 |
|
|
\left( {\frac{1}{r} - \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} } |
| 227 |
|
|
\right) = \left(- \frac{1}{r^2} + \frac{1}{r_c^2} |
| 228 |
|
|
\right) . |
| 229 |
|
|
\end{equation} |
| 230 |
|
|
This demonstrates the need of the third term in the brackets of the energy expression, but leads to the question, how does this idea generalize for higher-order multipole energies? |
| 231 |
|
|
|
| 232 |
|
|
In method 1, the procedure that we follow is based on the number of derivatives need for each energy, force, or torque. That is, |
| 233 |
|
|
a quadrupole-quadrupole interaction energy will have four derivatives, |
| 234 |
|
|
$\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, |
| 235 |
|
|
and the force or torque will bring in yet another derivative. |
| 236 |
|
|
We thus want shifted energy expressions to include terms so that all energies, forces, and torques |
| 237 |
|
|
are zero at $r=r_c$. In each case, we will subtract off a function $f_n^{\text{shift}}(r)$ from the |
| 238 |
|
|
kernel $f(r)=1/r$. The index $n$ indicates the number of derivatives to be taken when |
| 239 |
|
|
deriving a given multipole energy. |
| 240 |
|
|
We choose a function with guaranteed smooth derivatives --- a truncated Taylor series of the function |
| 241 |
|
|
$f(r)$, e.g., |
| 242 |
|
|
% |
| 243 |
|
|
\begin{equation} |
| 244 |
|
|
f_n^{\text{shift}}(r)=\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} f^{(m)} \Big \lvert _{r_c} . |
| 245 |
|
|
\end{equation} |
| 246 |
|
|
% |
| 247 |
|
|
The combination of $f(r)$ with the shifted function is denoted $f_n(r)=f(r)-f_n^{\text{shift}}(r)$. |
| 248 |
|
|
Thus, for $f(r)=1/r$, we find |
| 249 |
|
|
% |
| 250 |
|
|
\begin{equation} |
| 251 |
|
|
f_1(r)=\frac{1}{r}- \frac{1}{r_c} + (r - r_c) \frac{1}{r_c^2} - \frac{(r-r_c)^2}{r_c^3} . |
| 252 |
|
|
\end{equation} |
| 253 |
|
|
% |
| 254 |
|
|
Continuing with the example of a charge $\bf a$ interacting with a dipole $\bf b$, we write |
| 255 |
|
|
% |
| 256 |
|
|
\begin{equation} |
| 257 |
|
|
U_{C_{\bf a}D_{\bf b}}(r)= |
| 258 |
|
|
\frac{C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} \frac {\partial f_1(r) }{\partial r_\alpha} |
| 259 |
|
|
=\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} |
| 260 |
|
|
\frac {r_\alpha}{r} \frac {\partial f_1(r)}{\partial r} . |
| 261 |
|
|
\end{equation} |
| 262 |
|
|
% |
| 263 |
|
|
The force that dipole $\bf b$ puts on charge $\bf a$ is |
| 264 |
|
|
% |
| 265 |
|
|
\begin{equation} |
| 266 |
|
|
F_{C_{\bf a}D_{\bf b}\beta} =\frac{ C_{\bf a} D_{{\bf b}\alpha}}{4\pi \epsilon_0} |
| 267 |
|
|
\left[ \frac{\delta_{\alpha\beta}}{r} \frac {\partial}{\partial r} + |
| 268 |
|
|
\frac{r_\alpha r_\beta}{r^2} |
| 269 |
|
|
\left( -\frac{1}{r} \frac {\partial} {\partial r} |
| 270 |
|
|
+ \frac {\partial ^2} {\partial r^2} \right) \right] f_1(r) . |
| 271 |
|
|
\end{equation} |
| 272 |
|
|
% |
| 273 |
|
|
For $f(r)=1/r$, we find |
| 274 |
|
|
% |
| 275 |
|
|
\begin{equation} |
| 276 |
|
|
F_{C_{\bf a}D_{\bf b}\beta} = |
| 277 |
|
|
\frac{C_{\bf a} D_{{\bf b}\beta} }{4\pi \epsilon_0r} |
| 278 |
|
|
\left[ -\frac{1}{r^2}+\frac{1}{r_c^2}-\frac{2(r-r_c)}{r_c^3} \right] |
| 279 |
|
|
+\frac{C_{\bf a} D_{{\bf b}\alpha}r_\alpha r_\beta }{4\pi \epsilon_0} |
| 280 |
|
|
\left[ \frac{3}{r^5}-\frac{3}{r^3r_c^2} \right] . |
| 281 |
|
|
\end{equation} |
| 282 |
|
|
% |
| 283 |
|
|
This expansion shows the expected $1/r^3$ dependence of the force. |
| 284 |
|
|
|
| 285 |
|
|
In general, we write |
| 286 |
|
|
% |
| 287 |
|
|
\begin{equation} |
| 288 |
|
|
U=\frac{1}{4\pi \epsilon_0} (\text{prefactor}) (\text{derivatives}) f_n(r) |
| 289 |
|
|
\label{generic} |
| 290 |
|
|
\end{equation} |
| 291 |
|
|
% |
| 292 |
|
|
where $n=0$ for charge-charge, $n=1$ for charge-dipole, $n=2$ for charge-quadrupole |
| 293 |
|
|
and dipole-dipole, $n=3$ for dipole-quadrupole, and $n=4$ for quadrupole-quadrupole. |
| 294 |
|
|
An example is the case of quadrupole-quadrupole for which the $\text{prefactor}$ is |
| 295 |
|
|
$Q_{{\bf a}\alpha\beta}Q_{{\bf b}\gamma\delta}$ and the derivatives are |
| 296 |
|
|
$\partial^4/\partial r_\alpha \partial r_\beta \partial r_\gamma \partial r_\delta$, with |
| 297 |
|
|
implied summation combining the space indices. |
| 298 |
|
|
|
| 299 |
|
|
To apply this method to the smeared-charge approach, |
| 300 |
|
|
we write $f(r)=\text{erfc}(\alpha r)/r$. By using one function $f(r)$ for both |
| 301 |
|
|
approaches, we simplify the tabulation of equations used. Because |
| 302 |
|
|
of the many derivatives that are taken, the algebra is tedious and are summarized |
| 303 |
|
|
in Appendices A and B. |
| 304 |
|
|
|
| 305 |
|
|
\subsection{Shifting the force, method 2} |
| 306 |
|
|
|
| 307 |
|
|
Note the method used in the previous subsection to shift a force is basically that of using |
| 308 |
|
|
a truncated Taylor Series in the radius $r$. An alternate method exists, best explained by |
| 309 |
|
|
writing one shifted formula for all interaction energies $U(r)$: |
| 310 |
|
|
\begin{equation} |
| 311 |
|
|
U^{\text{shift}}(r)=U(r)-U(r_c)-(r-r_c)\hat{r}\cdot \nabla U(r) \Big \lvert _{r_c} . |
| 312 |
|
|
\end{equation} |
| 313 |
|
|
Note that this method uses only the linear term, $(r-r_c)$ in the Taylor series, no higher order terms |
| 314 |
|
|
$(r-r_c)^n$ appear. The primary difference between methods 1 and 2 originates |
| 315 |
|
|
with the stage in the derivation where the Taylor Series is applied; in method 1, it is applied to the |
| 316 |
|
|
kernel. In method 2, it is applied to individual interaction energies of the multipole expansion. |
| 317 |
|
|
Terms from this method thus have the general form: |
| 318 |
|
|
\begin{equation} |
| 319 |
|
|
U=\frac{1}{4\pi \epsilon_0}\sum (\text{angular factor}) (\text{radial factor}). |
| 320 |
|
|
\label{generic2} |
| 321 |
|
|
\end{equation} |
| 322 |
|
|
|
| 323 |
|
|
Results for both methods can be summarized using the form of Eq.~(\ref{generic2}) |
| 324 |
|
|
and are listed in Table I below. |
| 325 |
|
|
|
| 326 |
|
|
\subsection{\label{sec:level2}Body and space axes} |
| 327 |
|
|
|
| 328 |
|
|
Up to this point, all energies and forces have been written in terms of fixed space |
| 329 |
|
|
coordinates $x$, $y$, $z$. Interaction energies are computed from the generic formulas Eq.~(\ref{generic}) and ~(\ref{generic2}) which |
| 330 |
|
|
combine prefactors with radial functions. But because objects |
| 331 |
|
|
$\bf a$ and $\bf b$ both translate and rotate as part of a MD simulation, |
| 332 |
|
|
it is desirable to contract all $r$-dependent terms with dipole and quadrupole |
| 333 |
|
|
moments expressed in terms of their body axes. |
| 334 |
|
|
Since the interaction energy expressions will be used to derive both forces and torques, |
| 335 |
|
|
we follow here the development of Allen and Germano, which was itself based on an |
| 336 |
|
|
earlier paper by Price \em et al.\em |
| 337 |
|
|
|
| 338 |
|
|
Denote body axes for objects $\bf a$ and $\bf b$ by unit vectors |
| 339 |
|
|
$\hat{a}_m$ and $\hat{b}_m$, respectively, with the index $m=(123)$ referring to a convenient |
| 340 |
|
|
set of inertial body axes. (Note, these body axes are generally not the same as those for which the |
| 341 |
|
|
quadrupole moment is diagonal.) Then, |
| 342 |
|
|
% |
| 343 |
|
|
\begin{eqnarray} |
| 344 |
|
|
\hat{a}_m= a_{mx}\hat{x} + a_{my}\hat{y} + a_{mz}\hat{z} \\ |
| 345 |
|
|
\hat{b}_m= b_{mx}\hat{x} + b_{my}\hat{y} + b_{mz}\hat{z} . |
| 346 |
|
|
\end{eqnarray} |
| 347 |
|
|
Allen and Germano define matrices $\hat{\mathbf {a}}$ |
| 348 |
|
|
and $\hat{\mathbf {b}}$ using these unit vectors: |
| 349 |
|
|
\begin{eqnarray} |
| 350 |
|
|
\hat{\mathbf {a}} = |
| 351 |
|
|
\begin{pmatrix} |
| 352 |
|
|
\hat{a}_1 \\ |
| 353 |
|
|
\hat{a}_2 \\ |
| 354 |
|
|
\hat{a}_3 |
| 355 |
|
|
\end{pmatrix} |
| 356 |
|
|
= |
| 357 |
|
|
\begin{pmatrix} |
| 358 |
|
|
a_{1x} \quad a_{1y} \quad a_{1z} \\ |
| 359 |
|
|
a_{2x} \quad a_{2y} \quad a_{2z} \\ |
| 360 |
|
|
a_{3x} \quad a_{3y} \quad a_{3z} |
| 361 |
|
|
\end{pmatrix}\\ |
| 362 |
|
|
\hat{\mathbf {b}} = |
| 363 |
|
|
\begin{pmatrix} |
| 364 |
|
|
\hat{b}_1 \\ |
| 365 |
|
|
\hat{b}_2 \\ |
| 366 |
|
|
\hat{b}_3 |
| 367 |
|
|
\end{pmatrix} |
| 368 |
|
|
= |
| 369 |
|
|
\begin{pmatrix} |
| 370 |
|
|
b_{1x}\quad b_{1y} \quad b_{1z} \\ |
| 371 |
|
|
b_{2x} \quad b_{2y} \quad b_{2z} \\ |
| 372 |
|
|
b_{3x} \quad b_{3y} \quad b_{3z} |
| 373 |
|
|
\end{pmatrix} . |
| 374 |
|
|
\end{eqnarray} |
| 375 |
|
|
% |
| 376 |
|
|
These matrices convert from space-fixed $(xyz)$ to object-fixed $(123)$ coordinates. |
| 377 |
|
|
All contractions of prefactors with derivatives of functions can be written in terms of these matrices. |
| 378 |
|
|
It proves to be equally convenient to just write any contraction in terms of unit vectors |
| 379 |
|
|
$\hat{r}$, $\hat{a}_m$, and $\hat{b}_n$. |
| 380 |
|
|
We have found it useful to write angular-dependent terms in three different fashions, |
| 381 |
|
|
illustrated by the following |
| 382 |
|
|
three examples from the interaction-energy expressions: |
| 383 |
|
|
% |
| 384 |
|
|
\begin{eqnarray} |
| 385 |
|
|
\mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} |
| 386 |
|
|
=D_{\bf {a}\alpha} D_{\bf {b}\alpha}= |
| 387 |
|
|
\sum_{mn} {D_{\mathbf{a}m} \hat{a}_m \cdot \hat{b}_n D_{\mathbf{b}n}} \\ |
| 388 |
|
|
r^2 \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right)= |
| 389 |
|
|
r_\alpha Q_{\bf b \alpha \beta} r_\beta = r^2 |
| 390 |
|
|
\sum_{mn}(\hat{r} \cdot \hat{b}_m) Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \\ |
| 391 |
|
|
r ( \mathbf{D}_{\mathbf{a}} \cdot |
| 392 |
|
|
\mathbf{Q}_{\mathbf{b}} \cdot \hat{r})= |
| 393 |
|
|
D_{\bf {a}\alpha} Q_{\bf b \alpha \beta} r_\beta |
| 394 |
|
|
=r \sum_{lmn} D_{\mathbf{a}l} (\hat{a}_l \cdot \hat{b}_m ) Q_{\mathbf{b}mn} |
| 395 |
|
|
(\hat{b}_n \cdot \hat{r}) . |
| 396 |
|
|
\end{eqnarray} |
| 397 |
|
|
% |
| 398 |
|
|
[Dan, perhaps there are better examples to show here.] |
| 399 |
|
|
|
| 400 |
|
|
In each line, the first two terms are written using space coordinates. The first form is standard |
| 401 |
|
|
in the chemistry literature, and the second is ``physicist style'' using implied summation notation. The third |
| 402 |
|
|
form shows explicitly sums over body indices and the dot products now indicate contractions using space indices. |
| 403 |
|
|
We find the first form to be useful in writing equations prior to converting to computer code. The second form is helpful |
| 404 |
|
|
in derivations of the interaction energy expressions. The third one is specifically helpful when deriving forces and torques, as will |
| 405 |
|
|
be discussed below. |
| 406 |
|
|
|
| 407 |
|
|
\section{Energies, forces, and torques} |
| 408 |
|
|
\subsection{Interaction energies} |
| 409 |
|
|
|
| 410 |
|
|
We now list multipole interaction energies for the four types of approximation. |
| 411 |
|
|
A ``generic'' set of radial functions is introduced so to be able to present the results in Table I. This set of |
| 412 |
|
|
equations is written in terms of space coordinates: |
| 413 |
|
|
|
| 414 |
|
|
% Energy in space coordinate form ---------------------------------------------------------------------------------------------- |
| 415 |
|
|
% |
| 416 |
|
|
% |
| 417 |
|
|
% u ca cb |
| 418 |
|
|
% |
| 419 |
|
|
\begin{equation} |
| 420 |
|
|
U_{C_{\bf a}C_{\bf b}}(r)= |
| 421 |
|
|
\frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) \label{uchch} |
| 422 |
|
|
\end{equation} |
| 423 |
|
|
% |
| 424 |
|
|
% u ca db |
| 425 |
|
|
% |
| 426 |
|
|
\begin{equation} |
| 427 |
|
|
U_{C_{\bf a}D_{\bf b}}(r)= |
| 428 |
|
|
\frac{C_{\bf a}}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) v_{11}(r) |
| 429 |
|
|
\label{uchdip} |
| 430 |
|
|
\end{equation} |
| 431 |
|
|
% |
| 432 |
|
|
% u ca qb |
| 433 |
|
|
% |
| 434 |
|
|
\begin{equation} |
| 435 |
|
|
U_{C_{\bf a}Q_{\bf b}}(r)= |
| 436 |
|
|
\frac{C_{\bf a }}{4\pi \epsilon_0} \Bigl[ \text{Tr}Q_{\bf b} v_{21}(r) |
| 437 |
|
|
\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{22}(r) \Bigr] |
| 438 |
|
|
\label{uchquad} |
| 439 |
|
|
\end{equation} |
| 440 |
|
|
% |
| 441 |
|
|
% u da cb |
| 442 |
|
|
% |
| 443 |
|
|
\begin{equation} |
| 444 |
|
|
U_{D_{\bf a}C_{\bf b}}(r)= |
| 445 |
|
|
-\frac{C_{\bf b}}{4\pi \epsilon_0} |
| 446 |
|
|
\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) v_{11}(r) \label{udipch} |
| 447 |
|
|
\end{equation} |
| 448 |
|
|
% |
| 449 |
|
|
% u da db |
| 450 |
|
|
% |
| 451 |
|
|
\begin{equation} |
| 452 |
|
|
U_{D_{\bf a}D_{\bf b}}(r)= |
| 453 |
|
|
-\frac{1}{4\pi \epsilon_0} \Bigr[ \left( \mathbf{D}_{\mathbf {a}} \cdot |
| 454 |
|
|
\mathbf{D}_{\mathbf{b}} \right) v_{21}(r) |
| 455 |
|
|
+\left( \mathbf{D}_{\mathbf {a}} \cdot \hat{r} \right) |
| 456 |
|
|
\left( \mathbf{D}_{\mathbf {b}} \cdot \hat{r} \right) |
| 457 |
|
|
v_{22}(r) \Bigr] |
| 458 |
|
|
\label{udipdip} |
| 459 |
|
|
\end{equation} |
| 460 |
|
|
% |
| 461 |
|
|
% u da qb |
| 462 |
|
|
% |
| 463 |
|
|
\begin{equation} |
| 464 |
|
|
\begin{split} |
| 465 |
|
|
% 1 |
| 466 |
|
|
U_{D_{\bf a}Q_{\bf b}}(r)&= |
| 467 |
|
|
-\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 468 |
|
|
\text{Tr}\mathbf{Q}_{\mathbf{b}} |
| 469 |
|
|
\left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) |
| 470 |
|
|
+2 ( \mathbf{D}_{\mathbf{a}} \cdot |
| 471 |
|
|
\mathbf{Q}_{\mathbf{b}} \cdot \hat{r} ) \Bigr] v_{31}(r) \\ |
| 472 |
|
|
% 2 |
| 473 |
|
|
&-\frac{1}{4\pi \epsilon_0} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) |
| 474 |
|
|
\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{32}(r) |
| 475 |
|
|
\label{udipquad} |
| 476 |
|
|
\end{split} |
| 477 |
|
|
\end{equation} |
| 478 |
|
|
% |
| 479 |
|
|
% u qa cb |
| 480 |
|
|
% |
| 481 |
|
|
\begin{equation} |
| 482 |
|
|
U_{Q_{\bf a}C_{\bf b}}(r)= |
| 483 |
|
|
\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\bf a} v_{21}(r) |
| 484 |
|
|
\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{22}(r) \Bigr] |
| 485 |
|
|
\label{uquadch} |
| 486 |
|
|
\end{equation} |
| 487 |
|
|
% |
| 488 |
|
|
% u qa db |
| 489 |
|
|
% |
| 490 |
|
|
\begin{equation} |
| 491 |
|
|
\begin{split} |
| 492 |
|
|
%1 |
| 493 |
|
|
U_{Q_{\bf a}D_{\bf b}}(r)&= |
| 494 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 495 |
|
|
\text{Tr}\mathbf{Q}_{\mathbf{a}} |
| 496 |
|
|
\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) |
| 497 |
|
|
+2 ( \mathbf{D}_{\mathbf{b}} \cdot |
| 498 |
|
|
\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r) |
| 499 |
|
|
% 2 |
| 500 |
|
|
+\frac{1}{4\pi \epsilon_0} |
| 501 |
|
|
\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) |
| 502 |
|
|
\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) v_{32}(r) |
| 503 |
|
|
\label{uquaddip} |
| 504 |
|
|
\end{split} |
| 505 |
|
|
\end{equation} |
| 506 |
|
|
% |
| 507 |
|
|
% u qa qb |
| 508 |
|
|
% |
| 509 |
|
|
\begin{equation} |
| 510 |
|
|
\begin{split} |
| 511 |
|
|
%1 |
| 512 |
|
|
U_{Q_{\bf a}Q_{\bf b}}(r)&= |
| 513 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 514 |
|
|
\text{Tr} \mathbf{Q}_{\mathbf{a}} \text{Tr} \mathbf{Q}_{\mathbf{b}} |
| 515 |
|
|
+2 \text{Tr} \left( |
| 516 |
|
|
\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \right) \Bigr] v_{41}(r) |
| 517 |
|
|
\\ |
| 518 |
|
|
% 2 |
| 519 |
|
|
&+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}} |
| 520 |
|
|
\left( \hat{r} \cdot |
| 521 |
|
|
\mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) |
| 522 |
|
|
+\text{Tr}\mathbf{Q}_{\mathbf{b}} |
| 523 |
|
|
\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} |
| 524 |
|
|
\cdot \hat{r} \right) +4 (\hat{r} \cdot |
| 525 |
|
|
\mathbf{Q}_{{\mathbf a}}\cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) |
| 526 |
|
|
\Bigr] v_{42}(r) |
| 527 |
|
|
\\ |
| 528 |
|
|
% 4 |
| 529 |
|
|
&+ \frac{1}{4\pi \epsilon_0} |
| 530 |
|
|
\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) |
| 531 |
|
|
\left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) v_{43}(r). |
| 532 |
|
|
\label{uquadquad} |
| 533 |
|
|
\end{split} |
| 534 |
|
|
\end{equation} |
| 535 |
|
|
|
| 536 |
|
|
|
| 537 |
|
|
% |
| 538 |
|
|
% |
| 539 |
|
|
% TABLE of radial functions ---------------------------------------------------------------------------------------------------------------- |
| 540 |
|
|
% |
| 541 |
|
|
|
| 542 |
|
|
\begin{table*} |
| 543 |
|
|
\caption{\label{tab:tableenergy}Radial functions used in the energy and torque equations. Functions |
| 544 |
|
|
used in this table are defined in Appendices B and C.} |
| 545 |
|
|
\begin{ruledtabular} |
| 546 |
|
|
\begin{tabular}{cccc} |
| 547 |
|
|
Generic&Coulomb&Method 1&Method 2 |
| 548 |
|
|
\\ \hline |
| 549 |
|
|
% |
| 550 |
|
|
% |
| 551 |
|
|
% |
| 552 |
|
|
%Ch-Ch& |
| 553 |
|
|
$v_{01}(r)$ & |
| 554 |
|
|
$\frac{1}{r}$ & |
| 555 |
|
|
$f_0(r)$ & |
| 556 |
|
|
$f(r)-f(r_c)-(r-r_c)g(r_c)$ |
| 557 |
|
|
\\ |
| 558 |
|
|
% |
| 559 |
|
|
% |
| 560 |
|
|
% |
| 561 |
|
|
%Ch-Di& |
| 562 |
|
|
$v_{11}(r)$ & |
| 563 |
|
|
$-\frac{1}{r^2}$ & |
| 564 |
|
|
$g_1(r)$ & |
| 565 |
|
|
$g(r)-g(r_c)-(r-r_c)h(r_c)$ \\ |
| 566 |
|
|
% |
| 567 |
|
|
% |
| 568 |
|
|
% |
| 569 |
|
|
%Ch-Qu/Di-Di& |
| 570 |
|
|
$v_{21}(r)$ & |
| 571 |
|
|
$-\frac{1}{r^3} $ & |
| 572 |
|
|
$\frac{g_2(r)}{r} $ & |
| 573 |
|
|
$\frac{g(r)}{r}-\frac{g(r_c)}{r_c} -(r-r_c) |
| 574 |
|
|
\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right)$ \\ |
| 575 |
|
|
$v_{22}(r)$ & |
| 576 |
|
|
$\frac{3}{r^3} $ & |
| 577 |
|
|
$\left(-\frac{g_2(r)}{r} + h_2(r) \right)$ & |
| 578 |
|
|
$\left(-\frac{g(r)}{r}+h(r) \right) |
| 579 |
|
|
-\left(-\frac{g(r_c)}{r_c}+h(r_c) \right) $ \\ |
| 580 |
|
|
&&&$ -(r-r_c) \left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)$ |
| 581 |
|
|
\\ |
| 582 |
|
|
% |
| 583 |
|
|
% |
| 584 |
|
|
% |
| 585 |
|
|
%Di-Qu & |
| 586 |
|
|
$v_{31}(r)$ & |
| 587 |
|
|
$\frac{3}{r^4} $ & |
| 588 |
|
|
$\left(-\frac{g_3(r)}{r^2} + \frac{h_3(r)}{r} \right)$ & |
| 589 |
|
|
$\left( -\frac{g(r)}{r^2}+\frac{h(r)}{r} \right) |
| 590 |
|
|
-\left(-\frac{g(r_c)}{r_c^2}+\frac{h(r_c)}{r_c} \right) $\\ |
| 591 |
|
|
&&&$ -(r-r_c) \left(\frac{2g(r_c)}{r_c^3}-\frac{2h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ |
| 592 |
|
|
\\ |
| 593 |
|
|
% |
| 594 |
|
|
$v_{32}(r)$ & |
| 595 |
|
|
$-\frac{15}{r^4} $ & |
| 596 |
|
|
$\left( \frac{3g_3(r)}{r^2} - \frac{3h_3(r)}{r} + s_3(r) \right)$ & |
| 597 |
|
|
$\left( \frac{3g(r)}{r^2} - \frac{3h(r)}{r} + s(r) \right) |
| 598 |
|
|
- \left( \frac{3g(r_c)}{r_c^2} - \frac{3h(r_c)}{r_c} + s(r_c) \right)$ \\ |
| 599 |
|
|
&&&$ -(r-r_c) \left( \frac{-6g(r_c)}{r_c^3}+\frac{6h(r_c)}{r_c^2}-\frac{3s(r_c)}{r_c}+t(r_c) \right)$ |
| 600 |
|
|
\\ |
| 601 |
|
|
% |
| 602 |
|
|
% |
| 603 |
|
|
% |
| 604 |
|
|
%Qu-Qu& |
| 605 |
|
|
$v_{41}(r)$ & |
| 606 |
|
|
$\frac{3}{r^5} $ & |
| 607 |
|
|
$\left(-\frac{g_4(r)}{r^3} +\frac{h_4(r)}{r^2} \right) $ & |
| 608 |
|
|
$\left( -\frac{g(r)}{r^3} + \frac{h(r)}{r^2} \right) |
| 609 |
|
|
- \left( -\frac{g(r_c)}{r_c^3} + \frac{h(r_c)}{r_c^2} \right)$ \\ |
| 610 |
|
|
&&&$ -(r-r_c) \left( \frac{3g(r_c)}{r_c^4}-\frac{3h(r_c)}{r_c^3}+\frac{s(r_c)}{r_c^2} \right)$ |
| 611 |
|
|
\\ |
| 612 |
|
|
% 2 |
| 613 |
|
|
$v_{42}(r)$ & |
| 614 |
|
|
$- \frac{15}{r^5} $ & |
| 615 |
|
|
$\left( \frac{3g_4(r)}{r^3} - \frac{3h_4(r)}{r^2}+\frac{s_4(r)}{r} \right)$ & |
| 616 |
|
|
$\left( \frac{3g(r)}{r^3} - \frac{3h(r)}{r^2}+\frac{s(r)}{r} \right) |
| 617 |
|
|
-\left( \frac{3g(r_c)}{r_c^3} - \frac{3h(r_c)}{r_c^2}+\frac{s(r_c)}{r_c} \right)$ \\ |
| 618 |
|
|
&&&$ -(r-r_c) \left(- \frac{9g(r_c)}{r_c^4}+\frac{9h(r_c)}{r_c^3} |
| 619 |
|
|
-\frac{4s(r_c)}{r_c^2} + \frac{t(r_c)}{r_c}\right)$ |
| 620 |
|
|
\\ |
| 621 |
|
|
% 3 |
| 622 |
|
|
$v_{43}(r)$ & |
| 623 |
|
|
$ \frac{105}{r^5} $ & |
| 624 |
|
|
$\left(-\frac{15g_4(r)}{r^3}+\frac{15h_4(r)}{r^2}-\frac{6s_4(r)}{r} + t_4(r)\right) $ & |
| 625 |
|
|
$\left(-\frac{15g(r)}{r^3}+\frac{15h(r)}{r^2}-\frac{6s(r)}{r} + t(r)\right)$ \\ |
| 626 |
|
|
&&&$ -\left(-\frac{15g(r_c)}{r_c^3}+\frac{15h(r_c)}{r_c^2}-\frac{6s(r_c)}{r_c} + t(r_c)\right)$ \\ |
| 627 |
|
|
&&&$ -(r-r_c)\left(\frac{45g(r_c)}{r_c^4}-\frac{45h(r_c)}{r_c^3}+\frac{21s(r_c)}{r_c^2} |
| 628 |
|
|
-\frac{6t(r_c)}{r_c}+u(r_c) \right)$ \\ |
| 629 |
|
|
\end{tabular} |
| 630 |
|
|
\end{ruledtabular} |
| 631 |
|
|
\end{table*} |
| 632 |
|
|
% |
| 633 |
|
|
% |
| 634 |
|
|
% FORCE TABLE of radial functions ---------------------------------------------------------------------------------------------------------------- |
| 635 |
|
|
% |
| 636 |
|
|
|
| 637 |
|
|
\begin{table} |
| 638 |
|
|
\caption{\label{tab:tableFORCE}Radial functions used in the force equations.} |
| 639 |
|
|
\begin{ruledtabular} |
| 640 |
|
|
\begin{tabular}{cc} |
| 641 |
|
|
Generic&Method 1 or Method 2 |
| 642 |
|
|
\\ \hline |
| 643 |
|
|
% |
| 644 |
|
|
% |
| 645 |
|
|
% |
| 646 |
|
|
$w_a(r)$& |
| 647 |
|
|
$\frac{d v_{01}}{dr}$ \\ |
| 648 |
|
|
% |
| 649 |
|
|
% |
| 650 |
|
|
$w_b(r)$ & |
| 651 |
|
|
$\frac{d v_{11}}{dr} - \frac{v_{11}(r)}{r} $ \\ |
| 652 |
|
|
% |
| 653 |
|
|
$w_c(r)$ & |
| 654 |
|
|
$\frac{v_{11}(r)}{r}$ \\ |
| 655 |
|
|
% |
| 656 |
|
|
% |
| 657 |
|
|
$w_d(r)$& |
| 658 |
|
|
$\frac{d v_{21}}{dr}$ \\ |
| 659 |
|
|
% |
| 660 |
|
|
$w_e(r)$ & |
| 661 |
|
|
$\frac{v_{22}(r)}{r}$ \\ |
| 662 |
|
|
% |
| 663 |
|
|
% |
| 664 |
|
|
$w_f(r)$& |
| 665 |
|
|
$\frac{d v_{22}}{dr} - \frac{2v_{22}(r)}{r}$\\ |
| 666 |
|
|
% |
| 667 |
|
|
$w_g(r)$& |
| 668 |
|
|
$\frac{v_{31}(r)}{r}$\\ |
| 669 |
|
|
% |
| 670 |
|
|
$w_h(r)$ & |
| 671 |
|
|
$\frac{d v_{31}}{dr} -\frac{v_{31}(r)}{r}$\\ |
| 672 |
|
|
% 2 |
| 673 |
|
|
$w_i(r)$ & |
| 674 |
|
|
$\frac{v_{32}(r)}{r}$ \\ |
| 675 |
|
|
% |
| 676 |
|
|
$w_j(r)$ & |
| 677 |
|
|
$\frac{d v_{32}}{dr} - \frac{3v_{32}}{r}$ \\ |
| 678 |
|
|
% |
| 679 |
|
|
$w_k(r)$ & |
| 680 |
|
|
$\frac{d v_{41}}{dr} $ \\ |
| 681 |
|
|
% |
| 682 |
|
|
$w_l(r)$ & |
| 683 |
|
|
$\frac{d v_{42}}{dr} -\frac{2v_{42}(r)}{r}$ \\ |
| 684 |
|
|
% |
| 685 |
|
|
$w_m(r)$ & |
| 686 |
|
|
$\frac{d v_{43}}{dr} -\frac{4v_{43}(r)}{r}$ \\ |
| 687 |
|
|
% |
| 688 |
|
|
$w_n(r)$ & |
| 689 |
|
|
$\frac{v_{42}(r)}{r}$ \\ |
| 690 |
|
|
% |
| 691 |
|
|
$w_o(r)$ & |
| 692 |
|
|
$\frac{v_{43}(r)}{r}$ \\ |
| 693 |
|
|
% |
| 694 |
|
|
|
| 695 |
|
|
\end{tabular} |
| 696 |
|
|
\end{ruledtabular} |
| 697 |
|
|
\end{table} |
| 698 |
|
|
% |
| 699 |
|
|
% |
| 700 |
|
|
% |
| 701 |
|
|
|
| 702 |
|
|
\subsection{Forces} |
| 703 |
|
|
|
| 704 |
|
|
The force $\mathbf{F}_{\bf a}$ on $\bf{a}$ due to $\bf{b}$ is the negative of |
| 705 |
|
|
the force $\mathbf{F}_{\bf b}$ on $\bf{b}$ due to $\bf{a}$. For a simple charge-charge |
| 706 |
|
|
interaction, these forces will point along the $\pm \hat{r}$ directions, where |
| 707 |
|
|
$\mathbf{r}=\mathbf{r}_b - \mathbf{r}_a $. Thus |
| 708 |
|
|
% |
| 709 |
|
|
\begin{equation} |
| 710 |
|
|
F_{\bf a \alpha} = \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}}{\partial r} |
| 711 |
|
|
\quad \text{and} \quad F_{\bf b \alpha} |
| 712 |
|
|
= - \hat{r}_\alpha \frac{\partial U_{C_{\bf a}C_{\bf b}}} {\partial r} . |
| 713 |
|
|
\end{equation} |
| 714 |
|
|
% |
| 715 |
|
|
The concept of obtaining a force from an energy by taking a gradient is the same for |
| 716 |
|
|
higher-order multipole interactions, the trick is to make sure that all |
| 717 |
|
|
$r$-dependent derivatives are considered. |
| 718 |
|
|
As is pointed out by Allen and Germano, this is straightforward if the |
| 719 |
|
|
interaction energies are written recognizing explicit |
| 720 |
|
|
$\hat{r}$ and body axes ($\hat{a}_m$, $\hat{b}_n$) dependences: |
| 721 |
|
|
% |
| 722 |
|
|
\begin{equation} |
| 723 |
|
|
U(r,\{\hat{a}_m \cdot \hat{r} \}, |
| 724 |
|
|
\{\hat{b}_n\cdot \hat{r} \} |
| 725 |
|
|
\{\hat{a}_m \cdot \hat{b}_n \}) . |
| 726 |
|
|
\label{ugeneral} |
| 727 |
|
|
\end{equation} |
| 728 |
|
|
% |
| 729 |
|
|
Then, |
| 730 |
|
|
% |
| 731 |
|
|
\begin{equation} |
| 732 |
|
|
\mathbf{F}_{\bf a}=-\mathbf{F}_{\bf b} = \frac{\partial U}{\partial \mathbf{r}} |
| 733 |
|
|
= \frac{\partial U}{\partial r} \hat{r} |
| 734 |
|
|
+ \sum_m \left[ |
| 735 |
|
|
\frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})} |
| 736 |
|
|
\frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}} |
| 737 |
|
|
+ \frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})} |
| 738 |
|
|
\frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}} |
| 739 |
|
|
\right] \label{forceequation}. |
| 740 |
|
|
\end{equation} |
| 741 |
|
|
% |
| 742 |
|
|
Note our definition of $\mathbf{r}=\mathbf{r}_b - \mathbf{r}_b $ is opposite |
| 743 |
|
|
that of Allen and Germano. In simplifying the algebra, we also use: |
| 744 |
|
|
% |
| 745 |
|
|
\begin{eqnarray} |
| 746 |
|
|
\frac { \partial (\hat{a}_m \cdot \hat{r})}{\partial \mathbf{r}} |
| 747 |
|
|
= \frac{1}{r} \left( \hat{a}_m - (\hat{a}_m \cdot \hat{r})\hat{r} |
| 748 |
|
|
\right) \\ |
| 749 |
|
|
\frac { \partial (\hat{b}_m \cdot \hat{r})}{\partial \mathbf{r}} |
| 750 |
|
|
= \frac{1}{r} \left( \hat{b}_m - (\hat{b}_m \cdot \hat{r})\hat{r} |
| 751 |
|
|
\right) . |
| 752 |
|
|
\end{eqnarray} |
| 753 |
|
|
% |
| 754 |
|
|
We list below the force equations written in terms of space coordinates. The |
| 755 |
|
|
radial functions used in the two methods are listed in Table II. |
| 756 |
|
|
% |
| 757 |
|
|
%SPACE COORDINATES FORCE EQUTIONS |
| 758 |
|
|
% |
| 759 |
|
|
% ************************************************************************** |
| 760 |
|
|
% f ca cb |
| 761 |
|
|
% |
| 762 |
|
|
\begin{equation} |
| 763 |
|
|
\mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} = |
| 764 |
|
|
\frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r} |
| 765 |
|
|
\end{equation} |
| 766 |
|
|
% |
| 767 |
|
|
% |
| 768 |
|
|
% |
| 769 |
|
|
\begin{equation} |
| 770 |
|
|
\mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} = |
| 771 |
|
|
\frac{C_{\bf a}}{4\pi \epsilon_0} \Bigl[ |
| 772 |
|
|
\left( \hat{r} \cdot \mathbf{D}_{\mathbf{b}} \right) |
| 773 |
|
|
w_b(r) \hat{r} |
| 774 |
|
|
+ \mathbf{D}_{\mathbf{b}} w_c(r) \Bigr] |
| 775 |
|
|
\end{equation} |
| 776 |
|
|
% |
| 777 |
|
|
% |
| 778 |
|
|
% |
| 779 |
|
|
\begin{equation} |
| 780 |
|
|
\mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} = |
| 781 |
|
|
\frac{C_{\bf a }}{4\pi \epsilon_0} \Bigr[ |
| 782 |
|
|
\text{Tr}\mathbf{Q}_{\bf b} w_d(r) \hat{r} |
| 783 |
|
|
+ 2 \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} w_e(r) |
| 784 |
|
|
+ \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr] |
| 785 |
|
|
\end{equation} |
| 786 |
|
|
% |
| 787 |
|
|
% |
| 788 |
|
|
% |
| 789 |
|
|
\begin{equation} |
| 790 |
|
|
\mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} = |
| 791 |
|
|
-\frac{C_{\bf{b}}}{4\pi \epsilon_0} \Bigl[ |
| 792 |
|
|
\left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) w_b(r) \hat{r} |
| 793 |
|
|
+ \mathbf{D}_{\mathbf{a}} w_c(r) \Bigr] |
| 794 |
|
|
\end{equation} |
| 795 |
|
|
% |
| 796 |
|
|
% |
| 797 |
|
|
% |
| 798 |
|
|
\begin{equation} |
| 799 |
|
|
\mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} = |
| 800 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 801 |
|
|
- \mathbf{D}_{\mathbf {a}} \cdot \mathbf{D}_{\mathbf{b}} w_d(r) \hat{r} |
| 802 |
|
|
+ \left( \mathbf{D}_{\mathbf {a}} |
| 803 |
|
|
\left( \mathbf{D}_{\mathbf{b}} \cdot \hat{r} \right) |
| 804 |
|
|
+ \mathbf{D}_{\mathbf {b}} \left( \mathbf{D}_{\mathbf{a}} \cdot \hat{r} \right) \right) w_e(r) |
| 805 |
|
|
% 2 |
| 806 |
|
|
- \left( \hat{r} \cdot \mathbf{D}_{\mathbf {a}} \right) |
| 807 |
|
|
\left( \hat{r} \cdot \mathbf{D}_{\mathbf {b}} \right) w_f(r) \hat{r} \Bigr] |
| 808 |
|
|
\end{equation} |
| 809 |
|
|
% |
| 810 |
|
|
% |
| 811 |
|
|
% |
| 812 |
|
|
\begin{equation} |
| 813 |
|
|
\begin{split} |
| 814 |
|
|
\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} = |
| 815 |
|
|
& - \frac{1}{4\pi \epsilon_0} \Bigl[ |
| 816 |
|
|
\text{Tr}\mathbf{Q}_{\mathbf{b}} \mathbf{ D}_{\mathbf{a}} |
| 817 |
|
|
+2 \mathbf{D}_{\mathbf{a}} \cdot |
| 818 |
|
|
\mathbf{Q}_{\mathbf{b}} \Bigr] w_g(r) |
| 819 |
|
|
- \frac{1}{4\pi \epsilon_0} \Bigl[ |
| 820 |
|
|
\text{Tr}\mathbf{Q}_{\mathbf{b}} |
| 821 |
|
|
\left( \hat{r} \cdot \mathbf{D}_{\mathbf{a}} \right) |
| 822 |
|
|
+2 ( \mathbf{D}_{\mathbf{a}} \cdot |
| 823 |
|
|
\mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\ |
| 824 |
|
|
% 3 |
| 825 |
|
|
& - \frac{1}{4\pi \epsilon_0} \Bigl[\mathbf{ D}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) |
| 826 |
|
|
+2 (\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) (\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \Bigr] |
| 827 |
|
|
w_i(r) |
| 828 |
|
|
% 4 |
| 829 |
|
|
-\frac{1}{4\pi \epsilon_0} |
| 830 |
|
|
(\hat{r} \cdot \mathbf{D}_{\mathbf{a}} ) |
| 831 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) w_j(r) \hat{r} |
| 832 |
|
|
\end{split} |
| 833 |
|
|
\end{equation} |
| 834 |
|
|
% |
| 835 |
|
|
% |
| 836 |
|
|
\begin{equation} |
| 837 |
|
|
\mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} = |
| 838 |
|
|
\frac{C_{\bf b }}{4\pi \epsilon_0} \Bigr[ |
| 839 |
|
|
\text{Tr}\mathbf{Q}_{\bf a} w_d(r) \hat{r} |
| 840 |
|
|
+ 2 \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} w_e(r) |
| 841 |
|
|
+ \left( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r} \right) w_f(r) \hat{r} \Bigr] |
| 842 |
|
|
\end{equation} |
| 843 |
|
|
% |
| 844 |
|
|
\begin{equation} |
| 845 |
|
|
\begin{split} |
| 846 |
|
|
\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} = |
| 847 |
|
|
&\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 848 |
|
|
\text{Tr}\mathbf{Q}_{\mathbf{a}} \mathbf{D}_{\mathbf{b}} |
| 849 |
|
|
+2 \mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} \Bigr] w_g(r) |
| 850 |
|
|
% 2 |
| 851 |
|
|
+ \frac{1}{4\pi \epsilon_0} \Bigl[ \text{Tr}\mathbf{Q}_{\mathbf{a}} |
| 852 |
|
|
(\hat{r} \cdot \mathbf{D}_{\mathbf{b}}) |
| 853 |
|
|
+2 (\mathbf{D}_{\mathbf{b}} \cdot |
| 854 |
|
|
\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\ |
| 855 |
|
|
% 3 |
| 856 |
|
|
&+ \frac{1}{4\pi \epsilon_0} \Bigl[ \mathbf{D}_{\mathbf{b}} |
| 857 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) |
| 858 |
|
|
+2 (\hat{r} \cdot \mathbf{D}_{\mathbf{b}}) |
| 859 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \Bigr] w_i(r) |
| 860 |
|
|
% 4 |
| 861 |
|
|
+\frac{1}{4\pi \epsilon_0} |
| 862 |
|
|
(\hat{r} \cdot \mathbf{D}_{\mathbf{b}}) |
| 863 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) w_j(r) \hat{r} |
| 864 |
|
|
\end{split} |
| 865 |
|
|
\end{equation} |
| 866 |
|
|
% |
| 867 |
|
|
% |
| 868 |
|
|
% |
| 869 |
|
|
\begin{equation} |
| 870 |
|
|
\begin{split} |
| 871 |
|
|
\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} = |
| 872 |
|
|
+\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 873 |
|
|
\text{Tr}\mathbf{Q}_{\mathbf{a}} \text{Tr}\mathbf{Q}_{\mathbf{b}} \hat{r} |
| 874 |
|
|
+ 2 \text{Tr} ( \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_k(r) \hat{r} \\ |
| 875 |
|
|
% 2 |
| 876 |
|
|
+\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 877 |
|
|
2\text{Tr}\mathbf{Q}_{\mathbf{b}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} ) |
| 878 |
|
|
+ 2\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) |
| 879 |
|
|
% 3 |
| 880 |
|
|
+4 (\mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) |
| 881 |
|
|
+ 4(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}}) \Bigr] w_n(r) \\ |
| 882 |
|
|
% 4 |
| 883 |
|
|
+ \frac{1}{4\pi \epsilon_0} \Bigl[ |
| 884 |
|
|
\text{Tr}\mathbf{Q}_{\mathbf{a}} (\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) |
| 885 |
|
|
+ \text{Tr}\mathbf{Q}_{\mathbf{b}} |
| 886 |
|
|
(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) |
| 887 |
|
|
% 5 |
| 888 |
|
|
+4 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot |
| 889 |
|
|
\mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\ |
| 890 |
|
|
% |
| 891 |
|
|
+ \frac{1}{4\pi \epsilon_0} \Bigl[ |
| 892 |
|
|
+ 2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} ) |
| 893 |
|
|
(\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) |
| 894 |
|
|
%6 |
| 895 |
|
|
+2 (\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) |
| 896 |
|
|
(\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} ) \Bigr] w_o(r) \\ |
| 897 |
|
|
% 7 |
| 898 |
|
|
+ \frac{1}{4\pi \epsilon_0} |
| 899 |
|
|
(\hat{r} \cdot \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) |
| 900 |
|
|
(\hat{r} \cdot \mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) w_m(r) \hat{r} |
| 901 |
|
|
\end{split} |
| 902 |
|
|
\end{equation} |
| 903 |
|
|
% |
| 904 |
|
|
% |
| 905 |
|
|
% TORQUES SECTION ----------------------------------------------------------------------------------------- |
| 906 |
|
|
% |
| 907 |
|
|
\subsection{Torques} |
| 908 |
|
|
|
| 909 |
|
|
Following again Allen and Germano, when energies are written in the form |
| 910 |
|
|
of Eq.~({\ref{ugeneral}), then torques can be expressed as: |
| 911 |
|
|
% |
| 912 |
|
|
\begin{eqnarray} |
| 913 |
|
|
\mathbf{\tau}_{\bf a} = |
| 914 |
|
|
\sum_m |
| 915 |
|
|
\frac{\partial U}{\partial (\hat{a}_m \cdot \hat{r})} |
| 916 |
|
|
( \hat{r} \times \hat{a}_m ) |
| 917 |
|
|
-\sum_{mn} |
| 918 |
|
|
\frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)} |
| 919 |
|
|
(\hat{a}_m \times \hat{b}_n) \\ |
| 920 |
|
|
% |
| 921 |
|
|
\mathbf{\tau}_{\bf b} = |
| 922 |
|
|
\sum_m |
| 923 |
|
|
\frac{\partial U}{\partial (\hat{b}_m \cdot \hat{r})} |
| 924 |
|
|
( \hat{r} \times \hat{b}_m) |
| 925 |
|
|
+\sum_{mn} |
| 926 |
|
|
\frac{\partial U}{\partial (\hat{a}_m \cdot \hat{b}_n)} |
| 927 |
|
|
(\hat{a}_m \times \hat{b}_n) . |
| 928 |
|
|
\end{eqnarray} |
| 929 |
|
|
% |
| 930 |
|
|
% |
| 931 |
|
|
Here we list the torque equations written in terms of space coordinates. |
| 932 |
|
|
% |
| 933 |
|
|
% |
| 934 |
|
|
% |
| 935 |
|
|
\begin{equation} |
| 936 |
|
|
\mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} = |
| 937 |
|
|
\frac{C_{\bf a}}{4\pi \epsilon_0} (\hat{r} \times \mathbf{D}_{\mathbf{b}}) v_{11}(r) |
| 938 |
|
|
\end{equation} |
| 939 |
|
|
% |
| 940 |
|
|
% |
| 941 |
|
|
% |
| 942 |
|
|
\begin{equation} |
| 943 |
|
|
\mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} = |
| 944 |
|
|
\frac{2C_{\bf a}}{4\pi \epsilon_0} |
| 945 |
|
|
\hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{22}(r) |
| 946 |
|
|
\end{equation} |
| 947 |
|
|
% |
| 948 |
|
|
% |
| 949 |
|
|
% |
| 950 |
|
|
\begin{equation} |
| 951 |
|
|
\mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} = |
| 952 |
|
|
-\frac{C_{\bf b}}{4\pi \epsilon_0} |
| 953 |
|
|
(\hat{r} \times \mathbf{D}_{\mathbf{a}}) v_{11}(r) |
| 954 |
|
|
\end{equation} |
| 955 |
|
|
% |
| 956 |
|
|
% |
| 957 |
|
|
% |
| 958 |
|
|
\begin{equation} |
| 959 |
|
|
\mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} = |
| 960 |
|
|
\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r) |
| 961 |
|
|
% 2 |
| 962 |
|
|
-\frac{1}{4\pi \epsilon_0} |
| 963 |
|
|
(\hat{r} \times \mathbf{D}_{\mathbf {a}} ) |
| 964 |
|
|
(\hat{r} \cdot \mathbf{D}_{\mathbf {b}} ) v_{22}(r) |
| 965 |
|
|
\end{equation} |
| 966 |
|
|
% |
| 967 |
|
|
% |
| 968 |
|
|
% |
| 969 |
|
|
\begin{equation} |
| 970 |
|
|
\mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} = |
| 971 |
|
|
-\frac{1}{4\pi \epsilon_0} \mathbf{D}_{\mathbf {a}} \times \mathbf{D}_{\mathbf{b}} v_{21}(r) |
| 972 |
|
|
% 2 |
| 973 |
|
|
+\frac{1}{4\pi \epsilon_0} |
| 974 |
|
|
(\hat{r} \cdot \mathbf{D}_{\mathbf {a}} ) |
| 975 |
|
|
(\hat{r} \times \mathbf{D}_{\mathbf {b}} ) v_{22}(r) |
| 976 |
|
|
\end{equation} |
| 977 |
|
|
% |
| 978 |
|
|
% |
| 979 |
|
|
% |
| 980 |
|
|
\begin{equation} |
| 981 |
|
|
\mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} = |
| 982 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 983 |
|
|
-\text{Tr}\mathbf{Q}_{\mathbf{b}} |
| 984 |
|
|
(\hat{r} \times \mathbf{D}_{\mathbf{a}} ) |
| 985 |
|
|
+2 \mathbf{D}_{\mathbf{a}} \times |
| 986 |
|
|
(\mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) |
| 987 |
|
|
\Bigr] v_{31}(r) |
| 988 |
|
|
% 3 |
| 989 |
|
|
-\frac{1}{4\pi \epsilon_0} |
| 990 |
|
|
\ (\hat{r} \times \mathbf{D}_{\mathbf{a}} ) |
| 991 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{32}(r) |
| 992 |
|
|
\end{equation} |
| 993 |
|
|
% |
| 994 |
|
|
% |
| 995 |
|
|
% |
| 996 |
|
|
\begin{equation} |
| 997 |
|
|
\mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} = |
| 998 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 999 |
|
|
+2 ( \mathbf{D}_{\mathbf{a}} \cdot \mathbf{Q}_{\mathbf{b}} ) \times |
| 1000 |
|
|
\hat{r} |
| 1001 |
|
|
-2 \mathbf{D}_{\mathbf{a}} \times |
| 1002 |
|
|
(\mathbf{Q}_{\mathbf{b}} \cdot \hat{r}) |
| 1003 |
|
|
\Bigr] v_{31}(r) |
| 1004 |
|
|
% 2 |
| 1005 |
|
|
+\frac{2}{4\pi \epsilon_0} |
| 1006 |
|
|
(\hat{r} \cdot \mathbf{D}_{\mathbf{a}}) |
| 1007 |
|
|
(\hat{r} \cdot \mathbf{Q}_{\mathbf{b}}) \times \hat{r} v_{32}(r) |
| 1008 |
|
|
\end{equation} |
| 1009 |
|
|
% |
| 1010 |
|
|
% |
| 1011 |
|
|
% |
| 1012 |
|
|
\begin{equation} |
| 1013 |
|
|
\mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} = |
| 1014 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1015 |
|
|
-2 (\mathbf{D}_{\mathbf{b}} \cdot \mathbf{Q}_{\mathbf{a}} ) \times \hat{r} |
| 1016 |
|
|
+2 \mathbf{D}_{\mathbf{b}} \times |
| 1017 |
|
|
(\mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) |
| 1018 |
|
|
\Bigr] v_{31}(r) |
| 1019 |
|
|
% 3 |
| 1020 |
|
|
- \frac{2}{4\pi \epsilon_0} |
| 1021 |
|
|
(\hat{r} \cdot \mathbf{D}_{\mathbf{b}} ) |
| 1022 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf a}}) \times \hat{r} v_{32}(r) |
| 1023 |
|
|
\end{equation} |
| 1024 |
|
|
% |
| 1025 |
|
|
% |
| 1026 |
|
|
% |
| 1027 |
|
|
\begin{equation} |
| 1028 |
|
|
\mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} = |
| 1029 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1030 |
|
|
\text{Tr}\mathbf{Q}_{\mathbf{a}} |
| 1031 |
|
|
(\hat{r} \times \mathbf{D}_{\mathbf{b}} ) |
| 1032 |
|
|
+2 \mathbf{D}_{\mathbf{b}} \times |
| 1033 |
|
|
( \mathbf{Q}_{\mathbf{a}} \cdot \hat{r}) \Bigr] v_{31}(r) |
| 1034 |
|
|
% 2 |
| 1035 |
|
|
+\frac{1}{4\pi \epsilon_0} |
| 1036 |
|
|
(\hat{r} \times \mathbf{D}_{\mathbf{b}} ) |
| 1037 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) v_{32}(r) |
| 1038 |
|
|
\end{equation} |
| 1039 |
|
|
% |
| 1040 |
|
|
% |
| 1041 |
|
|
% |
| 1042 |
|
|
\begin{equation} |
| 1043 |
|
|
\begin{split} |
| 1044 |
|
|
\mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} = |
| 1045 |
|
|
&-\frac{4}{4\pi \epsilon_0} |
| 1046 |
|
|
\mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} |
| 1047 |
|
|
v_{41}(r) \\ |
| 1048 |
|
|
% 2 |
| 1049 |
|
|
&+ \frac{1}{4\pi \epsilon_0} |
| 1050 |
|
|
\Bigl[-2\text{Tr}\mathbf{Q}_{\mathbf{b}} |
| 1051 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times \hat{r} |
| 1052 |
|
|
+4 \hat{r} \times |
| 1053 |
|
|
( \mathbf{Q}_{{\mathbf a}} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) |
| 1054 |
|
|
% 3 |
| 1055 |
|
|
-4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} )\times |
| 1056 |
|
|
( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r} ) \Bigr] v_{42}(r) \\ |
| 1057 |
|
|
% 4 |
| 1058 |
|
|
&+ \frac{2}{4\pi \epsilon_0} |
| 1059 |
|
|
\hat{r} \times ( \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) |
| 1060 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) |
| 1061 |
|
|
\end{split} |
| 1062 |
|
|
\end{equation} |
| 1063 |
|
|
% |
| 1064 |
|
|
% |
| 1065 |
|
|
% |
| 1066 |
|
|
\begin{equation} |
| 1067 |
|
|
\begin{split} |
| 1068 |
|
|
\mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} = |
| 1069 |
|
|
&\frac{4}{4\pi \epsilon_0} |
| 1070 |
|
|
\mathbf{Q}_{{\mathbf a}} \times \mathbf{Q}_{{\mathbf b}} v_{41}(r) \\ |
| 1071 |
|
|
% 2 |
| 1072 |
|
|
&+ \frac{1}{4\pi \epsilon_0} \Bigl[- 2\text{Tr}\mathbf{Q}_{\mathbf{a}} |
| 1073 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf b}} ) \times \hat{r} |
| 1074 |
|
|
-4 (\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot |
| 1075 |
|
|
\mathbf{Q}_{{\mathbf b}} ) \times |
| 1076 |
|
|
\hat{r} |
| 1077 |
|
|
+4 ( \hat{r} \cdot \mathbf{Q}_{{\mathbf a}} ) \times |
| 1078 |
|
|
( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) |
| 1079 |
|
|
\Bigr] v_{42}(r) \\ |
| 1080 |
|
|
% 4 |
| 1081 |
|
|
&+ \frac{2}{4\pi \epsilon_0} |
| 1082 |
|
|
(\hat{r} \cdot \mathbf{Q}_{{\mathbf a}} \cdot \hat{r}) |
| 1083 |
|
|
\hat{r} \times ( \mathbf{Q}_{{\mathbf b}} \cdot \hat{r}) v_{43}(r) |
| 1084 |
|
|
\end{split} |
| 1085 |
|
|
\end{equation} |
| 1086 |
|
|
% |
| 1087 |
|
|
% |
| 1088 |
|
|
% |
| 1089 |
|
|
\begin{acknowledgments} |
| 1090 |
|
|
We wish to acknowledge the support of the author community in using |
| 1091 |
|
|
REV\TeX{}, offering suggestions and encouragement, testing new versions, |
| 1092 |
|
|
\dots. |
| 1093 |
|
|
\end{acknowledgments} |
| 1094 |
|
|
|
| 1095 |
|
|
\appendix |
| 1096 |
|
|
|
| 1097 |
|
|
\section{Smith's $B_l(r)$ functions for smeared-charge distributions} |
| 1098 |
|
|
|
| 1099 |
|
|
The following summarizes Smith's $B_l(r)$ functions and |
| 1100 |
|
|
includes formulas given in his appendix. |
| 1101 |
|
|
|
| 1102 |
|
|
The first function $B_0(r)$ is defined by |
| 1103 |
|
|
% |
| 1104 |
|
|
\begin{equation} |
| 1105 |
|
|
B_0(r)=\frac{\text{erfc}(\alpha r)}{r} = \frac{2}{\sqrt{\pi}r}= |
| 1106 |
|
|
\int_{\alpha r}^{\infty} \text{e}^{-s^2} ds . |
| 1107 |
|
|
\end{equation} |
| 1108 |
|
|
% |
| 1109 |
|
|
The first derivative of this function is |
| 1110 |
|
|
% |
| 1111 |
|
|
\begin{equation} |
| 1112 |
|
|
\frac{dB_0(r)}{dr}=-\frac{1}{r^2}\text{erfc}(\alpha r) |
| 1113 |
|
|
-\frac{2\alpha}{r\sqrt{\pi}}\text{e}^{-{\alpha}^2r^2} |
| 1114 |
|
|
\end{equation} |
| 1115 |
|
|
% |
| 1116 |
|
|
and can be rewritten in terms of a function $B_1(r)$: |
| 1117 |
|
|
% |
| 1118 |
|
|
\begin{equation} |
| 1119 |
|
|
B_1(r)=-\frac{1}{r}\frac{dB_0(r)}{dr} |
| 1120 |
|
|
\end{equation} |
| 1121 |
|
|
% |
| 1122 |
|
|
In general, |
| 1123 |
|
|
\begin{equation} |
| 1124 |
|
|
B_l(r)=-\frac{1}{r}\frac{dB_{l-1}(r)}{dr} |
| 1125 |
|
|
= \frac{1}{r^2} \left[ (2l-1)B_{l-1}(r) + \frac {(2\alpha^2)^l}{\alpha \sqrt{\pi}} |
| 1126 |
|
|
\text{e}^{-{\alpha}^2r^2} |
| 1127 |
|
|
\right] . |
| 1128 |
|
|
\end{equation} |
| 1129 |
|
|
% |
| 1130 |
|
|
Using these formulas, we find |
| 1131 |
|
|
% |
| 1132 |
|
|
\begin{eqnarray} |
| 1133 |
|
|
\frac{dB_0}{dr}=-rB_1(r) \\ |
| 1134 |
|
|
\frac{d^2B_0}{dr^2}=-B_1(r) + r^2B_2(r) \\ |
| 1135 |
|
|
\frac{d^3B_0}{dr^3}=3rB_2(r) - r^3B_3(r) \\ |
| 1136 |
|
|
\frac{d^4B_0}{dr^4}=3B_2(r) - 6r^2B_3(r)+r^4B_4(r) \\ |
| 1137 |
|
|
\frac{d^5B_0}{dr^5}=-15rB_3(r) + 10r^3B_4(r) -r^5B_5(r) . |
| 1138 |
|
|
\end{eqnarray} |
| 1139 |
|
|
% |
| 1140 |
|
|
As noted by Smith, |
| 1141 |
|
|
% |
| 1142 |
|
|
\begin{equation} |
| 1143 |
|
|
B_l(r)=\frac{(2l)!}{l!2^lr^{2l+1}} - \frac {(2\alpha^2)^{l+1}}{(2l+1)\alpha \sqrt{\pi}} |
| 1144 |
|
|
+\text{O}(r) . |
| 1145 |
|
|
\end{equation} |
| 1146 |
|
|
|
| 1147 |
|
|
\section{Method 1, the $r$-dependent factors} |
| 1148 |
|
|
|
| 1149 |
|
|
Using the shifted damped functions $f_n(r)$ defined by: |
| 1150 |
|
|
% |
| 1151 |
|
|
\begin{equation} |
| 1152 |
|
|
f_n(r)= B_0 \Big \lvert _r -\sum_{m=0}^{n+1} \frac {(r-r_c)^m}{m!} B_0^{(m)} \Big \lvert _{r_c} , |
| 1153 |
|
|
\end{equation} |
| 1154 |
|
|
% |
| 1155 |
|
|
we first provide formulas for successive derivatives of this function. (If there is |
| 1156 |
|
|
no damping, then $B_0(r)$ is replaced by $1/r$, as discussed in Section~\ref{damped???}.) First, we find: |
| 1157 |
|
|
% |
| 1158 |
|
|
\begin{equation} |
| 1159 |
|
|
\frac{\partial f_n}{\partial r_\alpha}=\hat{r}_\alpha \frac{d f_n}{d r} . |
| 1160 |
|
|
\end{equation} |
| 1161 |
|
|
% |
| 1162 |
|
|
This formula clearly brings in derivatives of Smith's $B_0(r)$ function, motivating us to |
| 1163 |
|
|
define higher-order derivatives as follows: |
| 1164 |
|
|
% |
| 1165 |
|
|
\begin{eqnarray} |
| 1166 |
|
|
g_n(r)= \frac{d f_n}{d r} = |
| 1167 |
|
|
B_0^{(1)} \Big \lvert _r -\sum_{m=0}^{n} \frac {(r-r_c)^m}{m!} B_0^{(m+1)} \Big \lvert _{r_c} \\ |
| 1168 |
|
|
h_n(r)= \frac{d^2f_n}{d r^2} = |
| 1169 |
|
|
B_0^{(2)} \Big \lvert _r -\sum_{m=0}^{n-1} \frac {(r-r_c)^m}{m!} B_0^{(m+2)} \Big \lvert _{r_c} \\ |
| 1170 |
|
|
s_n(r)= \frac{d^3f_n}{d r^3} = |
| 1171 |
|
|
B_0^{(3)} \Big \lvert _r -\sum_{m=0}^{n-2} \frac {(r-r_c)^m}{m!} B_0^{(m+3)} \Big \lvert _{r_c} \\ |
| 1172 |
|
|
t_n(r)= \frac{d^4f_n}{d r^4} = |
| 1173 |
|
|
B_0^{(4)} \Big \lvert _r -\sum_{m=0}^{n-3} \frac {(r-r_c)^m}{m!} B_0^{(m+4)} \Big \lvert _{r_c} \\ |
| 1174 |
|
|
u_n(r)= \frac{d^5f_n}{d r^5} = |
| 1175 |
|
|
B_0^{(5)} \Big \lvert _r -\sum_{m=0}^{n-4} \frac {(r-r_c)^m}{m!} B_0^{(m+5)} \Big \lvert _{r_c} . |
| 1176 |
|
|
\end{eqnarray} |
| 1177 |
|
|
% |
| 1178 |
|
|
We note that the last function needed (for quadrupole-quadrupole) is |
| 1179 |
|
|
% |
| 1180 |
|
|
\begin{equation} |
| 1181 |
|
|
u_4(r)=B_0^{(5)} \Big \lvert _r - B_0^{(5)} \Big \lvert _{r_c} . |
| 1182 |
|
|
\end{equation} |
| 1183 |
|
|
|
| 1184 |
|
|
The functions $f_n(r)$ to $u_n(r)$ are recursively computed and stored for values of $r$ |
| 1185 |
|
|
from $0$ to $r_c$. The functions needed are listed schematically below: |
| 1186 |
|
|
% |
| 1187 |
|
|
\begin{eqnarray} |
| 1188 |
|
|
f_0 \quad f_1 \qquad \qquad \quad & \nonumber \\ |
| 1189 |
|
|
g_0 \quad g_1 \quad g_2 \quad g_3 \quad &g_4 \nonumber \\ |
| 1190 |
|
|
h_1 \quad h_2 \quad h_3 \quad &h_4 \nonumber \\ |
| 1191 |
|
|
s_2 \quad s_3 \quad &s_4 \nonumber \\ |
| 1192 |
|
|
t_3 \quad &t_4 \nonumber \\ |
| 1193 |
|
|
&u_4 \nonumber . |
| 1194 |
|
|
\end{eqnarray} |
| 1195 |
|
|
|
| 1196 |
|
|
Using these functions, we find |
| 1197 |
|
|
% |
| 1198 |
|
|
\begin{equation} |
| 1199 |
|
|
\frac{\partial f_n}{\partial r_\alpha} =r_\alpha \frac {g_n}{r} |
| 1200 |
|
|
\end{equation} |
| 1201 |
|
|
% |
| 1202 |
|
|
\begin{equation} |
| 1203 |
|
|
\frac{\partial^2 f_n}{\partial r_\alpha \partial r_\beta} =\delta_{\alpha \beta}\frac {g_n}{r} |
| 1204 |
|
|
+r_\alpha r_\beta \left( -\frac{g_n}{r^3} +\frac{h_n}{r^2}\right) |
| 1205 |
|
|
\end{equation} |
| 1206 |
|
|
% |
| 1207 |
|
|
\begin{equation} |
| 1208 |
|
|
\frac{\partial^3 f_n}{\partial r_\alpha \partial r_\beta r_\gamma} = |
| 1209 |
|
|
\left( \delta_{\alpha \beta} r_\gamma + \delta_{\alpha \gamma} r_\beta + |
| 1210 |
|
|
\delta_{ \beta \gamma} r_\alpha \right) |
| 1211 |
|
|
\left( -\frac{g_n}{r^3} +\frac{h_n}{r^2} \right) |
| 1212 |
|
|
+ r_\alpha r_\beta r_\gamma |
| 1213 |
|
|
\left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) |
| 1214 |
|
|
\end{equation} |
| 1215 |
|
|
% |
| 1216 |
|
|
\begin{eqnarray} |
| 1217 |
|
|
\frac{\partial^4 f_n}{\partial r_\alpha \partial r_\beta r_\gamma r_\delta} = |
| 1218 |
|
|
\left( \delta_{\alpha \beta} \delta_{\gamma \delta} |
| 1219 |
|
|
+ \delta_{\alpha \gamma} \delta_{\beta \delta} |
| 1220 |
|
|
+\delta_{ \beta \gamma} \delta_{\alpha \delta} \right) |
| 1221 |
|
|
\left( - \frac{g_n}{r^3} + \frac{h_n}{r^2} \right) \nonumber \\ |
| 1222 |
|
|
+ \left( \delta_{\alpha \beta} r_\gamma r_\delta |
| 1223 |
|
|
+ \text{5 perm} |
| 1224 |
|
|
\right) \left( \frac{3 g_n}{r^5} - \frac{3h_n}{r^4} + \frac{s_n}{r^3} |
| 1225 |
|
|
\right) \nonumber \\ |
| 1226 |
|
|
+ r_\alpha r_\beta r_\gamma r_\delta |
| 1227 |
|
|
\left( -\frac{15g_n}{r^7} + \frac{15h_n}{r^6} - \frac{6s_n}{r^5} |
| 1228 |
|
|
+ \frac{t_n}{r^4} \right) |
| 1229 |
|
|
\end{eqnarray} |
| 1230 |
|
|
% |
| 1231 |
|
|
\begin{eqnarray} |
| 1232 |
|
|
\frac{\partial^5 f_n} |
| 1233 |
|
|
{\partial r_\alpha \partial r_\beta r_\gamma r_\delta r_\epsilon} = |
| 1234 |
|
|
\left( \delta_{\alpha \beta} \delta_{\gamma \delta} r_\epsilon |
| 1235 |
|
|
+ \text{14 perm} \right) |
| 1236 |
|
|
\left( \frac{3g_n}{r^5}-\frac{3h_n}{r^4} +\frac{s_n}{r^3} \right) \nonumber \\ |
| 1237 |
|
|
+ \left( \delta_{\alpha \beta} r_\gamma r_\delta r_\epsilon |
| 1238 |
|
|
+ \text{9 perm} |
| 1239 |
|
|
\right) \left(- \frac{15g_n}{r^7}+\frac{15h_n}{r^7} -\frac{6s_n}{r^5} +\frac{t_n}{r^4} |
| 1240 |
|
|
\right) \nonumber \\ |
| 1241 |
|
|
+ r_\alpha r_\beta r_\gamma r_\delta r_\epsilon |
| 1242 |
|
|
\left( \frac{105g_n}{r^9} - \frac{105h_n}{r^8} + \frac{45s_n}{r^7} |
| 1243 |
|
|
- \frac{10t_n}{r^6} +\frac{u_n}{r^5} \right) |
| 1244 |
|
|
\end{eqnarray} |
| 1245 |
|
|
% |
| 1246 |
|
|
% |
| 1247 |
|
|
% |
| 1248 |
|
|
\section{Method 2, the $r$-dependent factors} |
| 1249 |
|
|
|
| 1250 |
|
|
In method 2, the kernel is not expanded, rather the individual terms in the multipole interaction energies, |
| 1251 |
|
|
see Eq. (20?). For a smeared-charge distribution, this still brings into the algebra multiple derivatives |
| 1252 |
|
|
of the kernel $B_0(r)$. To denote these terms, we generalize the notation of the previous appendix. |
| 1253 |
|
|
For $f(r)=1/r$ (bare Coulomb) or $f(r)=B_0(r)$ (smeared charge) |
| 1254 |
|
|
% |
| 1255 |
|
|
\begin{eqnarray} |
| 1256 |
|
|
g(r)= \frac{df}{d r}\\ |
| 1257 |
|
|
h(r)= \frac{dg}{d r} = \frac{d^2f}{d r^2} \\ |
| 1258 |
|
|
s(r)= \frac{dh}{d r} = \frac{d^3f}{d r^3} \\ |
| 1259 |
|
|
t(r)= \frac{ds}{d r} = \frac{d^4f}{d r^4} \\ |
| 1260 |
|
|
u(r)= \frac{dt}{d r} =\frac{d^5f}{d r^5} . |
| 1261 |
|
|
\end{eqnarray} |
| 1262 |
|
|
% |
| 1263 |
|
|
For $f(r)=1/r$, Table I lists these derivatives under the column ``Bare Coulomb.'' Checks of algebra can be made by using limiting forms |
| 1264 |
|
|
of equations, e.g., the leading term in the function $g_n(r)$ has $r$ dependence given by $g(r)$. Equations (B9) to B(13) |
| 1265 |
|
|
are correct for method 2 if one just eliminates the subscript $n$. |
| 1266 |
|
|
|
| 1267 |
|
|
\section{Extra Material} |
| 1268 |
|
|
% |
| 1269 |
|
|
% |
| 1270 |
|
|
%Energy in body coordinate form --------------------------------------------------------------- |
| 1271 |
|
|
% |
| 1272 |
|
|
Here are the interaction energies written in terms of the body coordinates: |
| 1273 |
|
|
|
| 1274 |
|
|
% |
| 1275 |
|
|
% u ca cb |
| 1276 |
|
|
% |
| 1277 |
|
|
\begin{equation} |
| 1278 |
|
|
U_{C_{\bf a}C_{\bf b}}(r)= |
| 1279 |
|
|
\frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} v_{01}(r) |
| 1280 |
|
|
\end{equation} |
| 1281 |
|
|
% |
| 1282 |
|
|
% u ca db |
| 1283 |
|
|
% |
| 1284 |
|
|
\begin{equation} |
| 1285 |
|
|
U_{C_{\bf a}D_{\bf b}}(r)= |
| 1286 |
|
|
\frac{C_{\bf a}}{4\pi \epsilon_0} |
| 1287 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r) |
| 1288 |
|
|
\end{equation} |
| 1289 |
|
|
% |
| 1290 |
|
|
% u ca qb |
| 1291 |
|
|
% |
| 1292 |
|
|
\begin{equation} |
| 1293 |
|
|
U_{C_{\bf a}Q_{\bf b}}(r)= |
| 1294 |
|
|
\frac{C_{\bf a }\text{Tr}Q_{\bf b}}{4\pi \epsilon_0} |
| 1295 |
|
|
v_{21}(r) \nonumber \\ |
| 1296 |
|
|
+\frac{C_{\bf a}}{4\pi \epsilon_0} |
| 1297 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) |
| 1298 |
|
|
v_{22}(r) |
| 1299 |
|
|
\end{equation} |
| 1300 |
|
|
% |
| 1301 |
|
|
% u da cb |
| 1302 |
|
|
% |
| 1303 |
|
|
\begin{equation} |
| 1304 |
|
|
U_{D_{\bf a}C_{\bf b}}(r)= |
| 1305 |
|
|
-\frac{C_{\bf b}}{4\pi \epsilon_0} |
| 1306 |
|
|
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r) |
| 1307 |
|
|
\end{equation} |
| 1308 |
|
|
% |
| 1309 |
|
|
% u da db |
| 1310 |
|
|
% |
| 1311 |
|
|
\begin{equation} |
| 1312 |
|
|
\begin{split} |
| 1313 |
|
|
% 1 |
| 1314 |
|
|
U_{D_{\bf a}D_{\bf b}}(r)&= |
| 1315 |
|
|
-\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m} |
| 1316 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 1317 |
|
|
D_{\mathbf{b}n} v_{21}(r) \\ |
| 1318 |
|
|
% 2 |
| 1319 |
|
|
&-\frac{1}{4\pi \epsilon_0} |
| 1320 |
|
|
\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m} |
| 1321 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} |
| 1322 |
|
|
v_{22}(r) |
| 1323 |
|
|
\end{split} |
| 1324 |
|
|
\end{equation} |
| 1325 |
|
|
% |
| 1326 |
|
|
% u da qb |
| 1327 |
|
|
% |
| 1328 |
|
|
\begin{equation} |
| 1329 |
|
|
\begin{split} |
| 1330 |
|
|
% 1 |
| 1331 |
|
|
U_{D_{\bf a}Q_{\bf b}}(r)&= |
| 1332 |
|
|
-\frac{1}{4\pi \epsilon_0} \left( |
| 1333 |
|
|
\text{Tr}Q_{\mathbf{b}} |
| 1334 |
|
|
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} |
| 1335 |
|
|
+2\sum_{lmn}D_{\mathbf{a}l} |
| 1336 |
|
|
(\hat{a}_l \cdot \hat{b}_m) |
| 1337 |
|
|
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) |
| 1338 |
|
|
\right) v_{31}(r) \\ |
| 1339 |
|
|
% 2 |
| 1340 |
|
|
&-\frac{1}{4\pi \epsilon_0} |
| 1341 |
|
|
\sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l} |
| 1342 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 1343 |
|
|
Q_{{\mathbf b}mn} |
| 1344 |
|
|
(\hat{b}_n \cdot \hat{r}) v_{32}(r) |
| 1345 |
|
|
\end{split} |
| 1346 |
|
|
\end{equation} |
| 1347 |
|
|
% |
| 1348 |
|
|
% u qa cb |
| 1349 |
|
|
% |
| 1350 |
|
|
\begin{equation} |
| 1351 |
|
|
U_{Q_{\bf a}C_{\bf b}}(r)= |
| 1352 |
|
|
\frac{C_{\bf b }\text{Tr}Q_{\bf a}}{4\pi \epsilon_0} v_{21}(r) |
| 1353 |
|
|
+\frac{C_{\bf b}}{4\pi \epsilon_0} |
| 1354 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) v_{22}(r) |
| 1355 |
|
|
\end{equation} |
| 1356 |
|
|
% |
| 1357 |
|
|
% u qa db |
| 1358 |
|
|
% |
| 1359 |
|
|
\begin{equation} |
| 1360 |
|
|
\begin{split} |
| 1361 |
|
|
%1 |
| 1362 |
|
|
U_{Q_{\bf a}D_{\bf b}}(r)&= |
| 1363 |
|
|
\frac{1}{4\pi \epsilon_0} \left( |
| 1364 |
|
|
\text{Tr}Q_{\mathbf{a}} |
| 1365 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} |
| 1366 |
|
|
+2\sum_{lmn}D_{\mathbf{b}l} |
| 1367 |
|
|
(\hat{b}_l \cdot \hat{a}_m) |
| 1368 |
|
|
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) |
| 1369 |
|
|
\right) v_{31}(r) \\ |
| 1370 |
|
|
% 2 |
| 1371 |
|
|
&+\frac{1}{4\pi \epsilon_0} |
| 1372 |
|
|
\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l} |
| 1373 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 1374 |
|
|
Q_{{\mathbf a}mn} |
| 1375 |
|
|
(\hat{a}_n \cdot \hat{r}) v_{32}(r) |
| 1376 |
|
|
\end{split} |
| 1377 |
|
|
\end{equation} |
| 1378 |
|
|
% |
| 1379 |
|
|
% u qa qb |
| 1380 |
|
|
% |
| 1381 |
|
|
\begin{equation} |
| 1382 |
|
|
\begin{split} |
| 1383 |
|
|
%1 |
| 1384 |
|
|
U_{Q_{\bf a}Q_{\bf b}}(r)&= |
| 1385 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1386 |
|
|
\text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}} |
| 1387 |
|
|
+2\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p) |
| 1388 |
|
|
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
| 1389 |
|
|
(\hat{a}_m \cdot \hat{b}_n) \Bigr] |
| 1390 |
|
|
v_{41}(r) \\ |
| 1391 |
|
|
% 2 |
| 1392 |
|
|
&+ \frac{1}{4\pi \epsilon_0} |
| 1393 |
|
|
\Bigl[ \text{Tr}Q_{\mathbf{a}} |
| 1394 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{b}_l ) |
| 1395 |
|
|
Q_{{\mathbf b}lm} |
| 1396 |
|
|
(\hat{b}_m \cdot \hat{r}) |
| 1397 |
|
|
+\text{Tr}Q_{\mathbf{b}} |
| 1398 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l ) |
| 1399 |
|
|
Q_{{\mathbf a}lm} |
| 1400 |
|
|
(\hat{a}_m \cdot \hat{r}) \\ |
| 1401 |
|
|
% 3 |
| 1402 |
|
|
&+4 \sum_{lmnp} |
| 1403 |
|
|
(\hat{r} \cdot \hat{a}_l ) |
| 1404 |
|
|
Q_{{\mathbf a}lm} |
| 1405 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 1406 |
|
|
Q_{{\mathbf b}np} |
| 1407 |
|
|
(\hat{b}_p \cdot \hat{r}) |
| 1408 |
|
|
\Bigr] v_{42}(r) \\ |
| 1409 |
|
|
% 4 |
| 1410 |
|
|
&+ \frac{1}{4\pi \epsilon_0} |
| 1411 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) |
| 1412 |
|
|
Q_{{\mathbf a}lm} |
| 1413 |
|
|
(\hat{a}_m \cdot \hat{r}) |
| 1414 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) |
| 1415 |
|
|
Q_{{\mathbf b}np} |
| 1416 |
|
|
(\hat{b}_p \cdot \hat{r}) v_{43}(r). |
| 1417 |
|
|
\end{split} |
| 1418 |
|
|
\end{equation} |
| 1419 |
|
|
% |
| 1420 |
|
|
|
| 1421 |
|
|
|
| 1422 |
|
|
% BODY coordinates force equations -------------------------------------------- |
| 1423 |
|
|
% |
| 1424 |
|
|
% |
| 1425 |
|
|
Here are the force equations written in terms of body coordinates. |
| 1426 |
|
|
% |
| 1427 |
|
|
% f ca cb |
| 1428 |
|
|
% |
| 1429 |
|
|
\begin{equation} |
| 1430 |
|
|
\mathbf{F}_{{\bf a}C_{\bf a}C_{\bf b}} = |
| 1431 |
|
|
\frac{C_{\bf a} C_{\bf b}}{4\pi \epsilon_0} w_a(r) \hat{r} |
| 1432 |
|
|
\end{equation} |
| 1433 |
|
|
% |
| 1434 |
|
|
% f ca db |
| 1435 |
|
|
% |
| 1436 |
|
|
\begin{equation} |
| 1437 |
|
|
\mathbf{F}_{{\bf a}C_{\bf a}D_{\bf b}} = |
| 1438 |
|
|
\frac{C_{\bf a}}{4\pi \epsilon_0} |
| 1439 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} w_b(r) \hat{r} |
| 1440 |
|
|
+\frac{C_{\bf a}}{4\pi \epsilon_0} |
| 1441 |
|
|
\sum_n D_{\mathbf{b}n} \hat{b}_n w_c(r) |
| 1442 |
|
|
\end{equation} |
| 1443 |
|
|
% |
| 1444 |
|
|
% f ca qb |
| 1445 |
|
|
% |
| 1446 |
|
|
\begin{equation} |
| 1447 |
|
|
\begin{split} |
| 1448 |
|
|
% 1 |
| 1449 |
|
|
\mathbf{F}_{{\bf a}C_{\bf a}Q_{\bf b}} = |
| 1450 |
|
|
\frac{1}{4\pi \epsilon_0} |
| 1451 |
|
|
C_{\bf a }\text{Tr}Q_{\bf b} w_d(r) \hat{r} |
| 1452 |
|
|
+ 2C_{\bf a } \sum_l \hat{b}_l Q_{{\mathbf b}ln} (\hat{b}_n \cdot \hat{r}) w_e(r) \\ |
| 1453 |
|
|
% 2 |
| 1454 |
|
|
+\frac{C_{\bf a}}{4\pi \epsilon_0} |
| 1455 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) Q_{{\mathbf b}mn} (\hat{b}_n \cdot \hat{r}) w_f(r) \hat{r} |
| 1456 |
|
|
\end{split} |
| 1457 |
|
|
\end{equation} |
| 1458 |
|
|
% |
| 1459 |
|
|
% f da cb |
| 1460 |
|
|
% |
| 1461 |
|
|
\begin{equation} |
| 1462 |
|
|
\mathbf{F}_{{\bf a}D_{\bf a}C_{\bf b}} = |
| 1463 |
|
|
-\frac{C_{\bf{b}}}{4\pi \epsilon_0} |
| 1464 |
|
|
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} w_b(r) \hat{r} |
| 1465 |
|
|
-\frac{C_{\bf{b}}}{4\pi \epsilon_0} |
| 1466 |
|
|
\sum_n D_{\mathbf{a}n} \hat{a}_n w_c(r) |
| 1467 |
|
|
\end{equation} |
| 1468 |
|
|
% |
| 1469 |
|
|
% f da db |
| 1470 |
|
|
% |
| 1471 |
|
|
\begin{equation} |
| 1472 |
|
|
\begin{split} |
| 1473 |
|
|
% 1 |
| 1474 |
|
|
\mathbf{F}_{{\bf a}D_{\bf a}D_{\bf b}} &= |
| 1475 |
|
|
-\frac{1}{4\pi \epsilon_0} |
| 1476 |
|
|
\sum_{mn} D_{\mathbf {a}m} |
| 1477 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 1478 |
|
|
D_{\mathbf{b}n} w_d(r) \hat{r} |
| 1479 |
|
|
-\frac{1}{4\pi \epsilon_0} |
| 1480 |
|
|
\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m} |
| 1481 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} w_f(r) \hat{r} \\ |
| 1482 |
|
|
% 2 |
| 1483 |
|
|
& \quad + \frac{1}{4\pi \epsilon_0} |
| 1484 |
|
|
\Bigl[ \sum_m D_{\mathbf {a}m} |
| 1485 |
|
|
\hat{a}_m \sum_n D_{\mathbf{b}n} |
| 1486 |
|
|
(\hat{b}_n \cdot \hat{r}) |
| 1487 |
|
|
+ \sum_m D_{\mathbf {b}m} |
| 1488 |
|
|
\hat{b}_m \sum_n D_{\mathbf{a}n} |
| 1489 |
|
|
(\hat{a}_n \cdot \hat{r}) \Bigr] w_e(r) \\ |
| 1490 |
|
|
\end{split} |
| 1491 |
|
|
\end{equation} |
| 1492 |
|
|
% |
| 1493 |
|
|
% f da qb |
| 1494 |
|
|
% |
| 1495 |
|
|
\begin{equation} |
| 1496 |
|
|
\begin{split} |
| 1497 |
|
|
% 1 |
| 1498 |
|
|
&\mathbf{F}_{{\bf a}D_{\bf a}Q_{\bf b}} = |
| 1499 |
|
|
- \frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1500 |
|
|
\text{Tr}Q_{\mathbf{b}} |
| 1501 |
|
|
\sum_l D_{\mathbf{a}l} \hat{a}_l |
| 1502 |
|
|
+2\sum_{lmn} D_{\mathbf{a}l} |
| 1503 |
|
|
(\hat{a}_l \cdot \hat{b}_m) |
| 1504 |
|
|
Q_{\mathbf{b}mn} \hat{b}_n \Bigr] w_g(r) \\ |
| 1505 |
|
|
% 3 |
| 1506 |
|
|
& - \frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1507 |
|
|
\text{Tr}Q_{\mathbf{b}} |
| 1508 |
|
|
\sum_n (\hat{r} \cdot \hat{a}_n) D_{\mathbf{a}n} |
| 1509 |
|
|
+2\sum_{lmn}D_{\mathbf{a}l} |
| 1510 |
|
|
(\hat{a}_l \cdot \hat{b}_m) |
| 1511 |
|
|
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\ |
| 1512 |
|
|
% 4 |
| 1513 |
|
|
&+ \frac{1}{4\pi \epsilon_0} |
| 1514 |
|
|
\Bigl[\sum_l D_{\mathbf{a}l} \hat{a}_l |
| 1515 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 1516 |
|
|
Q_{{\mathbf b}mn} |
| 1517 |
|
|
(\hat{b}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{a}_l) |
| 1518 |
|
|
D_{\mathbf{a}l} |
| 1519 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 1520 |
|
|
Q_{{\mathbf b}mn} \hat{b}_n \Bigr] w_i(r)\\ |
| 1521 |
|
|
% 6 |
| 1522 |
|
|
& -\frac{1}{4\pi \epsilon_0} |
| 1523 |
|
|
\sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l} |
| 1524 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 1525 |
|
|
Q_{{\mathbf b}mn} |
| 1526 |
|
|
(\hat{b}_n \cdot \hat{r}) w_j(r) \hat{r} |
| 1527 |
|
|
\end{split} |
| 1528 |
|
|
\end{equation} |
| 1529 |
|
|
% |
| 1530 |
|
|
% force qa cb |
| 1531 |
|
|
% |
| 1532 |
|
|
\begin{equation} |
| 1533 |
|
|
\begin{split} |
| 1534 |
|
|
% 1 |
| 1535 |
|
|
\mathbf{F}_{{\bf a}Q_{\bf a}C_{\bf b}} &= |
| 1536 |
|
|
\frac{1}{4\pi \epsilon_0} |
| 1537 |
|
|
C_{\bf b }\text{Tr}Q_{\bf a} \hat{r} w_d(r) |
| 1538 |
|
|
+ \frac{2C_{\bf b }}{4\pi \epsilon_0} \sum_l \hat{a}_l Q_{{\mathbf a}ln} (\hat{a}_n \cdot \hat{r}) w_e(r) \\ |
| 1539 |
|
|
% 2 |
| 1540 |
|
|
& +\frac{C_{\bf b}}{4\pi \epsilon_0} |
| 1541 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) Q_{{\mathbf a}mn} (\hat{a}_n \cdot \hat{r}) w_f(r) \hat{r} |
| 1542 |
|
|
\end{split} |
| 1543 |
|
|
\end{equation} |
| 1544 |
|
|
% |
| 1545 |
|
|
% f qa db |
| 1546 |
|
|
% |
| 1547 |
|
|
\begin{equation} |
| 1548 |
|
|
\begin{split} |
| 1549 |
|
|
% 1 |
| 1550 |
|
|
&\mathbf{F}_{{\bf a}Q_{\bf a}D_{\bf b}} = |
| 1551 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1552 |
|
|
\text{Tr}Q_{\mathbf{a}} |
| 1553 |
|
|
\sum_l D_{\mathbf{b}l} \hat{b}_l |
| 1554 |
|
|
+2\sum_{lmn} D_{\mathbf{b}l} |
| 1555 |
|
|
(\hat{b}_l \cdot \hat{a}_m) |
| 1556 |
|
|
Q_{\mathbf{a}mn} \hat{a}_n \Bigr] |
| 1557 |
|
|
w_g(r)\\ |
| 1558 |
|
|
% 3 |
| 1559 |
|
|
& + \frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1560 |
|
|
\text{Tr}Q_{\mathbf{a}} |
| 1561 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf{b}n} |
| 1562 |
|
|
+2\sum_{lmn}D_{\mathbf{b}l} |
| 1563 |
|
|
(\hat{b}_l \cdot \hat{a}_m) |
| 1564 |
|
|
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) \Bigr] w_h(r) \hat{r} \\ |
| 1565 |
|
|
% 4 |
| 1566 |
|
|
& + \frac{1}{4\pi \epsilon_0} \Bigl[ \sum_l D_{\mathbf{b}l} \hat{b}_l |
| 1567 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 1568 |
|
|
Q_{{\mathbf a}mn} |
| 1569 |
|
|
(\hat{a}_n \cdot \hat{r}) +2 \sum_l (\hat{r} \cdot \hat{b}_l) |
| 1570 |
|
|
D_{\mathbf{b}l} |
| 1571 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 1572 |
|
|
Q_{{\mathbf a}mn} \hat{a}_n \Bigr] w_i(r) \\ |
| 1573 |
|
|
% 6 |
| 1574 |
|
|
& +\frac{1}{4\pi \epsilon_0} |
| 1575 |
|
|
\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l} |
| 1576 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 1577 |
|
|
Q_{{\mathbf a}mn} |
| 1578 |
|
|
(\hat{a}_n \cdot \hat{r}) w_j(r) \hat{r} |
| 1579 |
|
|
\end{split} |
| 1580 |
|
|
\end{equation} |
| 1581 |
|
|
% |
| 1582 |
|
|
% f qa qb |
| 1583 |
|
|
% |
| 1584 |
|
|
\begin{equation} |
| 1585 |
|
|
\begin{split} |
| 1586 |
|
|
&\mathbf{F}_{{\bf a}Q_{\bf a}Q_{\bf b}} = |
| 1587 |
|
|
\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1588 |
|
|
\text{Tr}Q_{\mathbf{a}} \text{Tr}Q_{\mathbf{b}} |
| 1589 |
|
|
+ 2 \sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p) |
| 1590 |
|
|
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
| 1591 |
|
|
(\hat{a}_m \cdot \hat{b}_n) \Bigr] w_k(r) \hat{r}\\ |
| 1592 |
|
|
&+\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1593 |
|
|
2\text{Tr}Q_{\mathbf{b}} \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m |
| 1594 |
|
|
+ 2\text{Tr}Q_{\mathbf{a}} \sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} \hat{b}_m \\ |
| 1595 |
|
|
&+ 4\sum_{lmnp} \hat{a}_l Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) |
| 1596 |
|
|
+ 4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_p |
| 1597 |
|
|
\Bigr] w_n(r) \\ |
| 1598 |
|
|
&+ \frac{1}{4\pi \epsilon_0} |
| 1599 |
|
|
\Bigl[ \text{Tr}Q_{\mathbf{a}} |
| 1600 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{b}_l) Q_{\mathbf{b}lm} (\hat{b}_m \cdot \hat{r}) |
| 1601 |
|
|
+ \text{Tr}Q_{\mathbf{b}} |
| 1602 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) \\ |
| 1603 |
|
|
&+4\sum_{lmnp} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{b}_n) |
| 1604 |
|
|
Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) \Bigr] w_l(r) \hat{r} \\ |
| 1605 |
|
|
% |
| 1606 |
|
|
&+\frac{1}{4\pi \epsilon_0} \Bigl[ |
| 1607 |
|
|
2\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} \hat{a}_m |
| 1608 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_n \cdot \hat{r}) \\ |
| 1609 |
|
|
&+2 \sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) |
| 1610 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} \hat{b}_n \Bigr] w_o(r) \hat{r} \\ |
| 1611 |
|
|
& + \frac{1}{4\pi \epsilon_0} |
| 1612 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{\mathbf{a}lm} (\hat{a}_m \cdot \hat{r}) |
| 1613 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) Q_{\mathbf{b}np} (\hat{b}_p \cdot \hat{r}) w_m(r) \hat{r} |
| 1614 |
|
|
\end{split} |
| 1615 |
|
|
\end{equation} |
| 1616 |
|
|
% |
| 1617 |
|
|
Here we list the form of the non-zero damped shifted multipole torques showing |
| 1618 |
|
|
explicitly dependences on body axes: |
| 1619 |
|
|
% |
| 1620 |
|
|
% t ca db |
| 1621 |
|
|
% |
| 1622 |
|
|
\begin{equation} |
| 1623 |
|
|
\mathbf{\tau}_{{\bf b}C_{\bf a}D_{\bf b}} = |
| 1624 |
|
|
\frac{C_{\bf a}}{4\pi \epsilon_0} |
| 1625 |
|
|
\sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} \, v_{11}(r) |
| 1626 |
|
|
\end{equation} |
| 1627 |
|
|
% |
| 1628 |
|
|
% t ca qb |
| 1629 |
|
|
% |
| 1630 |
|
|
\begin{equation} |
| 1631 |
|
|
\mathbf{\tau}_{{\bf b}C_{\bf a}Q_{\bf b}} = |
| 1632 |
|
|
\frac{2C_{\bf a}}{4\pi \epsilon_0} |
| 1633 |
|
|
\sum_{lm} (\hat{r} \times \hat{b}_l) Q_{{\mathbf b}lm} (\hat{b}_m \cdot \hat{r}) v_{22}(r) |
| 1634 |
|
|
\end{equation} |
| 1635 |
|
|
% |
| 1636 |
|
|
% t da cb |
| 1637 |
|
|
% |
| 1638 |
|
|
\begin{equation} |
| 1639 |
|
|
\mathbf{\tau}_{{\bf a}D_{\bf a}C_{\bf b}} = |
| 1640 |
|
|
-\frac{C_{\bf b}}{4\pi \epsilon_0} |
| 1641 |
|
|
\sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} \, v_{11}(r) |
| 1642 |
|
|
\end{equation}% |
| 1643 |
|
|
% |
| 1644 |
|
|
% |
| 1645 |
|
|
% ta da db |
| 1646 |
|
|
% |
| 1647 |
|
|
\begin{equation} |
| 1648 |
|
|
\begin{split} |
| 1649 |
|
|
% 1 |
| 1650 |
|
|
\mathbf{\tau}_{{\bf a}D_{\bf a}D_{\bf b}} &= |
| 1651 |
|
|
\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m} |
| 1652 |
|
|
(\hat{a}_m \times \hat{b}_n) |
| 1653 |
|
|
D_{\mathbf{b}n} v_{21}(r) \\ |
| 1654 |
|
|
% 2 |
| 1655 |
|
|
&-\frac{1}{4\pi \epsilon_0} |
| 1656 |
|
|
\sum_m (\hat{r} \times \hat{a}_m) D_{\mathbf {a}m} |
| 1657 |
|
|
\sum_n (\hat{r} \cdot \hat{b}_n) D_{\mathbf {b}n} v_{22}(r) |
| 1658 |
|
|
\end{split} |
| 1659 |
|
|
\end{equation} |
| 1660 |
|
|
% |
| 1661 |
|
|
% tb da db |
| 1662 |
|
|
% |
| 1663 |
|
|
\begin{equation} |
| 1664 |
|
|
\begin{split} |
| 1665 |
|
|
% 1 |
| 1666 |
|
|
\mathbf{\tau}_{{\bf b}D_{\bf a}D_{\bf b}} &= |
| 1667 |
|
|
-\frac{1}{4\pi \epsilon_0} \sum_{mn} D_{\mathbf {a}m} |
| 1668 |
|
|
(\hat{a}_m \times \hat{b}_n) |
| 1669 |
|
|
D_{\mathbf{b}n} v_{21}(r) \\ |
| 1670 |
|
|
% 2 |
| 1671 |
|
|
&+\frac{1}{4\pi \epsilon_0} |
| 1672 |
|
|
\sum_m (\hat{r} \cdot \hat{a}_m) D_{\mathbf {a}m} |
| 1673 |
|
|
\sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf {b}n} v_{22}(r) |
| 1674 |
|
|
\end{split} |
| 1675 |
|
|
\end{equation} |
| 1676 |
|
|
% |
| 1677 |
|
|
% ta da qb |
| 1678 |
|
|
% |
| 1679 |
|
|
\begin{equation} |
| 1680 |
|
|
\begin{split} |
| 1681 |
|
|
% 1 |
| 1682 |
|
|
\mathbf{\tau}_{{\bf a}D_{\bf a}Q_{\bf b}} &= |
| 1683 |
|
|
\frac{1}{4\pi \epsilon_0} \left( |
| 1684 |
|
|
-\text{Tr}Q_{\mathbf{b}} |
| 1685 |
|
|
\sum_n (\hat{r} \times \hat{a}_n) D_{\mathbf{a}n} |
| 1686 |
|
|
+2\sum_{lmn}D_{\mathbf{a}l} |
| 1687 |
|
|
(\hat{a}_l \times \hat{b}_m) |
| 1688 |
|
|
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) |
| 1689 |
|
|
\right) v_{31}(r)\\ |
| 1690 |
|
|
% 2 |
| 1691 |
|
|
&-\frac{1}{4\pi \epsilon_0} |
| 1692 |
|
|
\sum_l (\hat{r} \times \hat{a}_l) D_{\mathbf{a}l} |
| 1693 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 1694 |
|
|
Q_{{\mathbf b}mn} |
| 1695 |
|
|
(\hat{b}_n \cdot \hat{r}) v_{32}(r) |
| 1696 |
|
|
\end{split} |
| 1697 |
|
|
\end{equation} |
| 1698 |
|
|
% |
| 1699 |
|
|
% tb da qb |
| 1700 |
|
|
% |
| 1701 |
|
|
\begin{equation} |
| 1702 |
|
|
\begin{split} |
| 1703 |
|
|
% 1 |
| 1704 |
|
|
\mathbf{\tau}_{{\bf b}D_{\bf a}Q_{\bf b}} &= |
| 1705 |
|
|
\frac{1}{4\pi \epsilon_0} \left( |
| 1706 |
|
|
-2\sum_{lmn}D_{\mathbf{a}l} |
| 1707 |
|
|
(\hat{a}_l \cdot \hat{b}_m) |
| 1708 |
|
|
Q_{\mathbf{b}mn} (\hat{r} \times \hat{b}_n) |
| 1709 |
|
|
-2\sum_{lmn}D_{\mathbf{a}l} |
| 1710 |
|
|
(\hat{a}_l \times \hat{b}_m) |
| 1711 |
|
|
Q_{\mathbf{b}mn} (\hat{b}_n \cdot \hat{r}) |
| 1712 |
|
|
\right) v_{31}(r) \\ |
| 1713 |
|
|
% 2 |
| 1714 |
|
|
&-\frac{2}{4\pi \epsilon_0} |
| 1715 |
|
|
\sum_l (\hat{r} \cdot \hat{a}_l) D_{\mathbf{a}l} |
| 1716 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{b}_m) |
| 1717 |
|
|
Q_{{\mathbf b}mn} |
| 1718 |
|
|
(\hat{r}\times \hat{b}_n) v_{32}(r) |
| 1719 |
|
|
\end{split} |
| 1720 |
|
|
\end{equation} |
| 1721 |
|
|
% |
| 1722 |
|
|
% ta qa cb |
| 1723 |
|
|
% |
| 1724 |
|
|
\begin{equation} |
| 1725 |
|
|
\mathbf{\tau}_{{\bf a}Q_{\bf a}C_{\bf b}} = |
| 1726 |
|
|
\frac{2C_{\bf a}}{4\pi \epsilon_0} |
| 1727 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) Q_{{\mathbf a}lm} (\hat{r} \times \hat{a}_m) v_{22}(r) |
| 1728 |
|
|
\end{equation} |
| 1729 |
|
|
% |
| 1730 |
|
|
% ta qa db |
| 1731 |
|
|
% |
| 1732 |
|
|
\begin{equation} |
| 1733 |
|
|
\begin{split} |
| 1734 |
|
|
% 1 |
| 1735 |
|
|
\mathbf{\tau}_{{\bf a}Q_{\bf a}D_{\bf b}} &= |
| 1736 |
|
|
\frac{1}{4\pi \epsilon_0} \left( |
| 1737 |
|
|
2\sum_{lmn}D_{\mathbf{b}l} |
| 1738 |
|
|
(\hat{b}_l \cdot \hat{a}_m) |
| 1739 |
|
|
Q_{\mathbf{a}mn} (\hat{r} \times \hat{a}_n) |
| 1740 |
|
|
+2\sum_{lmn}D_{\mathbf{b}l} |
| 1741 |
|
|
(\hat{a}_l \times \hat{b}_m) |
| 1742 |
|
|
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) |
| 1743 |
|
|
\right) v_{31}(r) \\ |
| 1744 |
|
|
% 2 |
| 1745 |
|
|
&+\frac{2}{4\pi \epsilon_0} |
| 1746 |
|
|
\sum_l (\hat{r} \cdot \hat{b}_l) D_{\mathbf{b}l} |
| 1747 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 1748 |
|
|
Q_{{\mathbf a}mn} |
| 1749 |
|
|
(\hat{r}\times \hat{a}_n) v_{32}(r) |
| 1750 |
|
|
\end{split} |
| 1751 |
|
|
\end{equation} |
| 1752 |
|
|
% |
| 1753 |
|
|
% tb qa db |
| 1754 |
|
|
% |
| 1755 |
|
|
\begin{equation} |
| 1756 |
|
|
\begin{split} |
| 1757 |
|
|
% 1 |
| 1758 |
|
|
\mathbf{\tau}_{{\bf b}Q_{\bf a}D_{\bf b}} &= |
| 1759 |
|
|
\frac{1}{4\pi \epsilon_0} \left( |
| 1760 |
|
|
\text{Tr}Q_{\mathbf{a}} |
| 1761 |
|
|
\sum_n (\hat{r} \times \hat{b}_n) D_{\mathbf{b}n} |
| 1762 |
|
|
+2\sum_{lmn}D_{\mathbf{b}l} |
| 1763 |
|
|
(\hat{a}_l \times \hat{b}_m) |
| 1764 |
|
|
Q_{\mathbf{a}mn} (\hat{a}_n \cdot \hat{r}) |
| 1765 |
|
|
\right) v_{31}(r)\\ |
| 1766 |
|
|
% 2 |
| 1767 |
|
|
&\frac{1}{4\pi \epsilon_0} |
| 1768 |
|
|
\sum_l (\hat{r} \times \hat{b}_l) D_{\mathbf{b}l} |
| 1769 |
|
|
\sum_{mn} (\hat{r} \cdot \hat{a}_m) |
| 1770 |
|
|
Q_{{\mathbf a}mn} |
| 1771 |
|
|
(\hat{a}_n \cdot \hat{r}) v_{32}(r) |
| 1772 |
|
|
\end{split} |
| 1773 |
|
|
\end{equation} |
| 1774 |
|
|
% |
| 1775 |
|
|
% ta qa qb |
| 1776 |
|
|
% |
| 1777 |
|
|
\begin{equation} |
| 1778 |
|
|
\begin{split} |
| 1779 |
|
|
% 1 |
| 1780 |
|
|
\mathbf{\tau}_{{\bf a}Q_{\bf a}Q_{\bf b}} &= |
| 1781 |
|
|
-\frac{4}{4\pi \epsilon_0} |
| 1782 |
|
|
\sum_{lmnp} (\hat{a}_l \times \hat{b}_p) |
| 1783 |
|
|
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
| 1784 |
|
|
(\hat{a}_m \cdot \hat{b}_n) v_{41}(r) \\ |
| 1785 |
|
|
% 2 |
| 1786 |
|
|
&+ \frac{1}{4\pi \epsilon_0} |
| 1787 |
|
|
\Bigl[ |
| 1788 |
|
|
2\text{Tr}Q_{\mathbf{b}} |
| 1789 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l ) |
| 1790 |
|
|
Q_{{\mathbf a}lm} |
| 1791 |
|
|
(\hat{r} \times \hat{a}_m) |
| 1792 |
|
|
+4 \sum_{lmnp} |
| 1793 |
|
|
(\hat{r} \times \hat{a}_l ) |
| 1794 |
|
|
Q_{{\mathbf a}lm} |
| 1795 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 1796 |
|
|
Q_{{\mathbf b}np} |
| 1797 |
|
|
(\hat{b}_p \cdot \hat{r}) \\ |
| 1798 |
|
|
% 3 |
| 1799 |
|
|
&-4 \sum_{lmnp} |
| 1800 |
|
|
(\hat{r} \cdot \hat{a}_l ) |
| 1801 |
|
|
Q_{{\mathbf a}lm} |
| 1802 |
|
|
(\hat{a}_m \times \hat{b}_n) |
| 1803 |
|
|
Q_{{\mathbf b}np} |
| 1804 |
|
|
(\hat{b}_p \cdot \hat{r}) |
| 1805 |
|
|
\Bigr] v_{42}(r) \\ |
| 1806 |
|
|
% 4 |
| 1807 |
|
|
&+ \frac{2}{4\pi \epsilon_0} |
| 1808 |
|
|
\sum_{lm} (\hat{r} \times \hat{a}_l) |
| 1809 |
|
|
Q_{{\mathbf a}lm} |
| 1810 |
|
|
(\hat{a}_m \cdot \hat{r}) |
| 1811 |
|
|
\sum_{np} (\hat{r} \cdot \hat{b}_n) |
| 1812 |
|
|
Q_{{\mathbf b}np} |
| 1813 |
|
|
(\hat{b}_p \cdot \hat{r}) v_{43}(r)\\ |
| 1814 |
|
|
\end{split} |
| 1815 |
|
|
\end{equation} |
| 1816 |
|
|
% |
| 1817 |
|
|
% tb qa qb |
| 1818 |
|
|
% |
| 1819 |
|
|
\begin{equation} |
| 1820 |
|
|
\begin{split} |
| 1821 |
|
|
% 1 |
| 1822 |
|
|
\mathbf{\tau}_{{\bf b}Q_{\bf a}Q_{\bf b}} &= |
| 1823 |
|
|
\frac{4}{4\pi \epsilon_0} |
| 1824 |
|
|
\sum_{lmnp} (\hat{a}_l \cdot \hat{b}_p) |
| 1825 |
|
|
Q_{\mathbf{a}lm} Q_{\mathbf{b}np} |
| 1826 |
|
|
(\hat{a}_m \times \hat{b}_n) v_{41}(r) \\ |
| 1827 |
|
|
% 2 |
| 1828 |
|
|
&+ \frac{1}{4\pi \epsilon_0} |
| 1829 |
|
|
\Bigl[ |
| 1830 |
|
|
2\text{Tr}Q_{\mathbf{a}} |
| 1831 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{b}_l ) |
| 1832 |
|
|
Q_{{\mathbf b}lm} |
| 1833 |
|
|
(\hat{r} \times \hat{b}_m) |
| 1834 |
|
|
+4 \sum_{lmnp} |
| 1835 |
|
|
(\hat{r} \cdot \hat{a}_l ) |
| 1836 |
|
|
Q_{{\mathbf a}lm} |
| 1837 |
|
|
(\hat{a}_m \cdot \hat{b}_n) |
| 1838 |
|
|
Q_{{\mathbf b}np} |
| 1839 |
|
|
(\hat{r} \times \hat{b}_p) \\ |
| 1840 |
|
|
% 3 |
| 1841 |
|
|
&+4 \sum_{lmnp} |
| 1842 |
|
|
(\hat{r} \cdot \hat{a}_l ) |
| 1843 |
|
|
Q_{{\mathbf a}lm} |
| 1844 |
|
|
(\hat{a}_m \times \hat{b}_n) |
| 1845 |
|
|
Q_{{\mathbf b}np} |
| 1846 |
|
|
(\hat{b}_p \cdot \hat{r}) |
| 1847 |
|
|
\Bigr] v_{42}(r) \\ |
| 1848 |
|
|
% 4 |
| 1849 |
|
|
&+ \frac{2}{4\pi \epsilon_0} |
| 1850 |
|
|
\sum_{lm} (\hat{r} \cdot \hat{a}_l) |
| 1851 |
|
|
Q_{{\mathbf a}lm} |
| 1852 |
|
|
(\hat{a}_m \cdot \hat{r}) |
| 1853 |
|
|
\sum_{np} (\hat{r} \times \hat{b}_n) |
| 1854 |
|
|
Q_{{\mathbf b}np} |
| 1855 |
|
|
(\hat{b}_p \cdot \hat{r}) v_{43}(r). \\ |
| 1856 |
|
|
\end{split} |
| 1857 |
|
|
\end{equation} |
| 1858 |
|
|
% |
| 1859 |
|
|
\begin{table*} |
| 1860 |
|
|
\caption{\label{tab:tableFORCE2}Radial functions used in the force equations.} |
| 1861 |
|
|
\begin{ruledtabular} |
| 1862 |
|
|
\begin{tabular}{ccc} |
| 1863 |
|
|
Generic&Method 1&Method 2 |
| 1864 |
|
|
\\ \hline |
| 1865 |
|
|
% |
| 1866 |
|
|
% |
| 1867 |
|
|
% |
| 1868 |
|
|
$w_a(r)$& |
| 1869 |
|
|
$g_0(r)$& |
| 1870 |
|
|
$g(r)-g(r_c)$ \\ |
| 1871 |
|
|
% |
| 1872 |
|
|
% |
| 1873 |
|
|
$w_b(r)$ & |
| 1874 |
|
|
$\left( -\frac{g_1(r)}{r}+h_1(r) \right)$ & |
| 1875 |
|
|
$h(r)- h(r_c) - \frac{v_{11}(r)}{r} $ \\ |
| 1876 |
|
|
% |
| 1877 |
|
|
$w_c(r)$ & |
| 1878 |
|
|
$\frac{g_1(r)}{r} $ & |
| 1879 |
|
|
$\frac{v_{11}(r)}{r}$ \\ |
| 1880 |
|
|
% |
| 1881 |
|
|
% |
| 1882 |
|
|
$w_d(r)$& |
| 1883 |
|
|
$\left( -\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right) $ & |
| 1884 |
|
|
$\left( -\frac{g(r)}{r^2} + \frac{h(r)}{r} \right) |
| 1885 |
|
|
-\left( -\frac{g(r_c)}{r_c^2} + \frac{h(r_c)}{r_c} \right) $\\ |
| 1886 |
|
|
% |
| 1887 |
|
|
$w_e(r)$ & |
| 1888 |
|
|
$\left(-\frac{g_2(r)}{r^2} + \frac{h_2(r)}{r} \right)$ & |
| 1889 |
|
|
$\frac{v_{22}(r)}{r}$ \\ |
| 1890 |
|
|
% |
| 1891 |
|
|
% |
| 1892 |
|
|
$w_f(r)$& |
| 1893 |
|
|
$\left( \frac{3g_2(r)}{r^2}-\frac{3h_2(r)}{r}+s_2(r) \right)$ & |
| 1894 |
|
|
$\left( \frac{g(r)}{r^2}-\frac{h(r)}{r}+s(r) \right) - $ \\ |
| 1895 |
|
|
&&$\left( \frac{g(r_c)}{r_c^2}-\frac{h(r_c)}{r_c}+s(r_c) \right)-\frac{2v_{22}(r)}{r}$\\ |
| 1896 |
|
|
% |
| 1897 |
|
|
$w_g(r)$& $ \left( -\frac{g_3(r)}{r^3}+\frac{h_3(r)}{r^2} \right)$& |
| 1898 |
|
|
$\frac{v_{31}(r)}{r}$\\ |
| 1899 |
|
|
% |
| 1900 |
|
|
$w_h(r)$ & |
| 1901 |
|
|
$\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ & |
| 1902 |
|
|
$\left(\frac{2g(r)}{r^3} -\frac{2h(r)}{r^2} +\frac{s(r)}{r} \right) - $\\ |
| 1903 |
|
|
&&$\left(\frac{2g(r_c)}{r_c^3} -\frac{2h(r_c)}{r_c^2} +\frac{s(r_c)}{r_c} \right) $ \\ |
| 1904 |
|
|
&&$-\frac{v_{31}(r)}{r}$\\ |
| 1905 |
|
|
% 2 |
| 1906 |
|
|
$w_i(r)$ & |
| 1907 |
|
|
$\left(\frac{3g_3(r)}{r^3} -\frac{3h_3(r)}{r^2} +\frac{s_3(r)}{r} \right) $ & |
| 1908 |
|
|
$\frac{v_{32}(r)}{r}$ \\ |
| 1909 |
|
|
% |
| 1910 |
|
|
$w_j(r)$ & |
| 1911 |
|
|
$\left(\frac{-15g_3(r)}{r^3} + \frac{15h_3(r)}{r^2} - \frac{6s_3(r)}{r} + t_3(r) \right) $ & |
| 1912 |
|
|
$\left(\frac{-6g(r)}{r^3} +\frac{6h(r)}{r^2} -\frac{3s(r)}{r} +t(r) \right) $ \\ |
| 1913 |
|
|
&&$\left(\frac{-6g(_cr)}{r_c^3} +\frac{6h(r_c)}{r_c^2} -\frac{3s(r_c)}{r_c} +t(r_c) \right) -\frac{3v_{32}}{r}$ \\ |
| 1914 |
|
|
% |
| 1915 |
|
|
$w_k(r)$ & |
| 1916 |
|
|
$\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ & |
| 1917 |
|
|
$\left(\frac{3g(r)}{r^4} -\frac{3h(r)}{r^3} +\frac{s(r)}{r^2} \right)$ \\ |
| 1918 |
|
|
&&$\left(\frac{3g(r_c)}{r_c^4} -\frac{3h(r_c)}{r_c^3} +\frac{s(r_c)}{r_c^2} \right)$ \\ |
| 1919 |
|
|
% |
| 1920 |
|
|
$w_l(r)$ & |
| 1921 |
|
|
$\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ & |
| 1922 |
|
|
$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right)$ \\ |
| 1923 |
|
|
&&$\left(-\frac{9g(r)}{r^4} +\frac{9h(r)}{r^3} -\frac{4s(r)}{r^2} +\frac{t(r)}{r} \right) |
| 1924 |
|
|
-\frac{2v_{42}(r)}{r}$ \\ |
| 1925 |
|
|
% |
| 1926 |
|
|
$w_m(r)$ & |
| 1927 |
|
|
$\left(\frac{105g_4(r)}{r^4} - \frac{105h_4(r)}{r^3} + \frac{45s_4(r)}{r^2} - \frac{10t_4(r)}{r} +u_4(r) \right)$ & |
| 1928 |
|
|
$\left(\frac{45g(r)}{r^4} -\frac{45h(r)}{r^3} +\frac{21s(r)}{r^2} -\frac{6t(r)}{r} +u(r) \right)$ \\ |
| 1929 |
|
|
&&$\left(\frac{45g(r_c)}{r_c^4} -\frac{45h(r_c)}{r_c^3} |
| 1930 |
|
|
+\frac{21s(r_c)}{r_c^2} -\frac{6t(r_c)}{r_c} +u(r_c) \right) $ \\ |
| 1931 |
|
|
&&$-\frac{4v_{43}(r)}{r}$ \\ |
| 1932 |
|
|
% |
| 1933 |
|
|
$w_n(r)$ & |
| 1934 |
|
|
$\left(\frac{3g_4(r)}{r^4} -\frac{3h_4(r)}{r^3} +\frac{s_4(r)}{r^2} \right)$ & |
| 1935 |
|
|
$\frac{v_{42}(r)}{r}$ \\ |
| 1936 |
|
|
% |
| 1937 |
|
|
$w_o(r)$ & |
| 1938 |
|
|
$\left(-\frac{15g_4(r)}{r^4} +\frac{15h_4(r)}{r^3} -\frac{6s_4(r)}{r^2} +\frac{t_4(r)}{r} \right)$ & |
| 1939 |
|
|
$\frac{v_{43}(r)}{r}$ \\ |
| 1940 |
|
|
% |
| 1941 |
|
|
\end{tabular} |
| 1942 |
|
|
\end{ruledtabular} |
| 1943 |
|
|
\end{table*} |
| 1944 |
|
|
\end{document} |
| 1945 |
|
|
% |
| 1946 |
|
|
% ****** End of file multipole.tex ****** |