| 1 |
mlamichh |
4353 |
\documentclass[% |
| 2 |
|
|
aip, |
| 3 |
|
|
jcp, |
| 4 |
|
|
amsmath,amssymb, |
| 5 |
|
|
preprint,% |
| 6 |
|
|
% reprint,% |
| 7 |
|
|
%author-year,% |
| 8 |
|
|
%author-numerical,% |
| 9 |
|
|
]{revtex4-1} |
| 10 |
|
|
|
| 11 |
|
|
\usepackage{graphicx}% Include figure files |
| 12 |
|
|
\usepackage{dcolumn}% Align table columns on decimal point |
| 13 |
|
|
\usepackage{multirow} |
| 14 |
|
|
\usepackage{bm}% bold math |
| 15 |
|
|
\usepackage{natbib} |
| 16 |
|
|
\usepackage{times} |
| 17 |
|
|
\usepackage{mathptmx} |
| 18 |
|
|
\usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions |
| 19 |
|
|
\usepackage{url} |
| 20 |
|
|
\usepackage{braket} |
| 21 |
|
|
|
| 22 |
|
|
\begin{document} |
| 23 |
|
|
|
| 24 |
|
|
\title{Real space electrostatics for multipoles. III. Dielectric Properties} |
| 25 |
|
|
|
| 26 |
|
|
\author{Madan Lamichhane} |
| 27 |
|
|
\affiliation{Department of Physics, University |
| 28 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 29 |
|
|
\author{Thomas Parsons} |
| 30 |
|
|
\affiliation{Department of Chemistry and Biochemistry, University |
| 31 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 32 |
|
|
\author{Kathie E. Newman} |
| 33 |
|
|
\affiliation{Department of Physics, University |
| 34 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 35 |
|
|
\author{J. Daniel Gezelter} |
| 36 |
|
|
\email{gezelter@nd.edu.} |
| 37 |
|
|
\affiliation{Department of Chemistry and Biochemistry, University |
| 38 |
|
|
of Notre Dame, Notre Dame, IN 46556} |
| 39 |
|
|
|
| 40 |
|
|
\date{\today}% It is always \today, today, |
| 41 |
|
|
% but any date may be explicitly specified |
| 42 |
|
|
|
| 43 |
|
|
\begin{abstract} |
| 44 |
|
|
Note: This manuscript is a work in progress. |
| 45 |
|
|
|
| 46 |
|
|
We report on the dielectric properties of the shifted potential |
| 47 |
|
|
(SP), gradient shifted force (GSF), and Taylor shifted force (TSF) |
| 48 |
|
|
real-space methods for multipole interactions that were developed in |
| 49 |
|
|
the first two papers in this series. We find that some subtlety is |
| 50 |
|
|
required for computing dielectric properties with the real-space |
| 51 |
|
|
methods, particularly when using the common fluctuation formulae. |
| 52 |
|
|
Three distinct methods for computing the dielectric constant are |
| 53 |
|
|
investigated, including the standard fluctuation formulae, |
| 54 |
|
|
potentials of mean force between solvated ions, and direct |
| 55 |
|
|
measurement of linear solvent polarization in response to applied |
| 56 |
|
|
fields and field gradients. |
| 57 |
|
|
\end{abstract} |
| 58 |
|
|
|
| 59 |
|
|
\maketitle |
| 60 |
|
|
|
| 61 |
|
|
\section{Introduction} |
| 62 |
|
|
|
| 63 |
|
|
Over the past several years, there has been increasing interest in |
| 64 |
|
|
pairwise methods for correcting electrostatic interactions in computer |
| 65 |
|
|
simulations of condensed molecular |
| 66 |
|
|
systems.\cite{Wolf99,Zahn02,Kast03,Beckd.A.C._Bi0486381,Ma05,Fennell06} |
| 67 |
|
|
These techniques were developed from the observations and efforts of |
| 68 |
|
|
Wolf {\it et al.} and their work towards an $\mathcal{O}(N)$ |
| 69 |
|
|
Coulombic sum.\cite{Wolf99} Wolf's method of cutoff neutralization is |
| 70 |
|
|
able to obtain excellent agreement with Madelung energies in ionic |
| 71 |
|
|
crystals.\cite{Wolf99} One of the most difficult tests of any new |
| 72 |
|
|
electrostatic method is the fidelity with which that method can |
| 73 |
|
|
reproduce the bulk-phase polarizability or equivalently, the |
| 74 |
|
|
dielectric properties of a fluid. Of particular interest is the |
| 75 |
|
|
static dielectric constant, $\epsilon$. Using the Ewald sum under |
| 76 |
|
|
tin-foil boundary conditions, $\epsilon$ can be calculated for systems |
| 77 |
|
|
of non-polarizable substances via |
| 78 |
|
|
\begin{equation} |
| 79 |
|
|
\epsilon = 1 + \frac{\langle M^2\rangle}{3\epsilon_0k_\textrm{B}TV}, |
| 80 |
|
|
\label{eq:staticDielectric} |
| 81 |
|
|
\end{equation} |
| 82 |
|
|
where $\epsilon_0$ is the permittivity of free space and $\langle |
| 83 |
|
|
M^2\rangle$ is the fluctuation of the system dipole |
| 84 |
|
|
moment.\cite{Allen:1989fp} The numerator in the fractional term in equation |
| 85 |
|
|
(\ref{eq:staticDielectric}) is the fluctuation of the simulation-box |
| 86 |
|
|
dipole moment, identical to the quantity calculated in the |
| 87 |
|
|
finite-system Kirkwood $g$ factor ($G_k$): |
| 88 |
|
|
\begin{equation} |
| 89 |
|
|
G_k = \frac{\langle M^2\rangle}{N\mu^2}, |
| 90 |
|
|
\label{eq:KirkwoodFactor} |
| 91 |
|
|
\end{equation} |
| 92 |
|
|
where $\mu$ is the dipole moment of a single molecule of the |
| 93 |
|
|
homogeneous system.\cite{Neumann:1983mz,Neumann:1983yq,Neumann84,Neumann85} The |
| 94 |
|
|
fluctuation term in both equation (\ref{eq:staticDielectric}) and |
| 95 |
|
|
(\ref{eq:KirkwoodFactor}) is calculated as follows, |
| 96 |
|
|
\begin{equation} |
| 97 |
|
|
\begin{split} |
| 98 |
|
|
\langle M^2\rangle &= \langle\bm{M}\cdot\bm{M}\rangle |
| 99 |
|
|
- \langle\bm{M}\rangle\cdot\langle\bm{M}\rangle \\ |
| 100 |
|
|
&= \langle M_x^2+M_y^2+M_z^2\rangle |
| 101 |
|
|
- (\langle M_x\rangle^2 + \langle M_y\rangle^2 |
| 102 |
|
|
+ \langle M_z\rangle^2). |
| 103 |
|
|
\end{split} |
| 104 |
|
|
\label{eq:fluctBoxDipole} |
| 105 |
|
|
\end{equation} |
| 106 |
|
|
This fluctuation term can be accumulated during a simulation; however, |
| 107 |
|
|
it converges rather slowly, thus requiring multi-nanosecond simulation |
| 108 |
|
|
times.\cite{Horn04} In the case of tin-foil boundary conditions, the |
| 109 |
|
|
dielectric/surface term of the Ewald summation is equal to zero. |
| 110 |
|
|
|
| 111 |
|
|
\section{Dielectric constants for real-space electrostatics} |
| 112 |
|
|
|
| 113 |
|
|
The new real-space methods require some care when computing dielectric |
| 114 |
|
|
properties because the interaction between molecular dipoles depends |
| 115 |
|
|
on the level of approximation being utilized. Consider the cases of |
| 116 |
|
|
Stockmayer (dipolar) soft spheres that are represented either by two |
| 117 |
|
|
closely-spaced point charges or by a single point dipole (see |
| 118 |
|
|
Fig. \ref{fig:stockmayer}). |
| 119 |
|
|
\begin{figure} |
| 120 |
|
|
\includegraphics[width=3in]{DielectricFigure} |
| 121 |
|
|
\caption{With the real-space electrostatic methods, the effective |
| 122 |
|
|
dipole tensor, $\mathbf{T}$, governing interactions between |
| 123 |
|
|
molecular dipoles is not the same for charge-charge interactions as |
| 124 |
|
|
for point dipoles.} |
| 125 |
|
|
\label{fig:stockmayer} |
| 126 |
|
|
\end{figure} |
| 127 |
|
|
In the case where point charges are interacting via an electrostatic |
| 128 |
|
|
kernel, $v(r)$, the effective {\it molecular} dipole tensor, |
| 129 |
|
|
$\mathbf{T}$ is obtained from two successive applications of the |
| 130 |
|
|
gradient operator to the electrostatic kernel, |
| 131 |
|
|
\begin{equation} |
| 132 |
|
|
\mathbf{T}_{\alpha \beta}(r) = \nabla_\alpha \nabla_\beta \left(v(r)\right) = \delta_{\alpha \beta} |
| 133 |
|
|
\left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha} |
| 134 |
|
|
r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r} |
| 135 |
|
|
v^{\prime}(r) \right) |
| 136 |
|
|
\end{equation} |
| 137 |
|
|
where $v(r)$ may be either the bare kernel ($1/r$) or one of the |
| 138 |
|
|
modified (Wolf or DSF) kernels. This tensor describes the effective |
| 139 |
|
|
interaction between molecular dipoles ($\mathbf{D}$) in Gaussian |
| 140 |
|
|
units as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$. |
| 141 |
|
|
|
| 142 |
|
|
When utilizing the new real-space methods for point dipoles, the |
| 143 |
|
|
tensor is explicitly constructed, |
| 144 |
|
|
\begin{equation} |
| 145 |
|
|
\mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) + |
| 146 |
|
|
\frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r) |
| 147 |
|
|
\end{equation} |
| 148 |
|
|
where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of |
| 149 |
|
|
the approximation. Although the Taylor-shifted (TSF) and |
| 150 |
|
|
gradient-shifted (GSF) models produce to the same $v(r)$ function for |
| 151 |
|
|
point charges, they have distinct forms for the dipole-dipole |
| 152 |
|
|
interactions. |
| 153 |
|
|
|
| 154 |
|
|
Neumann and Steinhauser showed~\cite{Neumann:1983mz,Neumann:1983yq} |
| 155 |
|
|
that the relative dielectric permittivity $\epsilon$ is given by the |
| 156 |
|
|
general fluctuation formula, |
| 157 |
|
|
\begin{equation} |
| 158 |
|
|
\frac{\epsilon - 1}{\epsilon +2} = \frac{4 \pi}{3} \frac{\left<M^2\right>}{3 V k_B |
| 159 |
|
|
T} \left( 1 - \frac{3}{4 \pi} \frac{\epsilon -1}{\epsilon + 2} |
| 160 |
|
|
\tilde{T}(0) \right) |
| 161 |
|
|
\end{equation} |
| 162 |
|
|
where $\left<M^2\right>$ is the mean fluctuation of the square of the |
| 163 |
|
|
net dipole moment of the simulation cell, $V$ is the volume of the |
| 164 |
|
|
cell, and $\tilde{T}(0) = \tilde{T̃}_{xx}(0) = \tilde{T̃}_{yy}(0) = |
| 165 |
|
|
\tilde{T̃}_{zz}(0)$ is the $\mathbf{k} = 0$ limit of Fourier transform |
| 166 |
|
|
of the diagonal term of the effective molecular dipolar tensor, |
| 167 |
|
|
\begin{equation} |
| 168 |
|
|
\tilde{T}(0) = \int_V \mathbf{T}(\mathbf{r}) d\mathbf{r} |
| 169 |
|
|
\end{equation} |
| 170 |
|
|
where the integral is carried out over the relevant geometry for the |
| 171 |
|
|
interaction. For the real-space methods, the integration can be done |
| 172 |
|
|
easily up to the imposed cutoff radius, while for the Ewald sum, the |
| 173 |
|
|
results also depend on details of the $k$-space |
| 174 |
|
|
calculation.\cite{Neumann:1983yq} |
| 175 |
|
|
|
| 176 |
|
|
For molecules composed of point charges interacting via the bare |
| 177 |
|
|
$(1/r)$ kernel, the simple cutoff (SC) and minimum image (MI) |
| 178 |
|
|
approaches give $\tilde{T}(0) = 0$ which means that the |
| 179 |
|
|
Clausius-Mosotti equation, |
| 180 |
|
|
\begin{equation} |
| 181 |
|
|
\frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon |
| 182 |
|
|
-1}{\epsilon+2} |
| 183 |
|
|
\end{equation} |
| 184 |
|
|
is the relevant fluctuation formula for the relative permittivity. |
| 185 |
|
|
|
| 186 |
|
|
Zahn {\it et al.}\cite{Zahn02} showed that for the damped shifted |
| 187 |
|
|
force charge-charge kernel, $\tilde{T}(0) = 4 \pi / 3$. This was later |
| 188 |
|
|
generalized by Izvekov {\it et al.} for all point-charge kernels which |
| 189 |
|
|
have forces that go to zero at a cutoff radius and which maintain a |
| 190 |
|
|
pole of first order at $r=0$.\cite{Izvekov:2008wo} When $\tilde{T}(0) |
| 191 |
|
|
= 4 \pi/ 3$, the expression for the dielectric constant reduces to the |
| 192 |
|
|
widely-used {\it conducting boundary} formula, |
| 193 |
|
|
\begin{equation} |
| 194 |
|
|
\frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon - |
| 195 |
|
|
1}{3} |
| 196 |
|
|
\end{equation} |
| 197 |
|
|
It is convenient to define a quantity $A = \frac{3}{4 \pi} |
| 198 |
|
|
\tilde{T}(0)$, and to combine all of the fluctuation formulae |
| 199 |
|
|
together: |
| 200 |
|
|
\begin{equation} |
| 201 |
|
|
\frac{4 \pi}{3} \frac{\left< M^2 \right>}{3 V k_B T} = |
| 202 |
|
|
\left\{\begin{array}{ll} |
| 203 |
|
|
\frac{\epsilon-1}{\epsilon+2} \left[1- \frac{\epsilon-1}{\epsilon+2} |
| 204 |
|
|
A\right]^{-1} & \mathrm{General~Case} \\ |
| 205 |
|
|
\frac{\epsilon-1}{\epsilon+2} & A \rightarrow 0 \mathrm{~limit} \\ |
| 206 |
|
|
\frac{\epsilon-1}{3} & A \rightarrow 1 \mathrm{~limit} |
| 207 |
|
|
\end{array}\right. |
| 208 |
|
|
\end{equation} |
| 209 |
|
|
|
| 210 |
|
|
The Clausius-Mossotti $(A\rightarrow 0)$ approach is subject to noise |
| 211 |
|
|
and error magnification,\cite{Allen:1989fp} and the conducting |
| 212 |
|
|
boundary approach $(A \rightarrow 1)$ has become widely used as a |
| 213 |
|
|
result. If the electrostatic method being used has $A < 1$, the |
| 214 |
|
|
relative dielectric permittivity $\epsilon$ can be estimated once the |
| 215 |
|
|
conducting boundary fluctuation result has been found, |
| 216 |
|
|
\begin{equation} |
| 217 |
|
|
\epsilon = \frac{(A+2) (\epsilon_\text{CB}-1)+3} {(A-1) (\epsilon_\text{CB}-1)+3} |
| 218 |
|
|
\end{equation} |
| 219 |
|
|
Note that this expression becomes quite numerically sensitive when the |
| 220 |
|
|
value of $A$ deviates significantly from 1. |
| 221 |
|
|
|
| 222 |
|
|
We have derived a set of expressions for the value of $A$ for the new |
| 223 |
|
|
real space methods that are shown in Table \ref{tab:A}. |
| 224 |
|
|
|
| 225 |
|
|
\begin{table} |
| 226 |
|
|
\caption{Expressions for the dielectric correction factor ($A$) for the |
| 227 |
|
|
real-space electrostatic methods in terms of the damping parameter |
| 228 |
|
|
($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result |
| 229 |
|
|
derived in Refs. \onlinecite{Adams:1980rt,Adams:1981fr,Neumann:1983yq} is shown for comparison using the Ewald |
| 230 |
|
|
convergence parameter ($\kappa$) and the real-space cutoff value ($r_c$). } |
| 231 |
|
|
\label{tab:A} |
| 232 |
|
|
\resizebox{\columnwidth}{!}{% |
| 233 |
|
|
\begin{tabular}{l|c|c|c|c|c|} |
| 234 |
|
|
& \multicolumn{3}{c|}{damped} & \multicolumn{2}{c|}{undamped} \\ \cline{2-4} \cline{5-6} |
| 235 |
|
|
Method & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ & $A_\mathrm{quad} (length^{-2})$ & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ \\ |
| 236 |
|
|
\hline |
| 237 |
|
|
Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & 0 &$-\frac{8{\alpha}^5{r_c}^3 }{5\sqrt{\pi}}e^{-{\alpha}^2{r_c}^2 }$ &0 &0\\ |
| 238 |
|
|
Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c }{\sqrt{\pi }} \left(1 + \frac{2 \alpha^2 r_c^2}{3} \right) e^{-\alpha ^2 r_c^2} $&$-\frac{16{\alpha}^7{r_c}^5 }{15\sqrt{\pi}}e^{-{\alpha}^2{r_c}^2 }$ &0 &0\\ |
| 239 |
|
|
Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha^2 r_c^2} $ &$-\frac{4{\alpha}^7{r_c}^5 }{15\sqrt{\pi}}(-1+2\alpha ^2 r_c^2)e^{-\alpha^2 r_c^2}$ &1 &0\\ |
| 240 |
|
|
Taylor-shifted (TSF) & 1 & 1 &$\frac{6\;\mathrm{erf}(r_c \alpha)}{{r_c}^2} + \frac{4{\alpha}{r_c}}{15\sqrt{\pi}{r_c}^2}\left(45 + 30\alpha ^2 {r_c}^2 + 12\alpha^4 {r_c}^4 + 3\alpha^6 {r_c}^6 + 2 \alpha^8 {r_c}^8\right)e^{-\alpha^2 r_c^2}$ &1 & 1\\ |
| 241 |
|
|
Ewald-Kornfeld (EK) & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ &- & - & - \\\hline |
| 242 |
|
|
\end{tabular}% |
| 243 |
|
|
} |
| 244 |
|
|
\end{table} |
| 245 |
|
|
|
| 246 |
|
|
\section{Boltzman average of the dipole polarization density} |
| 247 |
|
|
Consider a dipolar fluid with polarization density $\mathbf{P}(r)$ at |
| 248 |
|
|
equlibrium at temperature $T$. The average of polarization density is |
| 249 |
|
|
given by, |
| 250 |
|
|
\begin{equation} |
| 251 |
|
|
\left<\mathbf{P}(r)\right> = \frac{\int\mathbf{P}(r) e^{-H/k_B T} d |
| 252 |
|
|
\Gamma^N}{\int e^{-H/k_B T} d \Gamma^N} |
| 253 |
|
|
\end{equation} |
| 254 |
|
|
where $d \Gamma^N = dr_1...dr_N dp_1...dp_N$ is the volume element in |
| 255 |
|
|
phase space, and $H$ is the Hamiltonian of the $N$-particle system in |
| 256 |
|
|
the absence of applied external field. The Hamiltonian of the system |
| 257 |
|
|
is given by, |
| 258 |
|
|
\begin{equation} |
| 259 |
|
|
H = \frac{1}{2}\sum_{i=1}^N m_i {\dot{\mathbf{r}}_i}^2 + \sum_{i<j} U(\mathbf{r}_i - \mathbf{r}_j) |
| 260 |
|
|
\end{equation} |
| 261 |
|
|
where $m_i$ is mass of site $i$, and $U(\mathbf{r}_i - \mathbf{r}_j)$ |
| 262 |
|
|
is the interaction potential between sites $i$ and $j$. |
| 263 |
|
|
|
| 264 |
|
|
Let $E'$ be the applied external electric field. The Hamiltonian for |
| 265 |
|
|
the polarized system then becomes |
| 266 |
|
|
\begin{equation} |
| 267 |
|
|
H' = H - {M}_\alpha {E'}_\alpha |
| 268 |
|
|
\end{equation} |
| 269 |
|
|
where $\mathbf{M}$ is the total dipole moment in zero field. The |
| 270 |
|
|
polarization density changes in the presence of the external field |
| 271 |
|
|
$\mathbf{E'}$. The modified polarization is given by |
| 272 |
|
|
\begin{equation} |
| 273 |
|
|
\left< P'_\alpha(r) \right>_{E'} = \frac{\int P_\alpha(r) e^{-H'/k_B |
| 274 |
|
|
T} d \Gamma^N}{\int e^{-H'/k_B T} d \Gamma^N} \equiv \frac{F}{G} |
| 275 |
|
|
\end{equation} |
| 276 |
|
|
For small values of the applied electric field we can expand the |
| 277 |
|
|
polarization density as, |
| 278 |
|
|
\begin{equation} |
| 279 |
|
|
\left< P'_\alpha(r) \right>_{E'} = \left< P'_\alpha(r) \right> + \frac{\partial |
| 280 |
|
|
\left< P'_\alpha(r) \right>}{\partial E'_\beta }\bigg|_{E'=0} E'_\beta |
| 281 |
|
|
\end{equation} |
| 282 |
|
|
and |
| 283 |
|
|
\begin{equation} |
| 284 |
|
|
\frac{\partial{\left<P'_\alpha(r)\right>}}{\partial{E'_\beta}}\bigg|_{E'=0} = \frac{F'G-FG'}{G^2} |
| 285 |
|
|
\end{equation} |
| 286 |
|
|
where |
| 287 |
|
|
\begin{equation} |
| 288 |
|
|
\begin{split} |
| 289 |
|
|
F' & = \frac{1}{k_BT} \int {P}_\alpha M_\beta\; e^{-H/k_B T} d\Gamma^N\\ |
| 290 |
|
|
\textit{and} \\ |
| 291 |
|
|
G' & = \frac{1}{k_BT} \int M_\beta\; e^{-H/k_B T} d\Gamma^N |
| 292 |
|
|
\end{split} |
| 293 |
|
|
\end{equation} |
| 294 |
|
|
Therefore |
| 295 |
|
|
\begin{equation} |
| 296 |
|
|
\braket{{P'_\alpha(r)}}_{E'}=\braket{{P'_\alpha(r)}}+\frac{1}{k_B T}(\braket{P_{\alpha}M_{\beta}}-\braket{P_{\alpha}}\braket{M_{\beta}}){E'}_\beta, |
| 297 |
|
|
\end{equation} |
| 298 |
|
|
where $\braket{A} = \frac{\int A\; e^{-H/k_B T}d\Gamma^N}{\int e^{-H/k_B T}d\Gamma^N}$ is the ensemble average of a physical quantity $A$ at temperature $T$. Now the polarization density due to applied external field is given by, |
| 299 |
|
|
\begin{equation} |
| 300 |
|
|
{\Delta P}_\alpha =\frac{1}{k_B T}\left(\braket{P_{\alpha}M_{\beta}}-\braket{P_{\alpha}}\braket{M_{\beta}}\right){E'}_\beta. |
| 301 |
|
|
\end{equation} |
| 302 |
|
|
Therefore the total polarization for the system can be obtained by integrating polarization density over the volume, |
| 303 |
|
|
\begin{equation} |
| 304 |
|
|
{\Delta M}_\alpha =\frac{1}{k_B T} \left(\braket{M_{\alpha}M_{\beta}}-\braket{M_{\alpha}}\braket{M_{\beta}}\right){E'}_\beta. |
| 305 |
|
|
\end{equation} |
| 306 |
|
|
If we consider both applied field and polarization in the z-direction, |
| 307 |
|
|
\begin{equation} |
| 308 |
|
|
{\Delta M}_z =\frac{1}{k_B T}\left(\braket{{M_{z}}^2}-\braket{M_{z}}^2\right){E'}_z. |
| 309 |
|
|
\end{equation} |
| 310 |
|
|
In general applied field $ \braket{{M_{z}}^2} = \frac{1}{3}\braket{{\mathbf{M}}^2}$ and $ \braket{{M_{z}}} = \frac{1}{3}\braket{{\mathbf{M}}}$ therefore, |
| 311 |
|
|
\begin{equation} |
| 312 |
|
|
{\Delta P}_z = \frac{{\Delta M}_z}{V} = \epsilon_o \frac{\braket{{\mathbf{M}}^2}-\braket{{\mathbf{M}}}^2}{3 \epsilon_o \; k_B T V}{E'}_z. |
| 313 |
|
|
\label{eq:fluc} |
| 314 |
|
|
\end{equation} |
| 315 |
|
|
Comparing equation (\ref{eq:fluc}) with $ \Delta P_z = \epsilon_o \chi \ {E'}_z$ the fluctuation formula for susceptibility ($\chi$) can be written as, |
| 316 |
|
|
\begin{equation} |
| 317 |
|
|
\chi = \frac{\braket{{\mathbf{M}}^2}-\braket{{\mathbf{M}}}^2}{3 \epsilon_o \; k_B T V} |
| 318 |
|
|
\end{equation} |
| 319 |
|
|
\section{Boltzmann average of a quadrupole moment} |
| 320 |
|
|
The average quadrupole moment at temperature T in the presence of uniform applied |
| 321 |
|
|
field gradient is given by, |
| 322 |
|
|
\begin{equation} |
| 323 |
|
|
\braket{q_{\alpha\beta}} \;=\; \frac{\int d\Omega\; e^{\frac{-U(r)}{k_B T}}q_{\alpha\beta}}{\int d\Omega\; e^{\frac{-U(r)}{k_B T}}} \;=\; \frac{\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}}, |
| 324 |
|
|
\label{eq:1} |
| 325 |
|
|
\end{equation} |
| 326 |
|
|
where $\int \Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi} |
| 327 |
|
|
sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler |
| 328 |
|
|
angles and $ U(r) = -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of |
| 329 |
|
|
a quadrupole in the gradient of the |
| 330 |
|
|
applied field. The energy and quadrupole moment can be transformed |
| 331 |
|
|
into body frame using following relation, |
| 332 |
|
|
\begin{equation} |
| 333 |
|
|
\begin{split} |
| 334 |
|
|
q_{\alpha\beta} &= \eta_{\alpha\alpha'}{q}^* _{\alpha'\beta'}\eta_{\beta'\beta} \\ |
| 335 |
|
|
U(r) &= - q:\vec{\nabla}\vec{E} = - q_{\mu\nu}\;\partial_\nu E_\mu = -\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu. |
| 336 |
|
|
\end{split} |
| 337 |
|
|
\label{eq:2} |
| 338 |
|
|
\end{equation} |
| 339 |
|
|
Here the starred tensors are the components in the body fixed |
| 340 |
|
|
frame. Substituting equation (\ref{eq:2}) in the equation (\ref{eq:1}) |
| 341 |
|
|
and taking linear terms in the expansion we get, |
| 342 |
|
|
\begin{equation} |
| 343 |
|
|
\braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu }{k_B T}\right)}, |
| 344 |
|
|
\label{eq:3} |
| 345 |
|
|
\end{equation} |
| 346 |
|
|
where $\eta_{\alpha\alpha'}$ is the rotation matrix that transforms |
| 347 |
|
|
the body fixed to the space fixed frame, |
| 348 |
|
|
\[\eta_{\alpha\alpha'} |
| 349 |
|
|
= \left(\begin{array}{ccc} |
| 350 |
|
|
cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & cos\theta\; cos\psi\; sin\phi + cos\phi\; sin\psi & sin\theta\; sin\phi \\ |
| 351 |
|
|
-cos\psi\; sin\phi - cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & cos\phi\; cos\theta \\ |
| 352 |
|
|
sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta |
| 353 |
|
|
\end{array} \right).\] |
| 354 |
|
|
Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$ |
| 355 |
|
|
and $8 \pi^2 /3\;\vec{\nabla}.\vec{E}\; Tr(q^*) $ respectively. The |
| 356 |
|
|
second term vanishes for charge free space |
| 357 |
|
|
(i.e. $\vec{\nabla}.\vec{E} \; = \; 0)$. Similarly integration of the |
| 358 |
|
|
1st term in the numerator produces |
| 359 |
|
|
$8 \pi^2 /3\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces |
| 360 |
|
|
$8 \pi^2 /15k_B T (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} - |
| 361 |
|
|
{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$, |
| 362 |
|
|
if $\vec{\nabla}.\vec{E} \; = \; 0$, |
| 363 |
|
|
$ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and |
| 364 |
|
|
${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the |
| 365 |
|
|
Boltzmann average of a quadrupole moment can be written as, |
| 366 |
|
|
|
| 367 |
|
|
\begin{equation} |
| 368 |
|
|
\braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta, |
| 369 |
|
|
\label{eq:4} |
| 370 |
|
|
\end{equation} |
| 371 |
|
|
here ${\bar{q_o}}^2= |
| 372 |
|
|
3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'}$ |
| 373 |
|
|
which is a net quadrupole moment of a molecule. |
| 374 |
|
|
|
| 375 |
|
|
To find the average quadrupole moment for the entire system, we can |
| 376 |
|
|
multiply above equation with number of molecules $N$. |
| 377 |
|
|
\begin{equation} |
| 378 |
|
|
\braket{Q_{\alpha\beta}} \;=\; N\braket{q_{\alpha\beta}}\; = \; \frac{N}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{N\;\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta |
| 379 |
|
|
\label{eq:5} |
| 380 |
|
|
\end{equation} |
| 381 |
|
|
The analogous relation in a system of the $N$ quadrupoles is, |
| 382 |
|
|
\begin{equation} |
| 383 |
|
|
\braket{Q_{\alpha\beta}} \; = \; \frac{1}{3}\;Tr(Q)\;\delta_{\alpha\beta} + \frac{{\braket{Q^2}}_{en} - {\braket{Q}}_{en}^2}{15k_BT}\;\partial_\alpha E_\beta |
| 384 |
|
|
\label{eq:6} |
| 385 |
|
|
\end{equation} |
| 386 |
|
|
where $\braket{{Q^2}}_{en}$ and $\braket{Q}_{en}^2$ are the ensemble |
| 387 |
|
|
average of the square of the magnitude of the box quadrupole moment |
| 388 |
|
|
and the square of the ensemble average of the box quadrupole moment |
| 389 |
|
|
respectively. The ensemble averages in the above equation can be |
| 390 |
|
|
obtained using relations, |
| 391 |
|
|
${\braket{Q^2}}_{en} = |
| 392 |
|
|
{\braket{3Q_{\alpha'\beta'}Q_{\beta'\alpha'}-Q_{\alpha'\alpha'}Q_{\beta'\beta'}}}_{en}$ |
| 393 |
|
|
and |
| 394 |
|
|
${\braket{Q}}_{en}^2 = 3{\braket{Q_{\alpha'\beta'}}}_{en}\; |
| 395 |
|
|
\braket{Q_{\beta'\alpha'}}_{en} -{\braket{Q_{\alpha'\alpha'}}}_{en}\; |
| 396 |
|
|
{\braket{Q_{\beta'\beta'}}}_{en}$ |
| 397 |
|
|
respectively. The non-zero value of the $\braket{Q}_{en}^2$ is due to |
| 398 |
|
|
the applied gradient, therefore its contribution is subtracted to find |
| 399 |
|
|
the actual fluctuation in the box quadrupole moment. From the |
| 400 |
|
|
equations (\ref{eq:5}) and (\ref{eq:6}) we get, |
| 401 |
|
|
\begin{equation} |
| 402 |
|
|
\begin{split} |
| 403 |
|
|
\braket{{Q^2}}_{en}-{\braket{Q}_{en}}^2 &= N\; {\bar{q_o}}^2\\ |
| 404 |
|
|
& and \\ |
| 405 |
|
|
\braket{Q_{\alpha\beta}}\; &= \; N\braket{q_{\alpha\beta}}. |
| 406 |
|
|
\end{split} |
| 407 |
|
|
\label{eq:7} |
| 408 |
|
|
\end{equation} |
| 409 |
|
|
|
| 410 |
|
|
|
| 411 |
|
|
|
| 412 |
|
|
\section{Relation between quadrupolar polarization and applied field gradient} |
| 413 |
|
|
In the presence of the field gradient $\partial_\alpha {E}_\beta $, a |
| 414 |
|
|
non-vanishing quadrupolar polarization (quadrupole moment per unit |
| 415 |
|
|
volume) $\bar{Q}_{\alpha\beta}$ will be induced in the entire volume |
| 416 |
|
|
of a sample. The total field at any point $\vec{r}$ in the sample is |
| 417 |
|
|
given by, |
| 418 |
|
|
\begin{equation} |
| 419 |
|
|
\partial_\alpha E_\beta(\vec{r}) = \partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{4\pi \epsilon_o}\int T_{\alpha\beta\gamma\delta}(\vec{r}-\vec{r'})\;\bar{Q}_{\gamma\delta}(\vec{r'})\; d^3r' |
| 420 |
|
|
\label{eq:20} |
| 421 |
|
|
\end{equation} |
| 422 |
|
|
where $\partial_\alpha {E^o}_\beta$ is the applied field gradient and $ T_{\alpha\beta\gamma\delta}$ is the quadrupole-quadrupole interaction tensor which is obtained from applications of four successive gradient operator to the electrostatic kernal $v(r)$. |
| 423 |
|
|
\begin{equation} |
| 424 |
|
|
\begin{split} |
| 425 |
|
|
T_{\alpha\beta\gamma\delta}(r) &=\nabla_\alpha \nabla_\beta \nabla_\gamma \nabla_\delta\;v(r) \\ &= \left(\delta_{\alpha\beta}\delta_{\gamma\delta} + \delta_{\alpha\gamma}\delta_{\beta\delta}+ \delta_{\alpha\delta}\delta_{\beta\gamma}\right)v_{41}(r) + \left(\delta_{\alpha\beta} r_\gamma r_\delta + 5 \; permutations \right) \frac{v_{42}(r)}{r^2} \\ &+ r_\alpha r_\beta r_\gamma r_\delta\; \frac{v_{43}(r)}{r^4}, |
| 426 |
|
|
\end{split} |
| 427 |
|
|
\label{quadRadial} |
| 428 |
|
|
\end{equation} |
| 429 |
|
|
where $v_{41}(r),\; v_{42}(r), \; and v_{43}(r)$ are defined in Paper I of the series (Refer Paper I) which have different functional forms for different cutoff methods. The integral in equation |
| 430 |
|
|
(\ref{eq:20}) can be divided into two parts, $|\vec{r}-\vec{r'}|< R $ |
| 431 |
|
|
and $|\vec{r}-\vec{r'}|> R $ where $R \rightarrow 0 $. Since the total |
| 432 |
|
|
field gradient vanishes at the singularity (see Appendix \ref{singular}), |
| 433 |
|
|
equation (\ref{eq:20}) can be written as, |
| 434 |
|
|
\begin{equation} |
| 435 |
|
|
\partial_\alpha E_\beta(\vec{r}) = \partial_\alpha {E^o}_\beta(\vec{r}) + |
| 436 |
|
|
\frac{1}{4\pi \epsilon_o}\lim_{R \to |
| 437 |
|
|
0}\int\limits_{|\vec{r}-\vec{r'}|> R } |
| 438 |
|
|
T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{Q}_{\gamma\delta}(\vec{r'})\; |
| 439 |
|
|
d^3r'. |
| 440 |
|
|
\label{eq:23} |
| 441 |
|
|
\end{equation} |
| 442 |
|
|
If $r = r'$ is excluded from the integration, the gradient of the electric can be expressed in terms of traceless quadrupole moment as below (Refer eq 2.7 of Logan I) , |
| 443 |
|
|
\begin{equation} |
| 444 |
|
|
\partial_\alpha E_\beta(\vec{r}) = \partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{12\pi \epsilon_o}\int\limits_{|\vec{r}-\vec{r'}|> R } T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{\Theta}_{\gamma\delta}(\vec{r'})\; d^3r', |
| 445 |
|
|
\label{eq:22} |
| 446 |
|
|
\end{equation} |
| 447 |
|
|
where $\Theta_{\alpha\beta} = 3Q_{\alpha\beta} - \delta_{\alpha\beta}Tr(Q)$ |
| 448 |
|
|
is the traceless quadrupole moment. The total quadrupolar polarization is written as, |
| 449 |
|
|
\begin{equation} |
| 450 |
|
|
\bar{Q}_{\alpha\beta}(\vec{r}) = \frac{1}{3}\delta_{\alpha\beta}\;Tr(\bar{Q})+\epsilon_o {\chi}_Q\;\partial_\alpha E_\beta(\vec{r}), |
| 451 |
|
|
\label{eq:21} |
| 452 |
|
|
\end{equation} |
| 453 |
|
|
where ${\chi}_Q = \frac{\braket{{Q^2}} - \braket{Q}^2}{15\epsilon_o Vk_BT}$ is the susceptibility of the quadrupolar fluid. In terms of traceless quadrupole moment, equation (\ref{eq:21}) can be written as, |
| 454 |
|
|
\begin{equation} |
| 455 |
|
|
\frac{1}{3}\bar{\Theta}_{\alpha\beta}(\vec{r}) = \epsilon_o {\chi}_Q \; \partial_\alpha E_\beta (\vec{r})= \epsilon_o {\chi}_Q \left(\partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{12\pi \epsilon_o}\int\limits_{|\vec{r}-\vec{r'}|> R } T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{\Theta}_{\gamma\delta}(\vec{r'})\; d^3r'\right) |
| 456 |
|
|
\label{eq:22} |
| 457 |
|
|
\end{equation} |
| 458 |
|
|
For toroidal boundary conditions, both $\partial_\alpha E_\beta$ and |
| 459 |
|
|
$\bar{\Theta}_{\alpha\beta}$ are uniform over the entire space. After |
| 460 |
|
|
performing a Fourier transform (see the Appendix in the Neumann Paper), |
| 461 |
|
|
we get, |
| 462 |
|
|
\begin{equation} |
| 463 |
|
|
\frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})= |
| 464 |
|
|
\epsilon_o {\chi}_Q \;\left[{\partial_\alpha |
| 465 |
|
|
{E^o}_\beta}(\vec{k})+ \frac{1}{12\pi |
| 466 |
|
|
\epsilon_o}\;\widetilde{T}_{\alpha\beta\gamma\delta}(\vec{k})\; |
| 467 |
|
|
{\bar{\Theta}}_{\gamma\delta}(\vec{k})\right] |
| 468 |
|
|
\label{eq:24} |
| 469 |
|
|
\end{equation} |
| 470 |
|
|
Since the quadrupolar polarization is in the direction of the applied |
| 471 |
|
|
field |
| 472 |
|
|
$\widetilde{\bar{\Theta}}_{\gamma\delta}(\vec{k}) = |
| 473 |
|
|
\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})$ |
| 474 |
|
|
and |
| 475 |
|
|
$\widetilde{T}_{\alpha\beta\gamma\delta}(\vec{k}) = |
| 476 |
|
|
\widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})$. |
| 477 |
|
|
(Note: This is true for orientational polarization but might not be |
| 478 |
|
|
true for polarization due to changes in the atomic distribution. For |
| 479 |
|
|
the orientational case, we need only to work with individual |
| 480 |
|
|
components of the matrix.) |
| 481 |
|
|
\begin{equation} |
| 482 |
|
|
\begin{split} |
| 483 |
|
|
\frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k}) &= \epsilon_o \bar{\chi}_Q \left[{\partial_\alpha E^o_\beta}(\vec{k})+ \frac{1}{12\pi \epsilon_o}\widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})\;\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})\right] \\ |
| 484 |
|
|
&= \epsilon_o {\chi}_Q\;\left(1-\frac{1}{4\pi} {\chi}_Q |
| 485 |
|
|
\widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})\right)^{-1} |
| 486 |
|
|
{\partial_\alpha E^o_\beta}(\vec{k}) |
| 487 |
|
|
\end{split} |
| 488 |
|
|
\label{eq:25} |
| 489 |
|
|
\end{equation} |
| 490 |
|
|
Matrix contraction of quadrupole-quadrupole tensor and quadrupole |
| 491 |
|
|
moment gives the identity matrix. Therefore each component can be |
| 492 |
|
|
treated as scalar. If the field gradient is homogeneous over the |
| 493 |
|
|
entire volume, ${\partial_ \alpha E_\beta}(\vec{k}) = 0 $ except at |
| 494 |
|
|
$ \vec{k} = 0$, hence it is sufficient to know |
| 495 |
|
|
$ \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})$ at $ \vec{k} = |
| 496 |
|
|
0$. Therefore equation (\ref{eq:25}) can be written as, |
| 497 |
|
|
\begin{equation} |
| 498 |
|
|
\begin{split} |
| 499 |
|
|
\frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}({0}) &= \epsilon_o {\chi}_Q\left(1-\frac{1}{4\pi} {\chi}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} \partial_\alpha E^o_\beta({0}) |
| 500 |
|
|
\end{split} |
| 501 |
|
|
\label{eq:26} |
| 502 |
|
|
\end{equation} |
| 503 |
|
|
where $ \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{0})$ can be evaluated as, |
| 504 |
|
|
\begin{equation} |
| 505 |
|
|
\widetilde{T}_{\alpha\beta\alpha\beta}({0}) = \int \widetilde{T}_{\alpha\beta\alpha\beta}\;(\vec{r})d^3r |
| 506 |
|
|
\label{eq:27} |
| 507 |
|
|
\end{equation} |
| 508 |
|
|
The susceptibility is modified as, |
| 509 |
|
|
\begin{equation} |
| 510 |
|
|
\Xi_Q = \bar{\chi}_Q\left(1-\frac{1}{4\pi} \bar{\chi}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}. |
| 511 |
|
|
\label{eq:28} |
| 512 |
|
|
\end{equation} |
| 513 |
|
|
In terms of traced quadrupole moment equation (\ref{eq:25}) can be written as, |
| 514 |
|
|
\begin{equation} |
| 515 |
|
|
{\bar{Q}}_{\alpha\beta} = \frac{1}{3}\delta_{\alpha\beta}\;Tr(\bar{Q}) + \epsilon_o\; \Xi_Q\; \partial_\alpha E^o_\beta |
| 516 |
|
|
\label{eq:29} |
| 517 |
|
|
\end{equation} |
| 518 |
|
|
From equations (\ref{eq:6}), (\ref{eq:28}), and (\ref{eq:29}) we get, |
| 519 |
|
|
\begin{equation} |
| 520 |
|
|
\begin{split} |
| 521 |
|
|
&\frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\; =\; {\chi}_Q\left(1-\frac{1}{4\pi} {\chi}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}, \\ |
| 522 |
|
|
&{\chi}_Q \;=\; \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{1}{4\pi} \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} |
| 523 |
|
|
\end{split} |
| 524 |
|
|
\end{equation} |
| 525 |
|
|
Finally in terms of quadrupolar correction factor ($A_{quad}$) the quadrupolar susceptibility is written as, |
| 526 |
|
|
\begin{equation} |
| 527 |
|
|
{\chi}_Q \;=\; \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\; A_{quad}\right)^{-1} |
| 528 |
|
|
\end{equation} |
| 529 |
|
|
The $A_{quad}$ has dimension of the $length^{-2}$ is different for different cutoff methods which is listed in Table I. |
| 530 |
|
|
\section{The effective dielectric constant of a quadrupolar fluid} |
| 531 |
|
|
The dielectric constant of a material is a measure of the screening of |
| 532 |
|
|
the electrostatic energy when a material is placed in the |
| 533 |
|
|
electrostatic field. If $U_{field}(r)$ and $U_{int}(r)$ are the total |
| 534 |
|
|
electrostatic energies of a system due to the applied field and |
| 535 |
|
|
interaction of the quadrupole with the gradient of the field |
| 536 |
|
|
respectively. The dielectric constant can be written as, |
| 537 |
|
|
\begin{equation} |
| 538 |
|
|
\epsilon = \frac{U_{field} + U_{int}}{U_{field}} |
| 539 |
|
|
\label{eq:31} |
| 540 |
|
|
\end{equation} |
| 541 |
|
|
The energy due to field can be written as, |
| 542 |
|
|
\begin{equation} |
| 543 |
|
|
U_{field}(r) = \int_V u(r)dv = \int_V \frac{1}{2}\epsilon_o {|E^o|}^2 dv, |
| 544 |
|
|
\label{eq:32} |
| 545 |
|
|
\end{equation} |
| 546 |
|
|
where $u(r)$ is the energy density for applied electric field and $V$ is the total volume |
| 547 |
|
|
of the system. The interaction energy can be assumed to be created by assembling quadrupoles from infinitely far away against the existing field gradient(Analogy Jackson's equations 4.83 - 4.94). Therefore |
| 548 |
|
|
\begin{equation} |
| 549 |
|
|
U_{int}(r) = -\frac{1}{2}\int_V \bar{Q}_{\alpha\beta}\;\partial_\beta E^o_{\alpha}\; dv, |
| 550 |
|
|
\label{eq:33} |
| 551 |
|
|
\end{equation} |
| 552 |
|
|
where $\bar{Q}_{\alpha\beta}$ is the quadrupolar polarization. The quadrupoloarization can be expressed as linear function of the gradient of the applied field as below, |
| 553 |
|
|
\begin{equation} |
| 554 |
|
|
\bar{Q}_{\alpha\beta} = \epsilon_{o}\; {\chi_Q}\; \partial_\alpha E_\beta \approx \epsilon_{o}\; {\chi_Q}\; \partial_\alpha E^o_\beta , |
| 555 |
|
|
\label{eq:34} |
| 556 |
|
|
\end{equation} |
| 557 |
|
|
where ${\chi_Q} $ is a quadrupolar susceptibility. The local field gradient can be ignored in the region of low polarizability. In terms of the box quadrupole |
| 558 |
|
|
moment it can be expressed as, |
| 559 |
|
|
\begin{equation} |
| 560 |
|
|
\chi_Q \;=\; \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\left(1 + \frac{\braket{{Q^2}}_{en} - \braket{Q}_{en}^2}{15 \epsilon_o Vk_BT}\;A_{quad}\right |
| 561 |
|
|
)^{-1}. |
| 562 |
|
|
\label{eq:36} |
| 563 |
|
|
\end{equation} |
| 564 |
|
|
Using above relations (equation (\ref{eq:32}\;-\;\ref{eq:34}) in the |
| 565 |
|
|
equation (\ref{eq:31}) produce, |
| 566 |
|
|
\begin{equation} |
| 567 |
|
|
\epsilon = 1 + {\chi}_Q \frac{\int_V |\partial_\alpha E^o_\beta|^2 dv}{\int_V{|E^o|}^2 dv}. |
| 568 |
|
|
\end{equation} |
| 569 |
|
|
|
| 570 |
|
|
\newpage |
| 571 |
|
|
|
| 572 |
|
|
\appendix |
| 573 |
|
|
\section{Point-multipolar interactions with a spatially-varying electric field} |
| 574 |
|
|
|
| 575 |
|
|
We can treat objects $a$, $b$, and $c$ containing embedded collections |
| 576 |
|
|
of charges. When we define the primitive moments, we sum over that |
| 577 |
|
|
collections of charges using a local coordinate system within each |
| 578 |
|
|
object. The point charge, dipole, and quadrupole for object $a$ are |
| 579 |
|
|
given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively. |
| 580 |
|
|
These are the primitive multipoles which can be expressed as a |
| 581 |
|
|
distribution of charges, |
| 582 |
|
|
\begin{align} |
| 583 |
|
|
C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\ |
| 584 |
|
|
D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\ |
| 585 |
|
|
Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k |
| 586 |
|
|
r_{k\alpha} r_{k\beta} . \label{eq:quadrupole} |
| 587 |
|
|
\end{align} |
| 588 |
|
|
Note that the definition of the primitive quadrupole here differs from |
| 589 |
|
|
the standard traceless form, and contains an additional Taylor-series |
| 590 |
|
|
based factor of $1/2$. In Paper 1, we derived the forces and torques |
| 591 |
|
|
each object exerts on the others. |
| 592 |
|
|
|
| 593 |
|
|
Here we must also consider an external electric field that varies in |
| 594 |
|
|
space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in |
| 595 |
|
|
object $a$ will then experience a slightly different field. This |
| 596 |
|
|
electric field can be expanded in a Taylor series around the local |
| 597 |
|
|
origin of each object. A different Taylor series expansion is carried |
| 598 |
|
|
out for each object. |
| 599 |
|
|
|
| 600 |
|
|
For a particular charge $q_k$, the electric field at that site's |
| 601 |
|
|
position is given by: |
| 602 |
|
|
\begin{equation} |
| 603 |
|
|
E_\gamma + \nabla_\delta E_\gamma r_{k \delta} |
| 604 |
|
|
+ \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta} |
| 605 |
|
|
r_{k \varepsilon} + ... |
| 606 |
|
|
\end{equation} |
| 607 |
|
|
Note that the electric field is always evaluated at the origin of the |
| 608 |
|
|
objects, and treating each object using point multipoles simplifies |
| 609 |
|
|
this greatly. |
| 610 |
|
|
|
| 611 |
|
|
To find the force exerted on object $a$ by the electric field, one |
| 612 |
|
|
takes the electric field expression, and multiplies it by $q_k$, and |
| 613 |
|
|
then sum over all charges in $a$: |
| 614 |
|
|
|
| 615 |
|
|
\begin{align} |
| 616 |
|
|
F_\gamma &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta} |
| 617 |
|
|
+ \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta} |
| 618 |
|
|
r_{k \varepsilon} + ... \rbrace \\ |
| 619 |
|
|
&= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma |
| 620 |
|
|
+ Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma + |
| 621 |
|
|
... |
| 622 |
|
|
\end{align} |
| 623 |
|
|
|
| 624 |
|
|
Similarly, the torque exerted by the field on $a$ can be expressed as |
| 625 |
|
|
\begin{align} |
| 626 |
|
|
\tau_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\ |
| 627 |
|
|
& = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k |
| 628 |
|
|
r_{k\beta} E_\gamma(\mathbf r_k) \\ |
| 629 |
|
|
& = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma |
| 630 |
|
|
+ 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta |
| 631 |
|
|
E_\gamma + ... |
| 632 |
|
|
\end{align} |
| 633 |
|
|
|
| 634 |
|
|
The last term is essentially identical with form derived by Torres del |
| 635 |
|
|
Castillo and M\'{e}ndez Garrido,\cite{Torres-del-Castillo:2006uo} although their derivation |
| 636 |
|
|
utilized a traceless form of the quadrupole that is different than the |
| 637 |
|
|
primitive definition in use here. We note that the Levi-Civita symbol |
| 638 |
|
|
can be eliminated by utilizing the matrix cross product in an |
| 639 |
|
|
identical form as in Ref. \onlinecite{Smith98}: |
| 640 |
|
|
\begin{equation} |
| 641 |
|
|
\left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta |
| 642 |
|
|
\left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta} |
| 643 |
|
|
-\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta} |
| 644 |
|
|
\right] |
| 645 |
|
|
\label{eq:matrixCross} |
| 646 |
|
|
\end{equation} |
| 647 |
|
|
where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of |
| 648 |
|
|
the matrix indices. In table \ref{tab:UFT} we give compact |
| 649 |
|
|
expressions for how the multipole sites interact with an external |
| 650 |
|
|
field that has exhibits spatial variations. |
| 651 |
|
|
|
| 652 |
|
|
\begin{table} |
| 653 |
|
|
\caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque |
| 654 |
|
|
$(\mathbf{\tau})$ expressions for a multipolar site embedded in an |
| 655 |
|
|
electric field with spatial variations, $\mathbf{E}(\mathbf{r})$. |
| 656 |
|
|
\label{tab:UFT}} |
| 657 |
|
|
\begin{tabular}{r|ccc} |
| 658 |
|
|
& Charge & Dipole & Quadrupole \\ \hline |
| 659 |
|
|
$U$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\ |
| 660 |
|
|
$\mathbf{F}$ & $C \mathbf{E}(\mathbf{r})$ & $+\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $+\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\ |
| 661 |
|
|
$\mathbf{\tau}$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $+2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$ |
| 662 |
|
|
\end{tabular} |
| 663 |
|
|
\end{table} |
| 664 |
|
|
\section{Gradient of the field due to quadrupolar polarization} |
| 665 |
|
|
\label{singular} |
| 666 |
|
|
In this section, we will discuss the gradient of the field produced by |
| 667 |
|
|
quadrupolar polarization. For this purpose, we consider a distribution |
| 668 |
|
|
of charge ${\rho}(r)$ which gives rise to an electric field |
| 669 |
|
|
$\vec{E}(r)$ and gradient of the field $\vec{\nabla} \vec{E}(r)$ |
| 670 |
|
|
throughout space. The total gradient of the electric field over volume |
| 671 |
|
|
due to the all charges within the sphere of radius $R$ is given by |
| 672 |
|
|
(cf. Jackson equation 4.14): |
| 673 |
|
|
\begin{equation} |
| 674 |
|
|
\int_{r<R} \vec{\nabla}\vec{E}\;d^3r = -\int_{r=R} R^2 \vec{E}\;\hat{n}\; d\Omega |
| 675 |
|
|
\label{eq:8} |
| 676 |
|
|
\end{equation} |
| 677 |
|
|
where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector |
| 678 |
|
|
of the surface of the sphere which is equal to |
| 679 |
|
|
$sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} + |
| 680 |
|
|
cos[\theta]\hat{z}$ |
| 681 |
|
|
in spherical coordinates. For the charge density ${\rho}(r')$, the |
| 682 |
|
|
total gradient of the electric field can be written as (cf. Jackson |
| 683 |
|
|
equation 4.16), |
| 684 |
|
|
\begin{equation} |
| 685 |
|
|
\int_{r<R} \vec{\nabla}\vec{E}\; d^3r=-\int_{r=R} R^2\; \vec{\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; \vec{\nabla}\;\left(\int \frac{\rho(r')}{|\vec{r}-\vec{r'}|}\;d^3r'\right) \hat{n}\; d\Omega |
| 686 |
|
|
\label{eq:9} |
| 687 |
|
|
\end{equation} |
| 688 |
|
|
The radial function in the equation (\ref{eq:9}) can be expressed in |
| 689 |
|
|
terms of spherical harmonics as (cf. Jackson equation 3.70), |
| 690 |
|
|
\begin{equation} |
| 691 |
|
|
\frac{1}{|\vec{r} - \vec{r'}|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi) |
| 692 |
|
|
\label{eq:10} |
| 693 |
|
|
\end{equation} |
| 694 |
|
|
If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get, |
| 695 |
|
|
\begin{equation} |
| 696 |
|
|
\begin{split} |
| 697 |
|
|
\int_{r<R} \vec{\nabla}\vec{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; \vec{\nabla}\;\left(\int \rho(r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\ |
| 698 |
|
|
&= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r |
| 699 |
|
|
' |
| 700 |
|
|
\end{split} |
| 701 |
|
|
\label{eq:11} |
| 702 |
|
|
\end{equation} |
| 703 |
|
|
The gradient of the product of radial function and spherical harmonics |
| 704 |
|
|
is given by (cf. Arfken, p.811 eq. 16.94): |
| 705 |
|
|
\begin{equation} |
| 706 |
|
|
\begin{split} |
| 707 |
|
|
\vec{\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac |
| 708 |
|
|
{\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi). |
| 709 |
|
|
\end{split} |
| 710 |
|
|
\label{eq:12} |
| 711 |
|
|
\end{equation} |
| 712 |
|
|
Using equation (\ref{eq:12}) we get, |
| 713 |
|
|
\begin{equation} |
| 714 |
|
|
\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}}, |
| 715 |
|
|
\label{eq:13} |
| 716 |
|
|
\end{equation} |
| 717 |
|
|
where $ Y_{l,l+1,m}(\theta, \phi)$ is the vector spherical harmonics |
| 718 |
|
|
which can be expressed in terms of spherical harmonics as shown in |
| 719 |
|
|
below (cf. Arfkan p.811), |
| 720 |
|
|
\begin{equation} |
| 721 |
|
|
Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2}, |
| 722 |
|
|
\label{eq:14} |
| 723 |
|
|
\end{equation} |
| 724 |
|
|
where $C(l+1,1,l|m_1,m_2,m)$ is a Clebsch-Gordan coefficient and |
| 725 |
|
|
$\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed |
| 726 |
|
|
in terms of Cartesian coordinates, |
| 727 |
|
|
\begin{equation} |
| 728 |
|
|
{\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}} |
| 729 |
|
|
\label{eq:15} |
| 730 |
|
|
\end{equation} |
| 731 |
|
|
The normal vector $\hat{n} $ can be expressed in terms of spherical tensor of rank 1 as shown in below, |
| 732 |
|
|
\begin{equation} |
| 733 |
|
|
\hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right) |
| 734 |
|
|
\label{eq:16} |
| 735 |
|
|
\end{equation} |
| 736 |
|
|
The surface integral of the product of $\hat{n}$ and |
| 737 |
|
|
${Y_{l+1}}^{m_1}(\theta, \phi)$ gives, |
| 738 |
|
|
\begin{equation} |
| 739 |
|
|
\begin{split} |
| 740 |
|
|
\int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\ |
| 741 |
|
|
&= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\ |
| 742 |
|
|
&= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right), |
| 743 |
|
|
\end{split} |
| 744 |
|
|
\label{eq:17} |
| 745 |
|
|
\end{equation} |
| 746 |
|
|
where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and |
| 747 |
|
|
$ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega = |
| 748 |
|
|
\delta_{ll'}\delta_{mm'} $. |
| 749 |
|
|
Non-vanishing values of equation \ref{eq:17} require $l = 0$, |
| 750 |
|
|
therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1, |
| 751 |
|
|
1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively |
| 752 |
|
|
provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be |
| 753 |
|
|
modified, |
| 754 |
|
|
\begin{equation} |
| 755 |
|
|
\begin{split} |
| 756 |
|
|
\int_{r<R} \vec{\nabla}\vec{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C( |
| 757 |
|
|
1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r'. |
| 758 |
|
|
\end{split} |
| 759 |
|
|
\label{eq:18} |
| 760 |
|
|
\end{equation} |
| 761 |
|
|
After substituting ${Y^*}_{00} = \frac{1}{\sqrt{4\pi}} $ and using the |
| 762 |
|
|
values of the Clebsch-Gorden coefficients: $ C(1, 1, 0|-1,1,0) = |
| 763 |
|
|
\frac{1}{\sqrt{3}}, \; C(1, 1, 0|-1,1,0)= \frac{1}{\sqrt{3}}$ and $ |
| 764 |
|
|
C(1, 1, 0|0,0,0) = -\frac{1}{\sqrt{3}}$ in equation \ref{eq:18} we |
| 765 |
|
|
obtain, |
| 766 |
|
|
\begin{equation} |
| 767 |
|
|
\begin{split} |
| 768 |
|
|
\int_{r<R} \vec{\nabla}\vec{E}\;d^3r &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\ |
| 769 |
|
|
&= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right). |
| 770 |
|
|
\end{split} |
| 771 |
|
|
\label{eq:19} |
| 772 |
|
|
\end{equation} |
| 773 |
|
|
Equation (\ref{eq:19}) gives the total gradient of the field over a |
| 774 |
|
|
sphere due to the distribution of the charges. For quadrupolar fluids |
| 775 |
|
|
the total charge within a sphere is zero, therefore |
| 776 |
|
|
$ \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = 0 $. Hence the quadrupolar |
| 777 |
|
|
polarization produces zero net gradient of the field inside the |
| 778 |
|
|
sphere. |
| 779 |
|
|
|
| 780 |
|
|
\newpage |
| 781 |
|
|
|
| 782 |
|
|
\bibliography{multipole} |
| 783 |
|
|
|
| 784 |
|
|
\end{document} |