ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric.tex
Revision: 4351
Committed: Mon Jun 15 14:38:21 2015 UTC (10 years, 2 months ago) by gezelter
Content type: application/x-tex
File size: 37595 byte(s)
Log Message:
Latest stab at a dielectric paper

File Contents

# Content
1 \documentclass[%
2 aip,
3 jcp,
4 amsmath,amssymb,
5 preprint,%
6 % reprint,%
7 %author-year,%
8 %author-numerical,%
9 ]{revtex4-1}
10
11 \usepackage{graphicx}% Include figure files
12 \usepackage{dcolumn}% Align table columns on decimal point
13 \usepackage{multirow}
14 \usepackage{bm}% bold math
15 \usepackage{natbib}
16 \usepackage{times}
17 \usepackage{mathptmx}
18 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
19 \usepackage{url}
20 \usepackage{braket}
21
22 \begin{document}
23
24 \title{Real space electrostatics for multipoles. III. Dielectric Properties}
25
26 \author{Madan Lamichhane}
27 \affiliation{Department of Physics, University
28 of Notre Dame, Notre Dame, IN 46556}
29 \author{Thomas Parsons}
30 \affiliation{Department of Chemistry and Biochemistry, University
31 of Notre Dame, Notre Dame, IN 46556}
32 \author{Kathie E. Newman}
33 \affiliation{Department of Physics, University
34 of Notre Dame, Notre Dame, IN 46556}
35 \author{J. Daniel Gezelter}
36 \email{gezelter@nd.edu.}
37 \affiliation{Department of Chemistry and Biochemistry, University
38 of Notre Dame, Notre Dame, IN 46556}
39
40 \date{\today}% It is always \today, today,
41 % but any date may be explicitly specified
42
43 \begin{abstract}
44 Note: This manuscript is a work in progress.
45
46 We report on the dielectric properties of the shifted potential
47 (SP), gradient shifted force (GSF), and Taylor shifted force (TSF)
48 real-space methods for multipole interactions that were developed in
49 the first two papers in this series. We find that some subtlety is
50 required for computing dielectric properties with the real-space
51 methods, particularly when using the common fluctuation formulae.
52 Three distinct methods for computing the dielectric constant are
53 investigated, including the standard fluctuation formulae,
54 potentials of mean force between solvated ions, and direct
55 measurement of linear solvent polarization in response to applied
56 fields and field gradients.
57 \end{abstract}
58
59 \maketitle
60
61 \section{Introduction}
62
63 Over the past several years, there has been increasing interest in
64 pairwise methods for correcting electrostatic interactions in computer
65 simulations of condensed molecular
66 systems.\cite{Wolf99,Zahn02,Kast03,Beckd.A.C._Bi0486381,Ma05,Fennell06}
67 These techniques were developed from the observations and efforts of
68 Wolf {\it et al.} and their work towards an $\mathcal{O}(N)$
69 Coulombic sum.\cite{Wolf99} Wolf's method of cutoff neutralization is
70 able to obtain excellent agreement with Madelung energies in ionic
71 crystals.\cite{Wolf99} One of the most difficult tests of any new
72 electrostatic method is the fidelity with which that method can
73 reproduce the bulk-phase polarizability or equivalently, the
74 dielectric properties of a fluid. Of particular interest is the
75 static dielectric constant, $\epsilon$. Using the Ewald sum under
76 tin-foil boundary conditions, $\epsilon$ can be calculated for systems
77 of non-polarizable substances via
78 \begin{equation}
79 \epsilon = 1 + \frac{\langle M^2\rangle}{3\epsilon_0k_\textrm{B}TV},
80 \label{eq:staticDielectric}
81 \end{equation}
82 where $\epsilon_0$ is the permittivity of free space and $\langle
83 M^2\rangle$ is the fluctuation of the system dipole
84 moment.\cite{Allen:1989fp} The numerator in the fractional term in equation
85 (\ref{eq:staticDielectric}) is the fluctuation of the simulation-box
86 dipole moment, identical to the quantity calculated in the
87 finite-system Kirkwood $g$ factor ($G_k$):
88 \begin{equation}
89 G_k = \frac{\langle M^2\rangle}{N\mu^2},
90 \label{eq:KirkwoodFactor}
91 \end{equation}
92 where $\mu$ is the dipole moment of a single molecule of the
93 homogeneous system.\cite{Neumann:1983mz,Neumann:1983yq,Neumann84,Neumann85} The
94 fluctuation term in both equation (\ref{eq:staticDielectric}) and
95 (\ref{eq:KirkwoodFactor}) is calculated as follows,
96 \begin{equation}
97 \begin{split}
98 \langle M^2\rangle &= \langle\bm{M}\cdot\bm{M}\rangle
99 - \langle\bm{M}\rangle\cdot\langle\bm{M}\rangle \\
100 &= \langle M_x^2+M_y^2+M_z^2\rangle
101 - (\langle M_x\rangle^2 + \langle M_x\rangle^2
102 + \langle M_x\rangle^2).
103 \end{split}
104 \label{eq:fluctBoxDipole}
105 \end{equation}
106 This fluctuation term can be accumulated during a simulation; however,
107 it converges rather slowly, thus requiring multi-nanosecond simulation
108 times.\cite{Horn04} In the case of tin-foil boundary conditions, the
109 dielectric/surface term of the Ewald summation is equal to zero.
110
111 \section{Dielectric constants for real-space electrostatics}
112
113 The new real-space methods require some care when computing dielectric
114 properties because the interaction between molecular dipoles depends
115 on the level of approximation being utilized. Consider the cases of
116 Stockmayer (dipolar) soft spheres that are represented either by two
117 closely-spaced point charges or by a single point dipole (see
118 Fig. \ref{fig:stockmayer}).
119 \begin{figure}
120 \includegraphics[width=3in]{DielectricFigure}
121 \caption{With the real-space electrostatic methods, the effective
122 dipole tensor, $\mathbf{T}$, governing interactions between
123 molecular dipoles is not the same for charge-charge interactions as
124 for point dipoles.}
125 \label{fig:stockmayer}
126 \end{figure}
127 In the case where point charges are interacting via an electrostatic
128 kernel, $v(r)$, the effective {\it molecular} dipole tensor,
129 $\mathbf{T}$ is obtained from two successive applications of the
130 gradient operator to the electrostatic kernel,
131 \begin{equation}
132 \mathbf{T}_{\alpha \beta}(r) = \nabla_\alpha \nabla_\beta \left(v(r)\right) = \delta_{\alpha \beta}
133 \left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha}
134 r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r}
135 v^{\prime}(r) \right)
136 \end{equation}
137 where $v(r)$ may be either the bare kernel ($1/r$) or one of the
138 modified (Wolf or DSF) kernels. This tensor describes the effective
139 interaction between molecular dipoles ($\mathbf{D}$) in Gaussian
140 units as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$.
141
142 When utilizing the new real-space methods for point dipoles, the
143 tensor is explicitly constructed,
144 \begin{equation}
145 \mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) +
146 \frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r)
147 \end{equation}
148 where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of
149 the approximation. Although the Taylor-shifted (TSF) and
150 gradient-shifted (GSF) models produce to the same $v(r)$ function for
151 point charges, they have distinct forms for the dipole-dipole
152 interactions.
153
154 Neumann and Steinhauser showed~\cite{Neumann:1983mz,Neumann:1983yq}
155 that the relative dielectric permittivity $\epsilon$ is given by the
156 general fluctuation formula,
157 \begin{equation}
158 \frac{\epsilon - 1}{\epsilon +2} = \frac{4 \pi}{3} \frac{\left<M^2\right>}{3 V k_B
159 T} \left( 1 - \frac{3}{4 \pi} \frac{\epsilon -1}{\epsilon + 2}
160 \tilde{T}(0) \right)
161 \end{equation}
162 where $\left<M^2\right>$ is the mean fluctuation of the square of the
163 net dipole moment of the simulation cell, $V$ is the volume of the
164 cell, and $\tilde{T}(0) = \tilde{T̃}_{xx}(0) = \tilde{T̃}_{yy}(0) =
165 \tilde{T̃}_{zz}(0)$ is the $\mathbf{k} = 0$ limit of Fourier transform
166 of the diagonal term of the effective molecular dipolar tensor,
167 \begin{equation}
168 \tilde{T}(0) = \int_V \mathbf{T}(\mathbf{r}) d\mathbf{r}
169 \end{equation}
170 where the integral is carried out over the relevant geometry for the
171 interaction. For the real-space methods, the integration can be done
172 easily up to the imposed cutoff radius, while for the Ewald sum, the
173 results also depend on details of the $k$-space
174 calculation.\cite{Neumann:1983yq}
175
176 For molecules composed of point charges interacting via the bare
177 $(1/r)$ kernel, the simple cutoff (SC) and minimum image (MI)
178 approaches give $\tilde{T}(0) = 0$ which means that the
179 Clausius-Mosotti equation,
180 \begin{equation}
181 \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon
182 -1}{\epsilon+2}
183 \end{equation}
184 is the relevant fluctuation formula for the relative permittivity.
185
186 Zahn {\it et al.}\cite{Zahn02} showed that for the damped shifted
187 force charge-charge kernel, $\tilde{T}(0) = 4 \pi / 3$. This was later
188 generalized by Izvekov {\it et al.} for all point-charge kernels which
189 have forces that go to zero at a cutoff radius and which maintain a
190 pole of first order at $r=0$.\cite{Izvekov:2008wo} When $\tilde{T}(0)
191 = 4 \pi/ 3$, the expression for the dielectric constant reduces to the
192 widely-used {\it conducting boundary} formula,
193 \begin{equation}
194 \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon -
195 1}{3}
196 \end{equation}
197 It is convenient to define a quantity $A = \frac{3}{4 \pi}
198 \tilde{T}(0)$, and to combine all of the fluctuation formulae
199 together:
200 \begin{equation}
201 \frac{4 \pi}{3} \frac{\left< M^2 \right>}{3 V k_B T} =
202 \left\{\begin{array}{ll}
203 \frac{\epsilon-1}{\epsilon+2} \left[1- \frac{\epsilon-1}{\epsilon+2}
204 A\right]^{-1} & \mathrm{General~Case} \\
205 \frac{\epsilon-1}{\epsilon+2} & A \rightarrow 0 \mathrm{~limit} \\
206 \frac{\epsilon-1}{3} & A \rightarrow 1 \mathrm{~limit}
207 \end{array}\right.
208 \end{equation}
209
210 The Clausius-Mossotti $(A\rightarrow 0)$ approach is subject to noise
211 and error magnification,\cite{Allen:1989fp} and the conducting
212 boundary approach $(A \rightarrow 1)$ has become widely used as a
213 result. If the electrostatic method being used has $A < 1$, the
214 relative dielectric permittivity $\epsilon$ can be estimated once the
215 conducting boundary fluctuation result has been found,
216 \begin{equation}
217 \epsilon = \frac{(A+2) (\epsilon_\text{CB}-1)+3} {(A-1) (\epsilon_\text{CB}-1)+3}
218 \end{equation}
219 Note that this expression becomes quite numerically sensitive when the
220 value of $A$ deviates significantly from 1.
221
222 We have derived a set of expressions for the value of $A$ for the new
223 real space methods that are shown in Table \ref{tab:A}.
224
225 \begin{table}
226 \caption{Expressions for the dielectric correction factor ($A$) for the
227 real-space electrostatic methods in terms of the damping parameter
228 ($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result
229 derived in Refs. \onlinecite{Adams:1980rt,Adams:1981fr,Neumann:1983yq} is shown for comparison using the Ewald
230 convergence parameter ($\kappa$) and the real-space cutoff value ($r_c$). }
231 \label{tab:A}
232 \begin{tabular}{l|c|c|c|c|}
233 & \multicolumn{2}{c|}{damped} & \multicolumn{2}{c|}{undamped} \\ \cline{2-3} \cline{4-5}
234 Method & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ \\
235 \hline
236 Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ &0 &0\\
237 Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c }{\sqrt{\pi }} \left(1 + \frac{2 \alpha^2 r_c^2}{3} \right) e^{-\alpha ^2 r_c^2} $ &0 &0\\
238 Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha ^2 r_c^2} $ &1 &1\\
239 Taylor-shifted (TSF) & 1 & 1 & 1 & 1\\
240 Ewald-Kornfeld (EK) & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & - & - \\\hline
241 \end{tabular}
242 \end{table}
243
244 \section{Boltzman average of the dipole polarization density}
245 Consider a dipolar fluid with polarization density $\mathbf{P}(r)$ at
246 equlibrium at temperature $T$. The average of polarization density is
247 given by,
248 \begin{equation}
249 \left<\mathbf{P}(r)\right> = \frac{\int\mathbf{P}(r) e^{-H/k_B T} d
250 \Gamma^N}{\int e^{-H/k_B T} d \Gamma^N}
251 \end{equation}
252 where $d \Gamma^N = dr_1...dr_N dp_1...dp_N$ is the volume element in
253 phase space, and $H$ is the Hamiltonian of the $N$-particle system in
254 the absence of applied external field. The Hamiltonian of the system
255 is given by,
256 \begin{equation}
257 H = \frac{1}{2}\sum_{i=1}^N m_i {\dot{\mathbf{r}}_i}^2 + \sum_{i<j} U(\mathbf{r}_i - \mathbf{r}_j)
258 \end{equation}
259 where $m_i$ is mass of site $i$, and $U(\mathbf{r}_i - \mathbf{r}_j)$
260 is the interaction potential between sites $i$ and $j$.
261
262 Let $E'$ be the applied external electric field. The Hamiltonian for
263 the polarized system then becomes
264 \begin{equation}
265 H' = H - {M}_\alpha {E'}_\alpha
266 \end{equation}
267 where $\mathbf{M}$ is the total dipole moment in zero field. The
268 polarization density changes in the presence of the external field
269 $\mathbf{E'}$. The modified polarization is given by
270 \begin{equation}
271 \left< P'_\alpha(r) \right>_{E'} = \frac{\int P_\alpha(r) e^{-H'/k_B
272 T} d \Gamma^N}{\int e^{-H'/k_B T} d \Gamma^N} \equiv \frac{F}{G}
273 \end{equation}
274 For small values of the applied electric field we can expand the
275 polarization density as,
276 \begin{equation}
277 \left< P'_\alpha(r) \right>_{E'} = \left< P'_\alpha(r) \right> + \frac{\partial
278 \left< P'_\alpha(r) \right>}{\partial E'_\beta }\bigg|_{E'=0} E'_\beta
279 \end{equation}
280 and
281 \begin{equation}
282 \frac{\partial{\left<P'_\alpha(r)\right>}}{\partial{E'_\beta}}\bigg|_{E'=0} = \frac{F'G-FG'}{G^2}
283 \end{equation}
284 where
285 \begin{equation}
286 \begin{split}
287 F' & = \frac{1}{k_BT} \int {P}_\alpha M_\beta\; e^{-H/k_B T} d\Gamma^N\\
288 \textit{and} \\
289 G' & = \frac{1}{k_BT} \int M_\beta\; e^{-H/k_B T} d\Gamma^N
290 \end{split}
291 \end{equation}
292
293 \section{Boltzmann average of a quadrupole moment}
294 The average quadrupole moment at temperature T in the presence of applied
295 field gradient is given by,
296 \begin{equation}
297 \braket{q_{\alpha\beta}} \;=\; \frac{\int d\Omega\; e^{\frac{-U(r)}{k_B T}}q_{\alpha\beta}}{\int d\Omega\; e^{\frac{-U(r)}{k_B T}}} \;=\; \frac{\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
298 \label{eq:1}
299 \end{equation}
300 where $\int \Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
301 sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
302 angles and $ U(r) = -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
303 a quadrupole in the gradient of the
304 applied field. The energy and quadrupole moment can be transformed
305 into body frame using following relation,
306 \begin{equation}
307 \begin{split}
308 q_{\alpha\beta} &= \eta_{\alpha\alpha'}{q}^* _{\alpha'\beta'}\eta_{\beta'\beta} \\
309 U(r) &= - q:\vec{\nabla}\vec{E} = - q_{\mu\nu}\;\partial_\nu E_\mu = -\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu.
310 \end{split}
311 \label{eq:2}
312 \end{equation}
313 Here the starred tensors are the components in the body fixed
314 frame. Substituting equation (\ref{eq:2}) in the equation (\ref{eq:1})
315 and taking linear terms in the expansion we get,
316 \begin{equation}
317 \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu }{k_B T}\right)},
318 \label{eq:3}
319 \end{equation}
320 where $\eta_{\alpha\alpha'}$ is the rotation matrix that transforms
321 the body fixed to the space fixed frame,
322 \[\eta_{\alpha\alpha'}
323 = \left(\begin{array}{ccc}
324 cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & cos\theta\; cos\psi\; sin\phi + cos\phi\; sin\psi & sin\theta\; sin\phi \\
325 -cos\psi\; sin\phi - cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & cos\phi\; cos\theta \\
326 sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
327 \end{array} \right).\]
328 Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
329 and ($8 \pi^2 /3) \vec{\nabla}.\vec{E}\; Tr(q^*) $ respectively. The
330 second term vanishes for charge free space
331 (i.e. $\vec{\nabla}.\vec{E} \; = \; 0)$. Similarly integration of the
332 1st term in the numerator produces
333 $(8 \pi^2 /3)\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
334 $(8 \pi^2 /15k_B T) (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
335 {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
336 if $\vec{\nabla}.\vec{E} \; = \; 0$,
337 $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
338 ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
339 Boltzmann average of a quadrupole moment can be written as,
340
341 \begin{equation}
342 \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
343 \label{eq:4}
344 \end{equation}
345 here ${\bar{q_o}}^2=
346 (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})$
347 which is a net quadrupole moment of a molecule.
348
349 To find the average quadrupole moment for the entire system, we can
350 multiply above equation with number of molecules $N$.
351 \begin{equation}
352 \braket{Q_{\alpha\beta}} \;=\; N\braket{q_{\alpha\beta}}\; = \; \frac{N}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{N\;\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta
353 \label{eq:5}
354 \end{equation}
355 The analogous relation in a system of the $N$ quadrupoles is,
356 \begin{equation}
357 \braket{Q_{\alpha\beta}} \; = \; \frac{1}{3}\;Tr(Q)\;\delta_{\alpha\beta} + \frac{({\braket{Q^2}}_{en} - {\braket{Q}}_{en}^2)}{15k_BT}\;\partial_\alpha E_\beta
358 \label{eq:6}
359 \end{equation}
360 where $\braket{{Q^2}}_{en}$ and $\braket{Q}_{en}^2$ are the ensemble
361 average of the square of the magnitude of the box quadrupole moment
362 and the square of the ensemble average of the box quadrupole moment
363 respectively. The ensemble averages in the above equation can be
364 obtained using relations,
365 ${\braket{Q^2}}_{en} =
366 {\braket{3Q_{\alpha'\beta'}Q_{\beta'\alpha'}-Q_{\alpha'\alpha'}Q_{\beta'\beta'}}}_{en}$
367 and
368 ${\braket{Q}}_{en}^2 = 3{\braket{Q_{\alpha'\beta'}}}_{en}\;
369 \braket{Q_{\beta'\alpha'}}_{en} -{\braket{Q_{\alpha'\alpha'}}}_{en}\;
370 {\braket{Q_{\beta'\beta'}}}_{en}$
371 respectively. The non-zero value of the $\braket{Q}_{en}^2$ is due to
372 the applied gradient, therefore its contribution is subtracted to find
373 the actual fluctuation in the box quadrupole moment. From the
374 equations (\ref{eq:5}) and (\ref{eq:6}) we get,
375 \begin{equation}
376 \begin{split}
377 \braket{{Q^2}}_{en}-{\braket{Q}_{en}}^2 &= N\; {\bar{q_o}}^2\\
378 & and \\
379 \braket{Q_{\alpha\beta}}\; &= \; N\braket{q_{\alpha\beta}}.
380 \end{split}
381 \label{eq:7}
382 \end{equation}
383
384 \section{Gradient of the field due to quadrupolar polarization}
385 \label{singular}
386 In this section, we will discuss the gradient of the field produced by
387 quadrupolar polarization. For this purpose, we consider a distribution
388 of charge ${\rho}(r)$ which gives rise to an electric field
389 $\vec{E}(r)$ and gradient of the field $\vec{\nabla} \vec{E}(r)$
390 throughout space. The total gradient of the electric field over volume
391 due to the all charges within the sphere of radius $R$ is given by
392 (cf. Jackson equation 4.14):
393 \begin{equation}
394 \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = -\int_{r=R} R^2 \vec{E}\;\hat{n}\; d\Omega
395 \label{eq:8}
396 \end{equation}
397 where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
398 of the surface of the sphere which is equal to
399 $sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} +
400 cos[\theta]\hat{z}$
401 in spherical coordinates. For the charge density ${\rho}(r')$, the
402 total gradient of the electric field can be written as (cf. Jackson
403 equation 4.16),
404 \begin{equation}
405 \int_{r<R} \vec{\nabla}\vec{E}\; d^3r=-\int_{r=R} R^2\; \vec{\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; \vec{\nabla}\;\left(\int \frac{\rho(r')}{|\vec{r}-\vec{r'}|}\;d^3r'\right) \hat{n}\; d\Omega
406 \label{eq:9}
407 \end{equation}
408 The radial function in the equation (\ref{eq:9}) can be expressed in
409 terms of spherical harmonics as (cf. Jackson equation 3.70),
410 \begin{equation}
411 \frac{1}{|\vec{r} - \vec{r'}|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
412 \label{eq:10}
413 \end{equation}
414 If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
415 \begin{equation}
416 \begin{split}
417 \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; \vec{\nabla}\;\left(\int \rho(r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\
418 &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r
419 '
420 \end{split}
421 \label{eq:11}
422 \end{equation}
423 The gradient of the product of radial function and spherical harmonics
424 is given by (cf. Arfken, p.811 eq. 16.94):
425 \begin{equation}
426 \begin{split}
427 \vec{\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
428 {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
429 \end{split}
430 \label{eq:12}
431 \end{equation}
432 Using equation (\ref{eq:12}) we get,
433 \begin{equation}
434 \vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
435 \label{eq:13}
436 \end{equation}
437 where $ Y_{l,l+1,m}(\theta, \phi)$ is the vector spherical harmonics
438 which can be expressed in terms of spherical harmonics as shown in
439 below (cf. Arfkan p.811),
440 \begin{equation}
441 Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2},
442 \label{eq:14}
443 \end{equation}
444 where $C(l+1,1,l|m_1,m_2,m)$ is a Clebsch-Gordan coefficient and
445 $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
446 in terms of Cartesian coordinates,
447 \begin{equation}
448 {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}
449 \label{eq:15}
450 \end{equation}
451 The normal vector $\hat{n} $ can be expressed in terms of spherical tensor of rank 1 as shown in below,
452 \begin{equation}
453 \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)
454 \label{eq:16}
455 \end{equation}
456 The surface integral of the product of $\hat{n}$ and
457 ${Y_{l+1}}^{m_1}(\theta, \phi)$ gives,
458 \begin{equation}
459 \begin{split}
460 \int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
461 &= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
462 &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
463 \end{split}
464 \label{eq:17}
465 \end{equation}
466 where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and
467 $ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega =
468 \delta_{ll'}\delta_{mm'} $.
469 Non-vanishing values of equation \ref{eq:17} require $l = 0$,
470 therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
471 1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
472 provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
473 modified,
474 \begin{equation}
475 \begin{split}
476 \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
477 1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r'.
478 \end{split}
479 \label{eq:18}
480 \end{equation}
481 After substituting ${Y^*}_{00} = \frac{1}{\sqrt{4\pi}} $ and using the
482 values of the Clebsch-Gorden coefficients: $ C(1, 1, 0|-1,1,0) =
483 \frac{1}{\sqrt{3}}, \; C(1, 1, 0|-1,1,0)= \frac{1}{\sqrt{3}}$ and $
484 C(1, 1, 0|0,0,0) = -\frac{1}{\sqrt{3}}$ in equation \ref{eq:18} we
485 obtain,
486 \begin{equation}
487 \begin{split}
488 \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
489 &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
490 \end{split}
491 \label{eq:19}
492 \end{equation}
493 Equation (\ref{eq:19}) gives the total gradient of the field over a
494 sphere due to the distribution of the charges. For quadrupolar fluids
495 the total charge within a sphere is zero, therefore
496 $ \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = 0 $. Hence the quadrupolar
497 polarization produces zero net gradient of the field inside the
498 sphere.
499
500 \section{Relation between quadrupolar polarization and applied field gradient}
501 In the presence of the field gradient $\partial_\alpha {E}_\beta $, a
502 non-vanishing quadrupolar polarization (quadrupole moment per unit
503 volume) $\bar{Q}_{\alpha\beta}$ will be induced in the entire volume
504 of a sample. The total field at any point $\vec{r}$ in the sample is
505 given by,
506 \begin{equation}
507 \partial_\alpha E_\beta(\vec{r}) = \partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{4\pi \epsilon_o}\int T_{\alpha\beta\gamma\delta}(\vec{r}-\vec{r'})\;\bar{Q}_{\gamma\delta}(\vec{r'})\; d^3r'
508 \label{eq:20}
509 \end{equation}
510 where $ T_{\alpha\beta\gamma\delta}$ is the quadrupole-quadrupole interaction tensor and $\partial_\alpha {E^o}_\beta$ is the applied field gradient. Now the total quadrupolar polarization can be written as,
511 \begin{equation}
512 \bar{Q}_{\alpha\beta}(\vec{r}) = \frac{1}{3}\delta_{\alpha\beta}\;Tr(\bar{Q})+\epsilon_o \bar{\chi^*}_Q\;\partial_\alpha E_\beta(\vec{r}),
513 \label{eq:21}
514 \end{equation}
515 where $\bar{\chi^*}_Q = \frac{\braket{{Q^2}} - \braket{Q}^2}{15\epsilon_o Vk_BT}$ is the susceptibility of the quadrupolar fluid. In terms of traceless quadrupole moment, equations (\ref{eq:20}) and (\ref{eq:21}) can be written as,
516 \begin{equation}
517 \frac{1}{3}\bar{\Theta}_{\alpha\beta}(\vec{r}) = \epsilon_o \bar{\chi^*}_Q \; \partial_\alpha E_\beta (\vec{r})= \epsilon_o \bar{\chi^*}_Q \left(\partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{12\pi \epsilon_o}\int T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{\Theta}_{\gamma\delta}(\vec{r'})\; d^3r'\right)
518 \label{eq:22}
519 \end{equation}
520 where
521 $\Theta_{\alpha\beta} = 3Q_{\alpha\beta} - \delta_{\alpha\beta}Tr(Q)$
522 is the traceless quadrupole moment. The integral in equation
523 \ref{eq:22} can be divided into two parts, $|\vec{r}-\vec{r'}|< R $
524 and $|\vec{r}-\vec{r'}|> R $ where $R \rightarrow 0 $. Since the total
525 field gradient vanishes at the singularity (see Sec. \ref{singular}),
526 equation (\ref{eq:22}) can be written as,
527 \begin{equation}
528 \frac{1}{3}\bar{\Theta}_{\alpha\beta}(\vec{r}) = \epsilon_o
529 \bar{\chi^*}_Q \left(\partial_\alpha {E^o}_\beta(\vec{r}) +
530 \frac{1}{12\pi \epsilon_o}\lim_{R \to
531 0}\int\limits_{|\vec{r}-\vec{r'}|> R }
532 T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{\Theta}_{\gamma\delta}(\vec{r'})\;
533 d^3r'\right).
534 \label{eq:23}
535 \end{equation}
536 For toroidal boundary conditions, both $\partial_\alpha E_\beta$ and
537 $\bar{\Theta}_{\alpha\beta}$ are uniform over the entire space. After
538 performing a Fourier transform (see the Appendix in the Neumann Paper),
539 we get,
540 \begin{equation}
541 \frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})=
542 \epsilon_o \bar{\chi^*}_Q \;\left[\widetilde{\partial_\alpha
543 {E^o}_\beta}(\vec{k})+ \frac{1}{12\pi
544 \epsilon_o}\;\widetilde{T}_{\alpha\beta\gamma\delta}(\vec{k})\;
545 \widetilde{\bar{\Theta}}_{\gamma\delta}(\vec{k})\right]
546 \label{eq:24}
547 \end{equation}
548 Since the quadrupolar polarization is in the direction of the applied
549 field
550 $\widetilde{\bar{\Theta}}_{\gamma\delta}(\vec{k}) =
551 \widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})$
552 and
553 $\widetilde{T}_{\alpha\beta\gamma\delta}(\vec{k}) =
554 \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})$.
555 (Note: This is true for orientational polarization but might not be
556 true for polarization due to changes in the atomic distribution. For
557 the orientational case, we need only to work with individual
558 components of the matrix.)
559 \begin{equation}
560 \begin{split}
561 \frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k}) &= \epsilon_o \bar{\chi^*}_Q \left[\widetilde{\partial_\alpha {E^o}_\beta}(\vec{k})+ \frac{1}{12\pi \epsilon_o}\widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})\;\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})\right] \\
562 &= \epsilon_o \bar{\chi^*}_Q\;\left(1-\frac{1}{4\pi} \bar{\chi^*}_Q
563 \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})\right)^{-1}
564 \widetilde{\partial_\alpha {E^o}_\beta}(\vec{k})
565 \end{split}
566 \label{eq:25}
567 \end{equation}
568 Matrix contraction of quadrupole-quadrupole tensor and quadrupole
569 moment gives the identity matrix. Therefore each component can be
570 treated as scalar. If the field gradient is homogeneous over the
571 entire volume, $\widetilde{\partial_ \alpha E_\beta} = 0 $ except at
572 $ \vec{k} = 0$, hence it is sufficient to know
573 $ \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})$ at $ \vec{k} =
574 0$. Therefore equation (\ref{eq:25}) can be written as,
575 \begin{equation}
576 \begin{split}
577 \frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}({0}) &= \epsilon_o \bar{\chi^*}_Q\left(1-\frac{1}{4\pi} \bar{\chi^*}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} \widetilde{\partial_\alpha {E^o}}_\beta({0})
578 \end{split}
579 \label{eq:26}
580 \end{equation}
581 where $ \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{0})$ can be evaluated as,
582 \begin{equation}
583 \widetilde{T}_{\alpha\beta\alpha\beta}({0}) = \int \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{r})d^3r
584 \label{eq:27}
585 \end{equation}
586 The susceptibility is modified as,
587 \begin{equation}
588 \Xi_Q = \bar{\chi^*}_Q\left(1-\frac{1}{4\pi} \bar{\chi^*}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}.
589 \label{eq:28}
590 \end{equation}
591 In terms of traced quadrupole moment equation (\ref{eq:25}) can be written as,
592 \begin{equation}
593 {\bar{Q}}_{\alpha\beta} = \frac{1}{3}\delta_{\alpha\beta}\;Tr(\bar{Q}) + \epsilon_o\; \Xi_Q\; \widetilde{\partial_\alpha {E^o}}_\beta
594 \label{eq:29}
595 \end{equation}
596 From equations (\ref{eq:6}) (\ref{eq:28}) and (\ref{eq:29}) we get,
597 \begin{equation}
598 \begin{split}
599 &\frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\; =\; \bar{\chi^*}_Q\left(1-\frac{1}{4\pi} \bar{\chi^*}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}, \\
600 &\bar{\chi^*}_Q \;=\; \frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\left(1 + \frac{1}{4\pi} \frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}
601 \end{split}
602 \end{equation}
603
604 \section{The effective dielectric constant of a quadrupolar fluid}
605 The dielectric constant of a material is a measure of the screening of
606 the electrostatic energy when a material is placed in the
607 electrostatic field. If $U_{field}(r)$ and $U_{int}(r)$ are the total
608 electrostatic energies of a system due to the applied field and
609 interaction of the quadrupole with the gradient of the field
610 respectively. The dielectric constant can be written as,
611 \begin{equation}
612 \epsilon = \frac{U_{field} + U_{int}}{U_{field}}
613 \label{eq:31}
614 \end{equation}
615 The total electrostatic energy due to the electric field can be written as,
616 \begin{equation}
617 U_{field}(r) = \int_V u(r)dv,
618 \label{eq:32}
619 \end{equation}
620 where $u(r)$ is the energy density for applied electric field, which
621 can be written as $\epsilon_o {|E|}^2/2$ and $V$ is the total volume
622 of the system. Similarly the interaction energy can be written as,
623 \begin{equation}
624 U_{int}(r) = \int_V \frac{N < q_{\alpha\beta} > \partial_\beta E_{\alpha} dv}{V} = \int_V \bar{Q}_{\alpha\beta}\partial_\beta E_{\alpha} dv,
625 \label{eq:33}
626 \end{equation}
627 where $\braket{q_{\alpha\beta}}$ is the Boltzmann average of a
628 quadrupole moment, N is the total number of quadrupoles in the system
629 and $\bar{Q}_{\alpha\beta}$ is the quadrupolar polarization. Now
630 average quadrupole moment can be expressed as linear function of the
631 gradient of the applied field as shown in below,
632 \begin{equation}
633 \braket{q_{\alpha\beta}} = \epsilon_{o} {\chi_o}^* \partial_\alpha E_\beta ,
634 \label{eq:34}
635 \end{equation}
636 where ${\chi_o}^* $ is the orientational susceptibility of a
637 molecule. In terms of quadrupolar polarization,
638 \begin{equation}
639 \bar{Q}_{\alpha\beta} = \frac{N \braket{q_{\alpha\beta}}}{V} = \epsilon_{o} \frac{N{\chi_o}^*}{V} \partial_\alpha E_\beta = \epsilon_{o}{\bar{\chi}_Q}^*\,\partial_\alpha E_\beta ,
640 \label{eq:35}
641 \end{equation}
642 here ${\bar{\chi}_Q}^* = (N/V){\chi_o}^*$ is a macroscopic quadrupolar
643 susceptibility of a quadrupolar system. In terms of the box quadrupole
644 moment it can be expressed as,
645 \begin{equation}
646 \bar{\chi^*}_Q \;=\; \frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\left(1 + \frac{1}{4\pi}\frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right
647 )^{-1}.
648 \label{eq:36}
649 \end{equation}
650 Using above relations (equation (\ref{eq:32}\;-\;\ref{eq:35})) in the
651 equation (\ref{eq:31}) produce,
652 \begin{equation}
653 \epsilon = 1 + 2{\bar{\chi}_Q}^* \frac{\int_V |\partial_\alpha E_\beta|^2 dv}{\int_V{|E|}^2 dv}.
654 \end{equation}
655
656 \newpage
657
658 \appendix
659 \section{Point-multipolar interactions with a spatially-varying electric field}
660
661 We can treat objects $a$, $b$, and $c$ containing embedded collections
662 of charges. When we define the primitive moments, we sum over that
663 collections of charges using a local coordinate system within each
664 object. The point charge, dipole, and quadrupole for object $a$ are
665 given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively.
666 These are the primitive multipoles which can be expressed as a
667 distribution of charges,
668 \begin{align}
669 C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
670 D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
671 Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
672 r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
673 \end{align}
674 Note that the definition of the primitive quadrupole here differs from
675 the standard traceless form, and contains an additional Taylor-series
676 based factor of $1/2$. In Paper 1, we derived the forces and torques
677 each object exerts on the others.
678
679 Here we must also consider an external electric field that varies in
680 space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
681 object $a$ will then experience a slightly different field. This
682 electric field can be expanded in a Taylor series around the local
683 origin of each object. A different Taylor series expansion is carried
684 out for each object.
685
686 For a particular charge $q_k$, the electric field at that site's
687 position is given by:
688 \begin{equation}
689 E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
690 + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
691 r_{k \varepsilon} + ...
692 \end{equation}
693 Note that the electric field is always evaluated at the origin of the
694 objects, and treating each object using point multipoles simplifies
695 this greatly.
696
697 To find the force exerted on object $a$ by the electric field, one
698 takes the electric field expression, and multiplies it by $q_k$, and
699 then sum over all charges in $a$:
700
701 \begin{align}
702 F_\gamma &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
703 + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
704 r_{k \varepsilon} + ... \rbrace \\
705 &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
706 + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
707 ...
708 \end{align}
709
710 Similarly, the torque exerted by the field on $a$ can be expressed as
711 \begin{align}
712 \tau_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
713 & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
714 r_{k\beta} E_\gamma(\mathbf r_k) \\
715 & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
716 + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
717 E_\gamma + ...
718 \end{align}
719
720 The last term is essentially identical with form derived by Torres del
721 Castillo and M\'{e}ndez Garrido,\cite{Torres-del-Castillo:2006uo} although their derivation
722 utilized a traceless form of the quadrupole that is different than the
723 primitive definition in use here. We note that the Levi-Civita symbol
724 can be eliminated by utilizing the matrix cross product in an
725 identical form as in Ref. \onlinecite{Smith98}:
726 \begin{equation}
727 \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
728 \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
729 -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
730 \right]
731 \label{eq:matrixCross}
732 \end{equation}
733 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
734 the matrix indices. In table \ref{tab:UFT} we give compact
735 expressions for how the multipole sites interact with an external
736 field that has exhibits spatial variations.
737
738 \begin{table}
739 \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
740 $(\mathbf{\tau})$ expressions for a multipolar site embedded in an
741 electric field with spatial variations, $\mathbf{E}(\mathbf{r})$.
742 \label{tab:UFT}}
743 \begin{tabular}{r|ccc}
744 & Charge & Dipole & Quadrupole \\ \hline
745 $U$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
746 $\mathbf{F}$ & $C \mathbf{E}(\mathbf{r})$ & $+\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $+\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
747 $\mathbf{\tau}$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $+2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
748 \end{tabular}
749 \end{table}
750
751
752 \newpage
753
754 \bibliography{multipole}
755
756 \end{document}