ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric.tex
Revision: 4218
Committed: Thu Sep 11 18:08:53 2014 UTC (10 years, 10 months ago) by gezelter
Content type: application/x-tex
File size: 15816 byte(s)
Log Message:
Changes

File Contents

# Content
1 \documentclass[%
2 aip,
3 jcp,
4 amsmath,amssymb,
5 preprint,%
6 % reprint,%
7 %author-year,%
8 %author-numerical,%
9 ]{revtex4-1}
10
11 \usepackage{graphicx}% Include figure files
12 \usepackage{dcolumn}% Align table columns on decimal point
13 \usepackage{multirow}
14 \usepackage{bm}% bold math
15 \usepackage{natbib}
16 \usepackage{times}
17 \usepackage{mathptmx}
18 \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
19 \usepackage{url}
20
21 \begin{document}
22
23 \title{Real space electrostatics for multipoles. III. Dielectric Properties}
24
25 \author{Madan Lamichhane}
26 \affiliation{Department of Physics, University
27 of Notre Dame, Notre Dame, IN 46556}
28
29 \author{Kathie E. Newman}
30 \affiliation{Department of Physics, University
31 of Notre Dame, Notre Dame, IN 46556}
32
33 \author{Thomas Parsons}
34 \affiliation{Department of Chemistry and Biochemistry, University
35 of Notre Dame, Notre Dame, IN 46556}
36
37 \author{J. Daniel Gezelter}
38 \email{gezelter@nd.edu.}
39 \affiliation{Department of Chemistry and Biochemistry, University
40 of Notre Dame, Notre Dame, IN 46556}
41
42 \date{\today}% It is always \today, today,
43 % but any date may be explicitly specified
44
45 \begin{abstract}
46 Note: This manuscript is a work in progress.
47
48 We report on the dielectric properties of the shifted potential
49 (SP), gradient shifted force (GSF), and Taylor shifted force (TSF)
50 real-space methods for multipole interactions that were developed in
51 the first two papers in this series. We find that some subtlety is
52 required for computing dielectric properties with the real-space
53 methods, particularly when using the common fluctuation formulae.
54 Three distinct methods for computing the dielectric constant are
55 investigated, including the standard fluctuation formulae,
56 potentials of mean force between solvated ions, and direct
57 measurement of linear solvent polarization in response to applied
58 fields and field gradients.
59 \end{abstract}
60
61 \maketitle
62
63 \section{Introduction}
64
65 Over the past several years, there has been increasing interest in
66 pairwise methods for correcting electrostatic interactions in computer
67 simulations of condensed molecular
68 systems.\cite{Wolf99,Zahn02,Kast03,Beckd.A.C._Bi0486381,Ma05,Fennell06}
69 These techniques were developed from the observations and efforts of
70 Wolf {\it et al.} and their work towards an $\mathcal{O}(N)$
71 Coulombic sum.\cite{Wolf99} Wolf's method of cutoff neutralization is
72 able to obtain excellent agreement with Madelung energies in ionic
73 crystals.\cite{Wolf99} One of the most difficult tests of any new
74 electrostatic method is the fidelity with which that method can
75 reproduce the bulk-phase polarizability or equivalently, the
76 dielectric properties of a fluid. Of particular interest is the
77 static dielectric constant, $\epsilon$. Using the Ewald sum under
78 tin-foil boundary conditions, $\epsilon$ can be calculated for systems
79 of non-polarizable substances via
80 \begin{equation}
81 \epsilon = 1 + \frac{\langle M^2\rangle}{3\epsilon_0k_\textrm{B}TV},
82 \label{eq:staticDielectric}
83 \end{equation}
84 where $\epsilon_0$ is the permittivity of free space and $\langle
85 M^2\rangle$ is the fluctuation of the system dipole
86 moment.\cite{Allen:1989fp} The numerator in the fractional term in equation
87 (\ref{eq:staticDielectric}) is the fluctuation of the simulation-box
88 dipole moment, identical to the quantity calculated in the
89 finite-system Kirkwood $g$ factor ($G_k$):
90 \begin{equation}
91 G_k = \frac{\langle M^2\rangle}{N\mu^2},
92 \label{eq:KirkwoodFactor}
93 \end{equation}
94 where $\mu$ is the dipole moment of a single molecule of the
95 homogeneous system.\cite{Neumann:1983mz,Neumann:1983yq,Neumann84,Neumann85} The
96 fluctuation term in both equation (\ref{eq:staticDielectric}) and
97 (\ref{eq:KirkwoodFactor}) is calculated as follows,
98 \begin{equation}
99 \begin{split}
100 \langle M^2\rangle &= \langle\bm{M}\cdot\bm{M}\rangle
101 - \langle\bm{M}\rangle\cdot\langle\bm{M}\rangle \\
102 &= \langle M_x^2+M_y^2+M_z^2\rangle
103 - (\langle M_x\rangle^2 + \langle M_x\rangle^2
104 + \langle M_x\rangle^2).
105 \end{split}
106 \label{eq:fluctBoxDipole}
107 \end{equation}
108 This fluctuation term can be accumulated during a simulation; however,
109 it converges rather slowly, thus requiring multi-nanosecond simulation
110 times.\cite{Horn04} In the case of tin-foil boundary conditions, the
111 dielectric/surface term of the Ewald summation is equal to zero.
112
113 \section{Dielectric constants for real-space electrostatics}
114
115 The new real-space methods require some care when computing dielectric
116 properties because the interaction between molecular dipoles depends
117 on the level of approximation being utilized. Consider the cases of
118 Stockmayer (dipolar) soft spheres that are represented either by two
119 closely-spaced point charges or by a single point dipole (see
120 Fig. \ref{fig:stockmayer}).
121 \begin{figure}
122 \includegraphics[width=3in]{DielectricFigure}
123 \caption{With the real-space electrostatic methods, the effective
124 dipole tensor, $\mathbf{T}$, governing interactions between
125 molecular dipoles is not the same for charge-charge interactions as
126 for point dipoles.}
127 \label{fig:stockmayer}
128 \end{figure}
129 In the case where point charges are interacting via an electrostatic
130 kernel, $v(r)$, the effective {\it molecular} dipole tensor,
131 $\mathbf{T}$ is obtained from two successive applications of the
132 gradient operator to the electrostatic kernel,
133 \begin{equation}
134 \mathbf{T}_{\alpha \beta}(r) = \nabla_\alpha \nabla_\beta \left(v(r)\right) = \delta_{\alpha \beta}
135 \left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha}
136 r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r}
137 v^{\prime}(r) \right)
138 \end{equation}
139 where $v(r)$ may be either the bare kernel ($1/r$) or one of the
140 modified (Wolf or DSF) kernels. This tensor describes the effective
141 interaction between molecular dipoles ($\mathbf{D}$) in Gaussian
142 units as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$.
143
144 When utilizing the new real-space methods for point dipoles, the
145 tensor is explicitly constructed,
146 \begin{equation}
147 \mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) +
148 \frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r)
149 \end{equation}
150 where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of
151 the approximation. Although the Taylor-shifted (TSF) and
152 gradient-shifted (GSF) models produce to the same $v(r)$ function for
153 point charges, they have distinct forms for the dipole-dipole
154 interactions.
155
156 Neumann and Steinhauser showed~\cite{Neumann:1983mz,Neumann:1983yq}
157 that the relative dielectric permittivity $\epsilon$ is given by the
158 general fluctuation formula,
159 \begin{equation}
160 \frac{\epsilon - 1}{\epsilon +2} = \frac{4 \pi}{3} \frac{\left<M^2\right>}{3 V k_B
161 T} \left( 1 - \frac{3}{4 \pi} \frac{\epsilon -1}{\epsilon + 2}
162 \tilde{T}(0) \right)
163 \end{equation}
164 where $\left<M^2\right>$ is the mean fluctuation of the square of the
165 net dipole moment of the simulation cell, $V$ is the volume of the
166 cell, and $\tilde{T}(0) = \tilde{T̃}_{xx}(0) = \tilde{T̃}_{yy}(0) =
167 \tilde{T̃}_{zz}(0)$ is the $\mathbf{k} = 0$ limit of Fourier transform
168 of the diagonal term of the effective molecular dipolar tensor,
169 \begin{equation}
170 \tilde{T}(0) = \int_V \mathbf{T}(\mathbf{r}) d\mathbf{r}
171 \end{equation}
172 where the integral is carried out over the relevant geometry for the
173 interaction. For the real-space methods, the integration can be done
174 easily up to the imposed cutoff radius, while for the Ewald sum, the
175 results also depend on details of the $k$-space
176 calculation.\cite{Neumann:1983yq}
177
178 For molecules composed of point charges interacting via the bare
179 $(1/r)$ kernel, the simple cutoff (SC) and minimum image (MI)
180 approaches give $\tilde{T}(0) = 0$ which means that the
181 Clausius-Mosotti equation,
182 \begin{equation}
183 \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon
184 -1}{\epsilon+2}
185 \end{equation}
186 is the relevant fluctuation formula for the relative permittivity.
187
188 Zahn {\it et al.}\cite{Zahn02} showed that for the damped shifted
189 force charge-charge kernel, $\tilde{T}(0) = 4 \pi / 3$. This was later
190 generalized by Izvekov {\it et al.} for all point-charge kernels which
191 have forces that go to zero at a cutoff radius and which maintain a
192 pole of first order at $r=0$.\cite{Izvekov:2008wo} When $\tilde{T}(0)
193 = 4 \pi/ 3$, the expression for the dielectric constant reduces to the
194 widely-used {\it conducting boundary} formula,
195 \begin{equation}
196 \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon -
197 1}{3}
198 \end{equation}
199 It is convenient to define a quantity $Q = \frac{3}{4 \pi}
200 \tilde{T}(0)$, and to combine all of the fluctuation formulae
201 together:
202 \begin{equation}
203 \frac{4 \pi}{3} \frac{\left< M^2 \right>}{3 V k_B T} =
204 \left\{\begin{array}{ll}
205 \frac{\epsilon-1}{\epsilon+2} \left[1- \frac{\epsilon-1}{\epsilon+2}
206 Q\right]^{-1} & \mathrm{General~Case} \\
207 \frac{\epsilon-1}{\epsilon+2} & Q \rightarrow 0 \mathrm{~limit} \\
208 \frac{\epsilon-1}{3} & Q \rightarrow 1 \mathrm{~limit}
209 \end{array}\right.
210 \end{equation}
211
212 The Clausius-Mossotti $(Q\rightarrow 0)$ approach is subject to noise
213 and error magnification,\cite{Allen:1989fp} and the conducting
214 boundary approach $(Q \rightarrow 1)$ has become widely used as a
215 result. If the electrostatic method being used has $Q < 1$, the
216 relative dielectric permittivity $\epsilon$ can be estimated once the
217 conducting boundary fluctuation result has been found,
218 \begin{equation}
219 \epsilon = \frac{(Q+2) (\epsilon_\text{CB}-1)+3} {(Q-1) (\epsilon_\text{CB}-1)+3}
220 \end{equation}
221 Note that this expression becomes quite numerically sensitive when the
222 value of $Q$ deviates significantly from 1.
223
224 We have derived a set of expressions for the value of $Q$ for the new
225 real space methods that are shown in Table \ref{tab:Q}.
226
227 \begin{table}
228 \caption{Expressions for the dielectric correction factor ($Q$) for the
229 real-space electrostatic methods in terms of the damping parameter
230 ($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result
231 derived in Refs. \onlinecite{Adams:1980rt,Adams:1981fr,Neumann:1983yq} is shown for comparison using the Ewald
232 convergence parameter ($\kappa$) and the real-space cutoff value ($r_c$). }
233 \label{tab:Q}
234 \begin{tabular}{l|c|c|c|c|}
235 & \multicolumn{2}{c|}{damped} & \multicolumn{2}{c|}{undamped} \\ \cline{2-3} \cline{4-5}
236 Method & $Q_\mathrm{charges}$ & $Q_\mathrm{dipoles}$ & $Q_\mathrm{charges}$ & $Q_\mathrm{dipoles}$ \\
237 \hline
238 Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ &0 &0\\
239 Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c }{\sqrt{\pi }} \left(1 + \frac{2 \alpha^2 r_c^2}{3} \right) e^{-\alpha ^2 r_c^2} $ &0 &0\\
240 Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha ^2 r_c^2} $ &1 &1\\
241 Taylor-shifted (TSF) & 1 & 1 & 1 & 1\\
242 Ewald-Kornfeld (EK) & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & - & - \\\hline
243 \end{tabular}
244 \end{table}
245
246 \newpage
247
248 \appendix
249 \section{Point-multipolar interactions with a spatially-varying electric field}
250
251 We can treat objects $a$, $b$, and $c$ containing embedded collections
252 of charges. When we define the primitive moments, we sum over that
253 collections of charges using a local coordinate system within each
254 object. The point charge, dipole, and quadrupole for object $a$ are
255 given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively.
256 These are the primitive multipoles which can be expressed as a
257 distribution of charges,
258 \begin{align}
259 C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
260 D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
261 Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
262 r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
263 \end{align}
264 Note that the definition of the primitive quadrupole here differs from
265 the standard traceless form, and contains an additional Taylor-series
266 based factor of $1/2$. In Paper 1, we derived the forces and torques
267 each object exerts on the others.
268
269 Here we must also consider an external electric field that varies in
270 space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
271 object $a$ will then experience a slightly different field. This
272 electric field can be expanded in a Taylor series around the local
273 origin of each object. A different Taylor series expansion is carried
274 out for each object.
275
276 For a particular charge $q_k$, the electric field at that site's
277 position is given by:
278 \begin{equation}
279 E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
280 + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
281 r_{k \varepsilon} + ...
282 \end{equation}
283 Note that the electric field is always evaluated at the origin of the
284 objects, and treating each object using point multipoles simplifies
285 this greatly.
286
287 To find the force exerted on object $a$ by the electric field, one
288 takes the electric field expression, and multiplies it by $q_k$, and
289 then sum over all charges in $a$:
290
291 \begin{align}
292 F_\gamma &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
293 + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
294 r_{k \varepsilon} + ... \rbrace \\
295 &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
296 + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
297 ...
298 \end{align}
299
300 Similarly, the torque exerted by the field on $a$ can be expressed as
301 \begin{align}
302 \tau_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
303 & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
304 r_{k\beta} E_\gamma(\mathbf r_k) \\
305 & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
306 + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
307 E_\gamma + ...
308 \end{align}
309
310 The last term is essentially identical with form derived by Torres del
311 Castillo and M\'{e}ndez Garrido,\cite{Torres-del-Castillo:2006uo} although their derivation
312 utilized a traceless form of the quadrupole that is different than the
313 primitive definition in use here. We note that the Levi-Civita symbol
314 can be eliminated by utilizing the matrix cross product in an
315 identical form as in Ref. \onlinecite{Smith98}:
316 \begin{equation}
317 \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
318 \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
319 -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
320 \right]
321 \label{eq:matrixCross}
322 \end{equation}
323 where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
324 the matrix indices. In table \ref{tab:UFT} we give compact
325 expressions for how the multipole sites interact with an external
326 field that has exhibits spatial variations.
327
328 \begin{table}
329 \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
330 $(\mathbf{\tau})$ expressions for a multipolar site embedded in an
331 electric field with spatial variations, $\mathbf{E}(\mathbf{r})$.
332 \label{tab:UFT}}
333 \begin{tabular}{r|ccc}
334 & Charge & Dipole & Quadrupole \\ \hline
335 $U$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
336 $\mathbf{F}$ & $C \mathbf{E}(\mathbf{r})$ & $+\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $+\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
337 $\mathbf{\tau}$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $+2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
338 \end{tabular}
339 \end{table}
340
341
342 \newpage
343
344 \bibliography{multipole}
345
346 \end{document}