1 |
\documentclass[% |
2 |
aip, |
3 |
jcp, |
4 |
amsmath,amssymb, |
5 |
preprint,% |
6 |
% reprint,% |
7 |
%author-year,% |
8 |
%author-numerical,% |
9 |
]{revtex4-1} |
10 |
|
11 |
\usepackage{graphicx}% Include figure files |
12 |
\usepackage{dcolumn}% Align table columns on decimal point |
13 |
\usepackage{multirow} |
14 |
\usepackage{bm}% bold math |
15 |
\usepackage{natbib} |
16 |
\usepackage{times} |
17 |
\usepackage{mathptmx} |
18 |
\usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions |
19 |
\usepackage{url} |
20 |
\usepackage{braket} |
21 |
|
22 |
\begin{document} |
23 |
|
24 |
\title{Real space electrostatics for multipoles. III. Dielectric Properties} |
25 |
|
26 |
\author{Madan Lamichhane} |
27 |
\affiliation{Department of Physics, University |
28 |
of Notre Dame, Notre Dame, IN 46556} |
29 |
\author{Thomas Parsons} |
30 |
\affiliation{Department of Chemistry and Biochemistry, University |
31 |
of Notre Dame, Notre Dame, IN 46556} |
32 |
\author{Kathie E. Newman} |
33 |
\affiliation{Department of Physics, University |
34 |
of Notre Dame, Notre Dame, IN 46556} |
35 |
\author{J. Daniel Gezelter} |
36 |
\email{gezelter@nd.edu.} |
37 |
\affiliation{Department of Chemistry and Biochemistry, University |
38 |
of Notre Dame, Notre Dame, IN 46556} |
39 |
|
40 |
\date{\today}% It is always \today, today, |
41 |
% but any date may be explicitly specified |
42 |
|
43 |
\begin{abstract} |
44 |
Note: This manuscript is a work in progress. |
45 |
|
46 |
We report on the dielectric properties of the shifted potential |
47 |
(SP), gradient shifted force (GSF), and Taylor shifted force (TSF) |
48 |
real-space methods for multipole interactions that were developed in |
49 |
the first two papers in this series. We find that some subtlety is |
50 |
required for computing dielectric properties with the real-space |
51 |
methods, particularly when using the common fluctuation formulae. |
52 |
Three distinct methods for computing the dielectric constant are |
53 |
investigated, including the standard fluctuation formulae, |
54 |
potentials of mean force between solvated ions, and direct |
55 |
measurement of linear solvent polarization in response to applied |
56 |
fields and field gradients. |
57 |
\end{abstract} |
58 |
|
59 |
\maketitle |
60 |
|
61 |
\section{Introduction} |
62 |
|
63 |
Over the past several years, there has been increasing interest in |
64 |
pairwise methods for correcting electrostatic interactions in computer |
65 |
simulations of condensed molecular |
66 |
systems.\cite{Wolf99,Zahn02,Kast03,Beckd.A.C._Bi0486381,Ma05,Fennell06} |
67 |
These techniques were developed from the observations and efforts of |
68 |
Wolf {\it et al.} and their work towards an $\mathcal{O}(N)$ |
69 |
Coulombic sum.\cite{Wolf99} Wolf's method of cutoff neutralization is |
70 |
able to obtain excellent agreement with Madelung energies in ionic |
71 |
crystals.\cite{Wolf99} One of the most difficult tests of any new |
72 |
electrostatic method is the fidelity with which that method can |
73 |
reproduce the bulk-phase polarizability or equivalently, the |
74 |
dielectric properties of a fluid. Of particular interest is the |
75 |
static dielectric constant, $\epsilon$. Using the Ewald sum under |
76 |
tin-foil boundary conditions, $\epsilon$ can be calculated for systems |
77 |
of non-polarizable substances via |
78 |
\begin{equation} |
79 |
\epsilon = 1 + \frac{\langle M^2\rangle}{3\epsilon_0k_\textrm{B}TV}, |
80 |
\label{eq:staticDielectric} |
81 |
\end{equation} |
82 |
where $\epsilon_0$ is the permittivity of free space and $\langle |
83 |
M^2\rangle$ is the fluctuation of the system dipole |
84 |
moment.\cite{Allen:1989fp} The numerator in the fractional term in equation |
85 |
(\ref{eq:staticDielectric}) is the fluctuation of the simulation-box |
86 |
dipole moment, identical to the quantity calculated in the |
87 |
finite-system Kirkwood $g$ factor ($G_k$): |
88 |
\begin{equation} |
89 |
G_k = \frac{\langle M^2\rangle}{N\mu^2}, |
90 |
\label{eq:KirkwoodFactor} |
91 |
\end{equation} |
92 |
where $\mu$ is the dipole moment of a single molecule of the |
93 |
homogeneous system.\cite{Neumann:1983mz,Neumann:1983yq,Neumann84,Neumann85} The |
94 |
fluctuation term in both equation (\ref{eq:staticDielectric}) and |
95 |
(\ref{eq:KirkwoodFactor}) is calculated as follows, |
96 |
\begin{equation} |
97 |
\begin{split} |
98 |
\langle M^2\rangle &= \langle\bm{M}\cdot\bm{M}\rangle |
99 |
- \langle\bm{M}\rangle\cdot\langle\bm{M}\rangle \\ |
100 |
&= \langle M_x^2+M_y^2+M_z^2\rangle |
101 |
- (\langle M_x\rangle^2 + \langle M_y\rangle^2 |
102 |
+ \langle M_z\rangle^2). |
103 |
\end{split} |
104 |
\label{eq:fluctBoxDipole} |
105 |
\end{equation} |
106 |
This fluctuation term can be accumulated during a simulation; however, |
107 |
it converges rather slowly, thus requiring multi-nanosecond simulation |
108 |
times.\cite{Horn04} In the case of tin-foil boundary conditions, the |
109 |
dielectric/surface term of the Ewald summation is equal to zero. |
110 |
|
111 |
\section{Dielectric constants for real-space electrostatics} |
112 |
|
113 |
The new real-space methods require some care when computing dielectric |
114 |
properties because the interaction between molecular dipoles depends |
115 |
on the level of approximation being utilized. Consider the cases of |
116 |
Stockmayer (dipolar) soft spheres that are represented either by two |
117 |
closely-spaced point charges or by a single point dipole (see |
118 |
Fig. \ref{fig:stockmayer}). |
119 |
\begin{figure} |
120 |
\includegraphics[width=3in]{DielectricFigure} |
121 |
\caption{With the real-space electrostatic methods, the effective |
122 |
dipole tensor, $\mathbf{T}$, governing interactions between |
123 |
molecular dipoles is not the same for charge-charge interactions as |
124 |
for point dipoles.} |
125 |
\label{fig:stockmayer} |
126 |
\end{figure} |
127 |
In the case where point charges are interacting via an electrostatic |
128 |
kernel, $v(r)$, the effective {\it molecular} dipole tensor, |
129 |
$\mathbf{T}$ is obtained from two successive applications of the |
130 |
gradient operator to the electrostatic kernel, |
131 |
\begin{equation} |
132 |
\mathbf{T}_{\alpha \beta}(r) = \nabla_\alpha \nabla_\beta \left(v(r)\right) = \delta_{\alpha \beta} |
133 |
\left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha} |
134 |
r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r} |
135 |
v^{\prime}(r) \right) |
136 |
\end{equation} |
137 |
where $v(r)$ may be either the bare kernel ($1/r$) or one of the |
138 |
modified (Wolf or DSF) kernels. This tensor describes the effective |
139 |
interaction between molecular dipoles ($\mathbf{D}$) in Gaussian |
140 |
units as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$. |
141 |
|
142 |
When utilizing the new real-space methods for point dipoles, the |
143 |
tensor is explicitly constructed, |
144 |
\begin{equation} |
145 |
\mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) + |
146 |
\frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r) |
147 |
\end{equation} |
148 |
where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of |
149 |
the approximation. Although the Taylor-shifted (TSF) and |
150 |
gradient-shifted (GSF) models produce to the same $v(r)$ function for |
151 |
point charges, they have distinct forms for the dipole-dipole |
152 |
interactions. |
153 |
|
154 |
Neumann and Steinhauser showed~\cite{Neumann:1983mz,Neumann:1983yq} |
155 |
that the relative dielectric permittivity $\epsilon$ is given by the |
156 |
general fluctuation formula, |
157 |
\begin{equation} |
158 |
\frac{\epsilon - 1}{\epsilon +2} = \frac{4 \pi}{3} \frac{\left<M^2\right>}{3 V k_B |
159 |
T} \left( 1 - \frac{3}{4 \pi} \frac{\epsilon -1}{\epsilon + 2} |
160 |
\tilde{T}(0) \right) |
161 |
\end{equation} |
162 |
where $\left<M^2\right>$ is the mean fluctuation of the square of the |
163 |
net dipole moment of the simulation cell, $V$ is the volume of the |
164 |
cell, and $\tilde{T}(0) = \tilde{T̃}_{xx}(0) = \tilde{T̃}_{yy}(0) = |
165 |
\tilde{T̃}_{zz}(0)$ is the $\mathbf{k} = 0$ limit of Fourier transform |
166 |
of the diagonal term of the effective molecular dipolar tensor, |
167 |
\begin{equation} |
168 |
\tilde{T}(0) = \int_V \mathbf{T}(\mathbf{r}) d\mathbf{r} |
169 |
\end{equation} |
170 |
where the integral is carried out over the relevant geometry for the |
171 |
interaction. For the real-space methods, the integration can be done |
172 |
easily up to the imposed cutoff radius, while for the Ewald sum, the |
173 |
results also depend on details of the $k$-space |
174 |
calculation.\cite{Neumann:1983yq} |
175 |
|
176 |
For molecules composed of point charges interacting via the bare |
177 |
$(1/r)$ kernel, the simple cutoff (SC) and minimum image (MI) |
178 |
approaches give $\tilde{T}(0) = 0$ which means that the |
179 |
Clausius-Mosotti equation, |
180 |
\begin{equation} |
181 |
\frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon |
182 |
-1}{\epsilon+2} |
183 |
\end{equation} |
184 |
is the relevant fluctuation formula for the relative permittivity. |
185 |
|
186 |
Zahn {\it et al.}\cite{Zahn02} showed that for the damped shifted |
187 |
force charge-charge kernel, $\tilde{T}(0) = 4 \pi / 3$. This was later |
188 |
generalized by Izvekov {\it et al.} for all point-charge kernels which |
189 |
have forces that go to zero at a cutoff radius and which maintain a |
190 |
pole of first order at $r=0$.\cite{Izvekov:2008wo} When $\tilde{T}(0) |
191 |
= 4 \pi/ 3$, the expression for the dielectric constant reduces to the |
192 |
widely-used {\it conducting boundary} formula, |
193 |
\begin{equation} |
194 |
\frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon - |
195 |
1}{3} |
196 |
\end{equation} |
197 |
It is convenient to define a quantity $A = \frac{3}{4 \pi} |
198 |
\tilde{T}(0)$, and to combine all of the fluctuation formulae |
199 |
together: |
200 |
\begin{equation} |
201 |
\frac{4 \pi}{3} \frac{\left< M^2 \right>}{3 V k_B T} = |
202 |
\left\{\begin{array}{ll} |
203 |
\frac{\epsilon-1}{\epsilon+2} \left[1- \frac{\epsilon-1}{\epsilon+2} |
204 |
A\right]^{-1} & \mathrm{General~Case} \\ |
205 |
\frac{\epsilon-1}{\epsilon+2} & A \rightarrow 0 \mathrm{~limit} \\ |
206 |
\frac{\epsilon-1}{3} & A \rightarrow 1 \mathrm{~limit} |
207 |
\end{array}\right. |
208 |
\end{equation} |
209 |
|
210 |
The Clausius-Mossotti $(A\rightarrow 0)$ approach is subject to noise |
211 |
and error magnification,\cite{Allen:1989fp} and the conducting |
212 |
boundary approach $(A \rightarrow 1)$ has become widely used as a |
213 |
result. If the electrostatic method being used has $A < 1$, the |
214 |
relative dielectric permittivity $\epsilon$ can be estimated once the |
215 |
conducting boundary fluctuation result has been found, |
216 |
\begin{equation} |
217 |
\epsilon = \frac{(A+2) (\epsilon_\text{CB}-1)+3} {(A-1) (\epsilon_\text{CB}-1)+3} |
218 |
\end{equation} |
219 |
Note that this expression becomes quite numerically sensitive when the |
220 |
value of $A$ deviates significantly from 1. |
221 |
|
222 |
We have derived a set of expressions for the value of $A$ for the new |
223 |
real space methods that are shown in Table \ref{tab:A}. |
224 |
|
225 |
\begin{table} |
226 |
\caption{Expressions for the dielectric correction factor ($A$) for the |
227 |
real-space electrostatic methods in terms of the damping parameter |
228 |
($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result |
229 |
derived in Refs. \onlinecite{Adams:1980rt,Adams:1981fr,Neumann:1983yq} is shown for comparison using the Ewald |
230 |
convergence parameter ($\kappa$) and the real-space cutoff value ($r_c$). } |
231 |
\label{tab:A} |
232 |
\resizebox{\columnwidth}{!}{% |
233 |
\begin{tabular}{l|c|c|c|c|c|} |
234 |
& \multicolumn{3}{c|}{damped} & \multicolumn{2}{c|}{undamped} \\ \cline{2-4} \cline{5-6} |
235 |
Method & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ & $A_\mathrm{quad} (length^{-2})$ & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ \\ |
236 |
\hline |
237 |
Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & 0 &$-\frac{8{\alpha}^5{r_c}^3 }{5\sqrt{\pi}}e^{-{\alpha}^2{r_c}^2 }$ &0 &0\\ |
238 |
Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c }{\sqrt{\pi }} \left(1 + \frac{2 \alpha^2 r_c^2}{3} \right) e^{-\alpha ^2 r_c^2} $&$-\frac{16{\alpha}^7{r_c}^5 }{15\sqrt{\pi}}e^{-{\alpha}^2{r_c}^2 }$ &0 &0\\ |
239 |
Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha^2 r_c^2} $ &$-\frac{4{\alpha}^7{r_c}^5 }{15\sqrt{\pi}}(-1+2\alpha ^2 r_c^2)e^{-\alpha^2 r_c^2}$ &1 &0\\ |
240 |
Taylor-shifted (TSF) & 1 & 1 &$\frac{6\;\mathrm{erf}(r_c \alpha)}{{r_c}^2} + \frac{4{\alpha}{r_c}}{15\sqrt{\pi}{r_c}^2}\left(45 + 30\alpha ^2 {r_c}^2 + 12\alpha^4 {r_c}^4 + 3\alpha^6 {r_c}^6 + 2 \alpha^8 {r_c}^8\right)e^{-\alpha^2 r_c^2}$ &1 & 1\\ |
241 |
Ewald-Kornfeld (EK) & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ &- & - & - \\\hline |
242 |
\end{tabular}% |
243 |
} |
244 |
\end{table} |
245 |
|
246 |
\section{Boltzman average of the dipole polarization density} |
247 |
Consider a dipolar fluid with polarization density $\mathbf{P}(r)$ at |
248 |
equlibrium at temperature $T$. The average of polarization density is |
249 |
given by, |
250 |
\begin{equation} |
251 |
\left<\mathbf{P}(r)\right> = \frac{\int\mathbf{P}(r) e^{-H/k_B T} d |
252 |
\Gamma^N}{\int e^{-H/k_B T} d \Gamma^N} |
253 |
\end{equation} |
254 |
where $d \Gamma^N = dr_1...dr_N dp_1...dp_N$ is the volume element in |
255 |
phase space, and $H$ is the Hamiltonian of the $N$-particle system in |
256 |
the absence of applied external field. The Hamiltonian of the system |
257 |
is given by, |
258 |
\begin{equation} |
259 |
H = \frac{1}{2}\sum_{i=1}^N m_i {\dot{\mathbf{r}}_i}^2 + \sum_{i<j} U(\mathbf{r}_i - \mathbf{r}_j) |
260 |
\end{equation} |
261 |
where $m_i$ is mass of site $i$, and $U(\mathbf{r}_i - \mathbf{r}_j)$ |
262 |
is the interaction potential between sites $i$ and $j$. |
263 |
|
264 |
Let $E'$ be the applied external electric field. The Hamiltonian for |
265 |
the polarized system then becomes |
266 |
\begin{equation} |
267 |
H' = H - {M}_\alpha {E'}_\alpha |
268 |
\end{equation} |
269 |
where $\mathbf{M}$ is the total dipole moment in zero field. The |
270 |
polarization density changes in the presence of the external field |
271 |
$\mathbf{E'}$. The modified polarization is given by |
272 |
\begin{equation} |
273 |
\left< P'_\alpha(r) \right>_{E'} = \frac{\int P_\alpha(r) e^{-H'/k_B |
274 |
T} d \Gamma^N}{\int e^{-H'/k_B T} d \Gamma^N} \equiv \frac{F}{G} |
275 |
\end{equation} |
276 |
For small values of the applied electric field we can expand the |
277 |
polarization density as, |
278 |
\begin{equation} |
279 |
\left< P'_\alpha(r) \right>_{E'} = \left< P'_\alpha(r) \right> + \frac{\partial |
280 |
\left< P'_\alpha(r) \right>}{\partial E'_\beta }\bigg|_{E'=0} E'_\beta |
281 |
\end{equation} |
282 |
and |
283 |
\begin{equation} |
284 |
\frac{\partial{\left<P'_\alpha(r)\right>}}{\partial{E'_\beta}}\bigg|_{E'=0} = \frac{F'G-FG'}{G^2} |
285 |
\end{equation} |
286 |
where |
287 |
\begin{equation} |
288 |
\begin{split} |
289 |
F' & = \frac{1}{k_BT} \int {P}_\alpha M_\beta\; e^{-H/k_B T} d\Gamma^N\\ |
290 |
\textit{and} \\ |
291 |
G' & = \frac{1}{k_BT} \int M_\beta\; e^{-H/k_B T} d\Gamma^N |
292 |
\end{split} |
293 |
\end{equation} |
294 |
Therefore |
295 |
\begin{equation} |
296 |
\braket{{P'_\alpha(r)}}_{E'}=\braket{{P'_\alpha(r)}}+\frac{1}{k_B T}(\braket{P_{\alpha}M_{\beta}}-\braket{P_{\alpha}}\braket{M_{\beta}}){E'}_\beta, |
297 |
\end{equation} |
298 |
where $\braket{A} = \frac{\int A\; e^{-H/k_B T}d\Gamma^N}{\int e^{-H/k_B T}d\Gamma^N}$ is the ensemble average of a physical quantity $A$ at temperature $T$. Now the polarization density due to applied external field is given by, |
299 |
\begin{equation} |
300 |
{\Delta P}_\alpha =\frac{1}{k_B T}\left(\braket{P_{\alpha}M_{\beta}}-\braket{P_{\alpha}}\braket{M_{\beta}}\right){E'}_\beta. |
301 |
\end{equation} |
302 |
Therefore the total polarization for the system can be obtained by integrating polarization density over the volume, |
303 |
\begin{equation} |
304 |
{\Delta M}_\alpha =\frac{1}{k_B T} \left(\braket{M_{\alpha}M_{\beta}}-\braket{M_{\alpha}}\braket{M_{\beta}}\right){E'}_\beta. |
305 |
\end{equation} |
306 |
If we consider both applied field and polarization in the z-direction, |
307 |
\begin{equation} |
308 |
{\Delta M}_z =\frac{1}{k_B T}\left(\braket{{M_{z}}^2}-\braket{M_{z}}^2\right){E'}_z. |
309 |
\end{equation} |
310 |
In general applied field $ \braket{{M_{z}}^2} = \frac{1}{3}\braket{{\mathbf{M}}^2}$ and $ \braket{{M_{z}}} = \frac{1}{3}\braket{{\mathbf{M}}}$ therefore, |
311 |
\begin{equation} |
312 |
{\Delta P}_z = \frac{{\Delta M}_z}{V} = \epsilon_o \frac{\braket{{\mathbf{M}}^2}-\braket{{\mathbf{M}}}^2}{3 \epsilon_o \; k_B T V}{E'}_z. |
313 |
\label{eq:fluc} |
314 |
\end{equation} |
315 |
Comparing equation (\ref{eq:fluc}) with $ \Delta P_z = \epsilon_o \chi \ {E'}_z$ the fluctuation formula for susceptibility ($\chi$) can be written as, |
316 |
\begin{equation} |
317 |
\chi = \frac{\braket{{\mathbf{M}}^2}-\braket{{\mathbf{M}}}^2}{3 \epsilon_o \; k_B T V} |
318 |
\end{equation} |
319 |
\section{Boltzmann average of a quadrupole moment} |
320 |
The average quadrupole moment at temperature T in the presence of uniform applied |
321 |
field gradient is given by, |
322 |
\begin{equation} |
323 |
\braket{q_{\alpha\beta}} \;=\; \frac{\int d\Omega\; e^{\frac{-U(r)}{k_B T}}q_{\alpha\beta}}{\int d\Omega\; e^{\frac{-U(r)}{k_B T}}} \;=\; \frac{\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}}, |
324 |
\label{eq:1} |
325 |
\end{equation} |
326 |
where $\int \Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi} |
327 |
sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler |
328 |
angles and $ U(r) = -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of |
329 |
a quadrupole in the gradient of the |
330 |
applied field. The energy and quadrupole moment can be transformed |
331 |
into body frame using following relation, |
332 |
\begin{equation} |
333 |
\begin{split} |
334 |
q_{\alpha\beta} &= \eta_{\alpha\alpha'}{q}^* _{\alpha'\beta'}\eta_{\beta'\beta} \\ |
335 |
U(r) &= - q:\vec{\nabla}\vec{E} = - q_{\mu\nu}\;\partial_\nu E_\mu = -\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu. |
336 |
\end{split} |
337 |
\label{eq:2} |
338 |
\end{equation} |
339 |
Here the starred tensors are the components in the body fixed |
340 |
frame. Substituting equation (\ref{eq:2}) in the equation (\ref{eq:1}) |
341 |
and taking linear terms in the expansion we get, |
342 |
\begin{equation} |
343 |
\braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu }{k_B T}\right)}, |
344 |
\label{eq:3} |
345 |
\end{equation} |
346 |
where $\eta_{\alpha\alpha'}$ is the rotation matrix that transforms |
347 |
the body fixed to the space fixed frame, |
348 |
\[\eta_{\alpha\alpha'} |
349 |
= \left(\begin{array}{ccc} |
350 |
cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & cos\theta\; cos\psi\; sin\phi + cos\phi\; sin\psi & sin\theta\; sin\phi \\ |
351 |
-cos\psi\; sin\phi - cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & cos\phi\; cos\theta \\ |
352 |
sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta |
353 |
\end{array} \right).\] |
354 |
Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$ |
355 |
and $8 \pi^2 /3\;\vec{\nabla}.\vec{E}\; Tr(q^*) $ respectively. The |
356 |
second term vanishes for charge free space |
357 |
(i.e. $\vec{\nabla}.\vec{E} \; = \; 0)$. Similarly integration of the |
358 |
1st term in the numerator produces |
359 |
$8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces |
360 |
$8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} - |
361 |
{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$, |
362 |
if $\vec{\nabla}.\vec{E} \; = \; 0$, |
363 |
$ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and |
364 |
${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the |
365 |
Boltzmann average of a quadrupole moment can be written as, |
366 |
|
367 |
\begin{equation} |
368 |
\braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta, |
369 |
\label{eq:4} |
370 |
\end{equation} |
371 |
here ${\bar{q_o}}^2= |
372 |
3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ |
373 |
which is a net quadrupole moment of a molecule. |
374 |
|
375 |
To find the average quadrupole moment for the entire system, we can |
376 |
multiply above equation with number of molecules $N$. |
377 |
\begin{equation} |
378 |
\braket{Q_{\alpha\beta}} \;=\; N\braket{q_{\alpha\beta}}\; = \; \frac{N}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{N\;\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta |
379 |
\label{eq:5} |
380 |
\end{equation} |
381 |
The analogous relation in a system of the $N$ quadrupoles is, |
382 |
\begin{equation} |
383 |
\braket{Q_{\alpha\beta}} \; = \; \frac{1}{3}\;Tr(Q)\;\delta_{\alpha\beta} + \frac{{\braket{Q^2}}_{en} - {\braket{Q}}_{en}^2}{15k_BT}\;\partial_\alpha E_\beta |
384 |
\label{eq:6} |
385 |
\end{equation} |
386 |
where $\braket{{Q^2}}_{en}$ and $\braket{Q}_{en}^2$ are the ensemble |
387 |
average of the square of the magnitude of the box quadrupole moment |
388 |
and the square of the ensemble average of the box quadrupole moment |
389 |
respectively. The ensemble averages in the above equation can be |
390 |
obtained using relations, |
391 |
${\braket{Q^2}}_{en} = |
392 |
{\braket{3Q_{\alpha'\beta'}Q_{\beta'\alpha'}-Q_{\alpha'\alpha'}Q_{\beta'\beta'}}}_{en}$ |
393 |
and |
394 |
${\braket{Q}}_{en}^2 = 3{\braket{Q_{\alpha'\beta'}}}_{en}\; |
395 |
\braket{Q_{\beta'\alpha'}}_{en} -{\braket{Q_{\alpha'\alpha'}}}_{en}\; |
396 |
{\braket{Q_{\beta'\beta'}}}_{en}$ |
397 |
respectively. The non-zero value of the $\braket{Q}_{en}^2$ is due to |
398 |
the applied gradient, therefore its contribution is subtracted to find |
399 |
the actual fluctuation in the box quadrupole moment. From the |
400 |
equations (\ref{eq:5}) and (\ref{eq:6}) we get, |
401 |
\begin{equation} |
402 |
\begin{split} |
403 |
\braket{{Q^2}}_{en}-{\braket{Q}_{en}}^2 &= N\; {\bar{q_o}}^2\\ |
404 |
& and \\ |
405 |
\braket{Q_{\alpha\beta}}\; &= \; N\braket{q_{\alpha\beta}}. |
406 |
\end{split} |
407 |
\label{eq:7} |
408 |
\end{equation} |
409 |
|
410 |
|
411 |
|
412 |
\section{Relation between quadrupolar polarization and applied field gradient} |
413 |
In the presence of the field gradient $\partial_\alpha {E}_\beta $, a |
414 |
non-vanishing quadrupolar polarization (quadrupole moment per unit |
415 |
volume) $\bar{Q}_{\alpha\beta}$ will be induced in the entire volume |
416 |
of a sample. The total field at any point $\vec{r}$ in the sample is |
417 |
given by, |
418 |
\begin{equation} |
419 |
\partial_\alpha E_\beta(\vec{r}) = \partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{4\pi \epsilon_o}\int T_{\alpha\beta\gamma\delta}(\vec{r}-\vec{r'})\;\bar{Q}_{\gamma\delta}(\vec{r'})\; d^3r' |
420 |
\label{eq:20} |
421 |
\end{equation} |
422 |
where $\partial_\alpha {E^o}_\beta$ is the applied field gradient and $ T_{\alpha\beta\gamma\delta}$ is the quadrupole-quadrupole interaction tensor which is obtained from applications of four successive gradient operator to the electrostatic kernal $v(r)$. |
423 |
\begin{equation} |
424 |
\begin{split} |
425 |
T_{\alpha\beta\gamma\delta}(r) &=\nabla_\alpha \nabla_\beta \nabla_\gamma \nabla_\delta\;v(r) \\ &= \left(\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta}+ \delta_{\alpha\delta}\delta_{\beta\gamma}\right)v_{41}(r) + \left(\delta_{\alpha\beta} r_\gamma r_\delta + 5 \; permutations \right) \frac{v_{42}(r)}{r^2} \\ &+ r_\alpha r_\beta r_\gamma r_\delta\; \frac{v_{43}(r)}{r^4}, |
426 |
\end{split} |
427 |
\label{quadRadial} |
428 |
\end{equation} |
429 |
where $v_{41}(r),\; v_{42}(r), \; and v_{43}(r)$ are defined in Paper I of the series (Refer Paper I) which have different functional forms for different cutoff methods. The integral in equation |
430 |
(\ref{eq:20}) can be divided into two parts, $|\vec{r}-\vec{r'}|< R $ |
431 |
and $|\vec{r}-\vec{r'}|> R $ where $R \rightarrow 0 $. Since the total |
432 |
field gradient vanishes at the singularity (see Appendix \ref{singular}), |
433 |
equation (\ref{eq:20}) can be written as, |
434 |
\begin{equation} |
435 |
\partial_\alpha E_\beta(\vec{r}) = \partial_\alpha {E^o}_\beta(\vec{r}) + |
436 |
\frac{1}{4\pi \epsilon_o}\lim_{R \to |
437 |
0}\int\limits_{|\vec{r}-\vec{r'}|> R } |
438 |
T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{Q}_{\gamma\delta}(\vec{r'})\; |
439 |
d^3r'. |
440 |
\label{eq:23} |
441 |
\end{equation} |
442 |
If $r = r'$ is excluded from the integration, the gradient of the electric can be expressed in terms of traceless quadrupole moment as below (Refer eq 2.7 of Logan I) , |
443 |
\begin{equation} |
444 |
\partial_\alpha E_\beta(\vec{r}) = \partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{12\pi \epsilon_o}\int\limits_{|\vec{r}-\vec{r'}|> R } T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{\Theta}_{\gamma\delta}(\vec{r'})\; d^3r', |
445 |
\label{eq:22} |
446 |
\end{equation} |
447 |
where $\Theta_{\alpha\beta} = 3Q_{\alpha\beta} - \delta_{\alpha\beta}Tr(Q)$ |
448 |
is the traceless quadrupole moment. The total quadrupolar polarization is written as, |
449 |
\begin{equation} |
450 |
\bar{Q}_{\alpha\beta}(\vec{r}) = \frac{1}{3}\delta_{\alpha\beta}\;Tr(\bar{Q})+\epsilon_o {\chi}_Q\;\partial_\alpha E_\beta(\vec{r}), |
451 |
\label{eq:21} |
452 |
\end{equation} |
453 |
where ${\chi}_Q = \frac{\braket{{Q^2}} - \braket{Q}^2}{15\epsilon_o Vk_BT}$ is the susceptibility of the quadrupolar fluid. In terms of traceless quadrupole moment, equation (\ref{eq:21}) can be written as, |
454 |
\begin{equation} |
455 |
\frac{1}{3}\bar{\Theta}_{\alpha\beta}(\vec{r}) = \epsilon_o {\chi}_Q \; \partial_\alpha E_\beta (\vec{r})= \epsilon_o {\chi}_Q \left(\partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{12\pi \epsilon_o}\int\limits_{|\vec{r}-\vec{r'}|> R } T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{\Theta}_{\gamma\delta}(\vec{r'})\; d^3r'\right) |
456 |
\label{eq:22} |
457 |
\end{equation} |
458 |
For toroidal boundary conditions, both $\partial_\alpha E_\beta$ and |
459 |
$\bar{\Theta}_{\alpha\beta}$ are uniform over the entire space. After |
460 |
performing a Fourier transform (see the Appendix in the Neumann Paper), |
461 |
we get, |
462 |
\begin{equation} |
463 |
\frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})= |
464 |
\epsilon_o {\chi}_Q \;\left[{\partial_\alpha |
465 |
{E^o}_\beta}(\vec{k})+ \frac{1}{12\pi |
466 |
\epsilon_o}\;\widetilde{T}_{\alpha\beta\gamma\delta}(\vec{k})\; |
467 |
{\bar{\Theta}}_{\gamma\delta}(\vec{k})\right] |
468 |
\label{eq:24} |
469 |
\end{equation} |
470 |
Since the quadrupolar polarization is in the direction of the applied |
471 |
field |
472 |
$\widetilde{\bar{\Theta}}_{\gamma\delta}(\vec{k}) = |
473 |
\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})$ |
474 |
and |
475 |
$\widetilde{T}_{\alpha\beta\gamma\delta}(\vec{k}) = |
476 |
\widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})$. |
477 |
(Note: This is true for orientational polarization but might not be |
478 |
true for polarization due to changes in the atomic distribution. For |
479 |
the orientational case, we need only to work with individual |
480 |
components of the matrix.) |
481 |
\begin{equation} |
482 |
\begin{split} |
483 |
\frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k}) &= \epsilon_o \bar{\chi}_Q \left[{\partial_\alpha E^o_\beta}(\vec{k})+ \frac{1}{12\pi \epsilon_o}\widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})\;\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})\right] \\ |
484 |
&= \epsilon_o {\chi}_Q\;\left(1-\frac{1}{4\pi} {\chi}_Q |
485 |
\widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})\right)^{-1} |
486 |
{\partial_\alpha E^o_\beta}(\vec{k}) |
487 |
\end{split} |
488 |
\label{eq:25} |
489 |
\end{equation} |
490 |
Matrix contraction of quadrupole-quadrupole tensor and quadrupole |
491 |
moment gives the identity matrix. Therefore each component can be |
492 |
treated as scalar. If the field gradient is homogeneous over the |
493 |
entire volume, ${\partial_ \alpha E_\beta}(\vec{k}) = 0 $ except at |
494 |
$ \vec{k} = 0$, hence it is sufficient to know |
495 |
$ \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})$ at $ \vec{k} = |
496 |
0$. Therefore equation (\ref{eq:25}) can be written as, |
497 |
\begin{equation} |
498 |
\begin{split} |
499 |
\frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}({0}) &= \epsilon_o {\chi}_Q\left(1-\frac{1}{4\pi} {\chi}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} \partial_\alpha E^o_\beta({0}) |
500 |
\end{split} |
501 |
\label{eq:26} |
502 |
\end{equation} |
503 |
where $ \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{0})$ can be evaluated as, |
504 |
\begin{equation} |
505 |
\widetilde{T}_{\alpha\beta\alpha\beta}({0}) = \int \widetilde{T}_{\alpha\beta\alpha\beta}\;(\vec{r})d^3r |
506 |
\label{eq:27} |
507 |
\end{equation} |
508 |
The susceptibility is modified as, |
509 |
\begin{equation} |
510 |
\Xi_Q = \bar{\chi}_Q\left(1-\frac{1}{4\pi} \bar{\chi}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}. |
511 |
\label{eq:28} |
512 |
\end{equation} |
513 |
In terms of traced quadrupole moment equation (\ref{eq:25}) can be written as, |
514 |
\begin{equation} |
515 |
{\bar{Q}}_{\alpha\beta} = \frac{1}{3}\delta_{\alpha\beta}\;Tr(\bar{Q}) + \epsilon_o\; \Xi_Q\; \partial_\alpha E^o_\beta |
516 |
\label{eq:29} |
517 |
\end{equation} |
518 |
From equations (\ref{eq:6}), (\ref{eq:28}), and (\ref{eq:29}) we get, |
519 |
\begin{equation} |
520 |
\begin{split} |
521 |
&\frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\; =\; {\chi}_Q\left(1-\frac{1}{4\pi} {\chi}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}, \\ |
522 |
&{\chi}_Q \;=\; \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{1}{4\pi} \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} |
523 |
\end{split} |
524 |
\end{equation} |
525 |
Finally in terms of quadrupolar correction factor ($A_{quad}$) the quadrupolar susceptibility is written as, |
526 |
\begin{equation} |
527 |
{\chi}_Q \;=\; \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\; A_{quad}\right)^{-1} |
528 |
\end{equation} |
529 |
The $A_{quad}$ has dimension of the $length^{-2}$ is different for different cutoff methods which is listed in Table I. |
530 |
\section{The effective dielectric constant of a quadrupolar fluid} |
531 |
The dielectric constant of a material is a measure of the screening of |
532 |
the electrostatic energy when a material is placed in the |
533 |
electrostatic field. If $U_{field}(r)$ and $U_{int}(r)$ are the total |
534 |
electrostatic energies of a system due to the applied field and |
535 |
interaction of the quadrupole with the gradient of the field |
536 |
respectively. The dielectric constant can be written as, |
537 |
\begin{equation} |
538 |
\epsilon = \frac{U_{field} + U_{int}}{U_{field}} |
539 |
\label{eq:31} |
540 |
\end{equation} |
541 |
The energy due to field can be written as, |
542 |
\begin{equation} |
543 |
U_{field}(r) = \int_V u(r)dv = \int_V \frac{1}{2}\epsilon_o {|E^o|}^2 dv, |
544 |
\label{eq:32} |
545 |
\end{equation} |
546 |
where $u(r)$ is the energy density for applied electric field and $V$ is the total volume |
547 |
of the system. The interaction energy can be assumed to be created by assembling quadrupoles from infinitely far away against the existing field gradient(Analogy Jackson's equations 4.83 - 4.94). Therefore |
548 |
\begin{equation} |
549 |
U_{int}(r) = -\frac{1}{2}\int_V \bar{Q}_{\alpha\beta}\;\partial_\beta E^o_{\alpha}\; dv, |
550 |
\label{eq:33} |
551 |
\end{equation} |
552 |
where $\bar{Q}_{\alpha\beta}$ is the quadrupolar polarization. The quadrupoloarization can be expressed as linear function of the gradient of the applied field as below, |
553 |
\begin{equation} |
554 |
\bar{Q}_{\alpha\beta} = \epsilon_{o}\; {\chi_Q}\; \partial_\alpha E_\beta \approx \epsilon_{o}\; {\chi_Q}\; \partial_\alpha E^o_\beta , |
555 |
\label{eq:34} |
556 |
\end{equation} |
557 |
where ${\chi_Q} $ is a quadrupolar susceptibility. The local field gradient can be ignored in the region of low polarizability. In terms of the box quadrupole |
558 |
moment it can be expressed as, |
559 |
\begin{equation} |
560 |
\chi_Q \;=\; \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\;A_{quad}\right |
561 |
)^{-1}. |
562 |
\label{eq:36} |
563 |
\end{equation} |
564 |
Using above relations (equation (\ref{eq:32}\;-\;\ref{eq:34}) in the |
565 |
equation (\ref{eq:31}) produce, |
566 |
\begin{equation} |
567 |
\epsilon = 1 + {\chi}_Q \frac{\int_V |\partial_\alpha E^o_\beta|^2 dv}{\int_V{|E^o|}^2 dv}. |
568 |
\end{equation} |
569 |
|
570 |
\newpage |
571 |
|
572 |
\appendix |
573 |
\section{Point-multipolar interactions with a spatially-varying electric field} |
574 |
|
575 |
We can treat objects $a$, $b$, and $c$ containing embedded collections |
576 |
of charges. When we define the primitive moments, we sum over that |
577 |
collections of charges using a local coordinate system within each |
578 |
object. The point charge, dipole, and quadrupole for object $a$ are |
579 |
given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively. |
580 |
These are the primitive multipoles which can be expressed as a |
581 |
distribution of charges, |
582 |
\begin{align} |
583 |
C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\ |
584 |
D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\ |
585 |
Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k |
586 |
r_{k\alpha} r_{k\beta} . \label{eq:quadrupole} |
587 |
\end{align} |
588 |
Note that the definition of the primitive quadrupole here differs from |
589 |
the standard traceless form, and contains an additional Taylor-series |
590 |
based factor of $1/2$. In Paper 1, we derived the forces and torques |
591 |
each object exerts on the others. |
592 |
|
593 |
Here we must also consider an external electric field that varies in |
594 |
space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in |
595 |
object $a$ will then experience a slightly different field. This |
596 |
electric field can be expanded in a Taylor series around the local |
597 |
origin of each object. A different Taylor series expansion is carried |
598 |
out for each object. |
599 |
|
600 |
For a particular charge $q_k$, the electric field at that site's |
601 |
position is given by: |
602 |
\begin{equation} |
603 |
E_\gamma + \nabla_\delta E_\gamma r_{k \delta} |
604 |
+ \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta} |
605 |
r_{k \varepsilon} + ... |
606 |
\end{equation} |
607 |
Note that the electric field is always evaluated at the origin of the |
608 |
objects, and treating each object using point multipoles simplifies |
609 |
this greatly. |
610 |
|
611 |
To find the force exerted on object $a$ by the electric field, one |
612 |
takes the electric field expression, and multiplies it by $q_k$, and |
613 |
then sum over all charges in $a$: |
614 |
|
615 |
\begin{align} |
616 |
F_\gamma &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta} |
617 |
+ \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta} |
618 |
r_{k \varepsilon} + ... \rbrace \\ |
619 |
&= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma |
620 |
+ Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma + |
621 |
... |
622 |
\end{align} |
623 |
|
624 |
Similarly, the torque exerted by the field on $a$ can be expressed as |
625 |
\begin{align} |
626 |
\tau_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\ |
627 |
& = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k |
628 |
r_{k\beta} E_\gamma(\mathbf r_k) \\ |
629 |
& = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma |
630 |
+ 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta |
631 |
E_\gamma + ... |
632 |
\end{align} |
633 |
|
634 |
The last term is essentially identical with form derived by Torres del |
635 |
Castillo and M\'{e}ndez Garrido,\cite{Torres-del-Castillo:2006uo} although their derivation |
636 |
utilized a traceless form of the quadrupole that is different than the |
637 |
primitive definition in use here. We note that the Levi-Civita symbol |
638 |
can be eliminated by utilizing the matrix cross product in an |
639 |
identical form as in Ref. \onlinecite{Smith98}: |
640 |
\begin{equation} |
641 |
\left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta |
642 |
\left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta} |
643 |
-\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta} |
644 |
\right] |
645 |
\label{eq:matrixCross} |
646 |
\end{equation} |
647 |
where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of |
648 |
the matrix indices. In table \ref{tab:UFT} we give compact |
649 |
expressions for how the multipole sites interact with an external |
650 |
field that has exhibits spatial variations. |
651 |
|
652 |
\begin{table} |
653 |
\caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque |
654 |
$(\mathbf{\tau})$ expressions for a multipolar site embedded in an |
655 |
electric field with spatial variations, $\mathbf{E}(\mathbf{r})$. |
656 |
\label{tab:UFT}} |
657 |
\begin{tabular}{r|ccc} |
658 |
& Charge & Dipole & Quadrupole \\ \hline |
659 |
$U$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\ |
660 |
$\mathbf{F}$ & $C \mathbf{E}(\mathbf{r})$ & $+\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $+\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\ |
661 |
$\mathbf{\tau}$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $+2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$ |
662 |
\end{tabular} |
663 |
\end{table} |
664 |
\section{Gradient of the field due to quadrupolar polarization} |
665 |
\label{singular} |
666 |
In this section, we will discuss the gradient of the field produced by |
667 |
quadrupolar polarization. For this purpose, we consider a distribution |
668 |
of charge ${\rho}(r)$ which gives rise to an electric field |
669 |
$\vec{E}(r)$ and gradient of the field $\vec{\nabla} \vec{E}(r)$ |
670 |
throughout space. The total gradient of the electric field over volume |
671 |
due to the all charges within the sphere of radius $R$ is given by |
672 |
(cf. Jackson equation 4.14): |
673 |
\begin{equation} |
674 |
\int_{r<R} \vec{\nabla}\vec{E}\;d^3r = -\int_{r=R} R^2 \vec{E}\;\hat{n}\; d\Omega |
675 |
\label{eq:8} |
676 |
\end{equation} |
677 |
where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector |
678 |
of the surface of the sphere which is equal to |
679 |
$sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} + |
680 |
cos[\theta]\hat{z}$ |
681 |
in spherical coordinates. For the charge density ${\rho}(r')$, the |
682 |
total gradient of the electric field can be written as (cf. Jackson |
683 |
equation 4.16), |
684 |
\begin{equation} |
685 |
\int_{r<R} \vec{\nabla}\vec{E}\; d^3r=-\int_{r=R} R^2\; \vec{\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; \vec{\nabla}\;\left(\int \frac{\rho(r')}{|\vec{r}-\vec{r'}|}\;d^3r'\right) \hat{n}\; d\Omega |
686 |
\label{eq:9} |
687 |
\end{equation} |
688 |
The radial function in the equation (\ref{eq:9}) can be expressed in |
689 |
terms of spherical harmonics as (cf. Jackson equation 3.70), |
690 |
\begin{equation} |
691 |
\frac{1}{|\vec{r} - \vec{r'}|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi) |
692 |
\label{eq:10} |
693 |
\end{equation} |
694 |
If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get, |
695 |
\begin{equation} |
696 |
\begin{split} |
697 |
\int_{r<R} \vec{\nabla}\vec{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; \vec{\nabla}\;\left(\int \rho(r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\ |
698 |
&= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r |
699 |
' |
700 |
\end{split} |
701 |
\label{eq:11} |
702 |
\end{equation} |
703 |
The gradient of the product of radial function and spherical harmonics |
704 |
is given by (cf. Arfken, p.811 eq. 16.94): |
705 |
\begin{equation} |
706 |
\begin{split} |
707 |
\vec{\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac |
708 |
{\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi). |
709 |
\end{split} |
710 |
\label{eq:12} |
711 |
\end{equation} |
712 |
Using equation (\ref{eq:12}) we get, |
713 |
\begin{equation} |
714 |
\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}}, |
715 |
\label{eq:13} |
716 |
\end{equation} |
717 |
where $ Y_{l,l+1,m}(\theta, \phi)$ is the vector spherical harmonics |
718 |
which can be expressed in terms of spherical harmonics as shown in |
719 |
below (cf. Arfkan p.811), |
720 |
\begin{equation} |
721 |
Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}, |
722 |
\label{eq:14} |
723 |
\end{equation} |
724 |
where $C(l+1,1,l|m_1,m_2,m)$ is a Clebsch-Gordan coefficient and |
725 |
$\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed |
726 |
in terms of Cartesian coordinates, |
727 |
\begin{equation} |
728 |
{\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}} |
729 |
\label{eq:15} |
730 |
\end{equation} |
731 |
The normal vector $\hat{n} $ can be expressed in terms of spherical tensor of rank 1 as shown in below, |
732 |
\begin{equation} |
733 |
\hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right) |
734 |
\label{eq:16} |
735 |
\end{equation} |
736 |
The surface integral of the product of $\hat{n}$ and |
737 |
${Y_{l+1}}^{m_1}(\theta, \phi)$ gives, |
738 |
\begin{equation} |
739 |
\begin{split} |
740 |
\int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\ |
741 |
&= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\ |
742 |
&= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right), |
743 |
\end{split} |
744 |
\label{eq:17} |
745 |
\end{equation} |
746 |
where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and |
747 |
$ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega = |
748 |
\delta_{ll'}\delta_{mm'} $. |
749 |
Non-vanishing values of equation \ref{eq:17} require $l = 0$, |
750 |
therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1, |
751 |
1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively |
752 |
provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be |
753 |
modified, |
754 |
\begin{equation} |
755 |
\begin{split} |
756 |
\int_{r<R} \vec{\nabla}\vec{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C( |
757 |
1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r'. |
758 |
\end{split} |
759 |
\label{eq:18} |
760 |
\end{equation} |
761 |
After substituting ${Y^*}_{00} = \frac{1}{\sqrt{4\pi}} $ and using the |
762 |
values of the Clebsch-Gorden coefficients: $ C(1, 1, 0|-1,1,0) = |
763 |
\frac{1}{\sqrt{3}}, \; C(1, 1, 0|-1,1,0)= \frac{1}{\sqrt{3}}$ and $ |
764 |
C(1, 1, 0|0,0,0) = -\frac{1}{\sqrt{3}}$ in equation \ref{eq:18} we |
765 |
obtain, |
766 |
\begin{equation} |
767 |
\begin{split} |
768 |
\int_{r<R} \vec{\nabla}\vec{E}\;d^3r &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\ |
769 |
&= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right). |
770 |
\end{split} |
771 |
\label{eq:19} |
772 |
\end{equation} |
773 |
Equation (\ref{eq:19}) gives the total gradient of the field over a |
774 |
sphere due to the distribution of the charges. For quadrupolar fluids |
775 |
the total charge within a sphere is zero, therefore |
776 |
$ \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = 0 $. Hence the quadrupolar |
777 |
polarization produces zero net gradient of the field inside the |
778 |
sphere. |
779 |
|
780 |
\newpage |
781 |
|
782 |
\bibliography{multipole} |
783 |
|
784 |
\end{document} |