ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/multipole/dielectric.tex
Revision: 4351
Committed: Mon Jun 15 14:38:21 2015 UTC (10 years, 1 month ago) by gezelter
Content type: application/x-tex
File size: 37595 byte(s)
Log Message:
Latest stab at a dielectric paper

File Contents

# User Rev Content
1 gezelter 4195 \documentclass[%
2     aip,
3     jcp,
4     amsmath,amssymb,
5     preprint,%
6     % reprint,%
7     %author-year,%
8     %author-numerical,%
9     ]{revtex4-1}
10    
11     \usepackage{graphicx}% Include figure files
12     \usepackage{dcolumn}% Align table columns on decimal point
13     \usepackage{multirow}
14     \usepackage{bm}% bold math
15     \usepackage{natbib}
16     \usepackage{times}
17     \usepackage{mathptmx}
18     \usepackage[version=3]{mhchem} % this is a great package for formatting chemical reactions
19     \usepackage{url}
20 gezelter 4351 \usepackage{braket}
21 gezelter 4195
22     \begin{document}
23    
24 gezelter 4218 \title{Real space electrostatics for multipoles. III. Dielectric Properties}
25 gezelter 4195
26 gezelter 4218 \author{Madan Lamichhane}
27     \affiliation{Department of Physics, University
28     of Notre Dame, Notre Dame, IN 46556}
29 gezelter 4351 \author{Thomas Parsons}
30     \affiliation{Department of Chemistry and Biochemistry, University
31     of Notre Dame, Notre Dame, IN 46556}
32 gezelter 4218 \author{Kathie E. Newman}
33     \affiliation{Department of Physics, University
34     of Notre Dame, Notre Dame, IN 46556}
35 gezelter 4195 \author{J. Daniel Gezelter}
36 gezelter 4351 \email{gezelter@nd.edu.}
37 gezelter 4195 \affiliation{Department of Chemistry and Biochemistry, University
38     of Notre Dame, Notre Dame, IN 46556}
39    
40     \date{\today}% It is always \today, today,
41     % but any date may be explicitly specified
42    
43 gezelter 4218 \begin{abstract}
44     Note: This manuscript is a work in progress.
45    
46     We report on the dielectric properties of the shifted potential
47     (SP), gradient shifted force (GSF), and Taylor shifted force (TSF)
48     real-space methods for multipole interactions that were developed in
49     the first two papers in this series. We find that some subtlety is
50     required for computing dielectric properties with the real-space
51     methods, particularly when using the common fluctuation formulae.
52     Three distinct methods for computing the dielectric constant are
53     investigated, including the standard fluctuation formulae,
54     potentials of mean force between solvated ions, and direct
55     measurement of linear solvent polarization in response to applied
56     fields and field gradients.
57     \end{abstract}
58    
59 gezelter 4195 \maketitle
60    
61 gezelter 4218 \section{Introduction}
62 gezelter 4195
63 gezelter 4218 Over the past several years, there has been increasing interest in
64     pairwise methods for correcting electrostatic interactions in computer
65     simulations of condensed molecular
66     systems.\cite{Wolf99,Zahn02,Kast03,Beckd.A.C._Bi0486381,Ma05,Fennell06}
67     These techniques were developed from the observations and efforts of
68     Wolf {\it et al.} and their work towards an $\mathcal{O}(N)$
69     Coulombic sum.\cite{Wolf99} Wolf's method of cutoff neutralization is
70     able to obtain excellent agreement with Madelung energies in ionic
71     crystals.\cite{Wolf99} One of the most difficult tests of any new
72     electrostatic method is the fidelity with which that method can
73     reproduce the bulk-phase polarizability or equivalently, the
74     dielectric properties of a fluid. Of particular interest is the
75     static dielectric constant, $\epsilon$. Using the Ewald sum under
76     tin-foil boundary conditions, $\epsilon$ can be calculated for systems
77     of non-polarizable substances via
78     \begin{equation}
79     \epsilon = 1 + \frac{\langle M^2\rangle}{3\epsilon_0k_\textrm{B}TV},
80     \label{eq:staticDielectric}
81     \end{equation}
82     where $\epsilon_0$ is the permittivity of free space and $\langle
83     M^2\rangle$ is the fluctuation of the system dipole
84     moment.\cite{Allen:1989fp} The numerator in the fractional term in equation
85     (\ref{eq:staticDielectric}) is the fluctuation of the simulation-box
86     dipole moment, identical to the quantity calculated in the
87     finite-system Kirkwood $g$ factor ($G_k$):
88     \begin{equation}
89     G_k = \frac{\langle M^2\rangle}{N\mu^2},
90     \label{eq:KirkwoodFactor}
91     \end{equation}
92     where $\mu$ is the dipole moment of a single molecule of the
93     homogeneous system.\cite{Neumann:1983mz,Neumann:1983yq,Neumann84,Neumann85} The
94     fluctuation term in both equation (\ref{eq:staticDielectric}) and
95     (\ref{eq:KirkwoodFactor}) is calculated as follows,
96     \begin{equation}
97     \begin{split}
98     \langle M^2\rangle &= \langle\bm{M}\cdot\bm{M}\rangle
99     - \langle\bm{M}\rangle\cdot\langle\bm{M}\rangle \\
100     &= \langle M_x^2+M_y^2+M_z^2\rangle
101     - (\langle M_x\rangle^2 + \langle M_x\rangle^2
102     + \langle M_x\rangle^2).
103     \end{split}
104     \label{eq:fluctBoxDipole}
105     \end{equation}
106     This fluctuation term can be accumulated during a simulation; however,
107     it converges rather slowly, thus requiring multi-nanosecond simulation
108     times.\cite{Horn04} In the case of tin-foil boundary conditions, the
109     dielectric/surface term of the Ewald summation is equal to zero.
110 gezelter 4195
111 gezelter 4218 \section{Dielectric constants for real-space electrostatics}
112    
113 gezelter 4195 The new real-space methods require some care when computing dielectric
114     properties because the interaction between molecular dipoles depends
115     on the level of approximation being utilized. Consider the cases of
116     Stockmayer (dipolar) soft spheres that are represented either by two
117     closely-spaced point charges or by a single point dipole (see
118     Fig. \ref{fig:stockmayer}).
119     \begin{figure}
120     \includegraphics[width=3in]{DielectricFigure}
121     \caption{With the real-space electrostatic methods, the effective
122     dipole tensor, $\mathbf{T}$, governing interactions between
123     molecular dipoles is not the same for charge-charge interactions as
124     for point dipoles.}
125     \label{fig:stockmayer}
126     \end{figure}
127     In the case where point charges are interacting via an electrostatic
128     kernel, $v(r)$, the effective {\it molecular} dipole tensor,
129     $\mathbf{T}$ is obtained from two successive applications of the
130     gradient operator to the electrostatic kernel,
131     \begin{equation}
132     \mathbf{T}_{\alpha \beta}(r) = \nabla_\alpha \nabla_\beta \left(v(r)\right) = \delta_{\alpha \beta}
133     \left(\frac{1}{r} v^\prime(r) \right) + \frac{r_{\alpha}
134     r_{\beta}}{r^2} \left( v^{\prime \prime}(r) - \frac{1}{r}
135     v^{\prime}(r) \right)
136     \end{equation}
137     where $v(r)$ may be either the bare kernel ($1/r$) or one of the
138     modified (Wolf or DSF) kernels. This tensor describes the effective
139 gezelter 4196 interaction between molecular dipoles ($\mathbf{D}$) in Gaussian
140 gezelter 4195 units as $-\mathbf{D} \cdot \mathbf{T} \cdot \mathbf{D}$.
141    
142     When utilizing the new real-space methods for point dipoles, the
143     tensor is explicitly constructed,
144     \begin{equation}
145     \mathbf{T}_{\alpha \beta}(r) = \delta_{\alpha \beta} v_{21}(r) +
146     \frac{r_{\alpha} r_{\beta}}{r^2} v_{22}(r)
147     \end{equation}
148     where the functions $v_{21}(r)$ and $v_{22}(r)$ depend on the level of
149     the approximation. Although the Taylor-shifted (TSF) and
150     gradient-shifted (GSF) models produce to the same $v(r)$ function for
151     point charges, they have distinct forms for the dipole-dipole
152     interactions.
153    
154     Neumann and Steinhauser showed~\cite{Neumann:1983mz,Neumann:1983yq}
155     that the relative dielectric permittivity $\epsilon$ is given by the
156     general fluctuation formula,
157     \begin{equation}
158     \frac{\epsilon - 1}{\epsilon +2} = \frac{4 \pi}{3} \frac{\left<M^2\right>}{3 V k_B
159     T} \left( 1 - \frac{3}{4 \pi} \frac{\epsilon -1}{\epsilon + 2}
160     \tilde{T}(0) \right)
161     \end{equation}
162     where $\left<M^2\right>$ is the mean fluctuation of the square of the
163     net dipole moment of the simulation cell, $V$ is the volume of the
164     cell, and $\tilde{T}(0) = \tilde{T̃}_{xx}(0) = \tilde{T̃}_{yy}(0) =
165     \tilde{T̃}_{zz}(0)$ is the $\mathbf{k} = 0$ limit of Fourier transform
166     of the diagonal term of the effective molecular dipolar tensor,
167     \begin{equation}
168     \tilde{T}(0) = \int_V \mathbf{T}(\mathbf{r}) d\mathbf{r}
169     \end{equation}
170     where the integral is carried out over the relevant geometry for the
171     interaction. For the real-space methods, the integration can be done
172     easily up to the imposed cutoff radius, while for the Ewald sum, the
173     results also depend on details of the $k$-space
174     calculation.\cite{Neumann:1983yq}
175    
176     For molecules composed of point charges interacting via the bare
177     $(1/r)$ kernel, the simple cutoff (SC) and minimum image (MI)
178     approaches give $\tilde{T}(0) = 0$ which means that the
179     Clausius-Mosotti equation,
180     \begin{equation}
181     \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon
182     -1}{\epsilon+2}
183     \end{equation}
184     is the relevant fluctuation formula for the relative permittivity.
185    
186     Zahn {\it et al.}\cite{Zahn02} showed that for the damped shifted
187     force charge-charge kernel, $\tilde{T}(0) = 4 \pi / 3$. This was later
188     generalized by Izvekov {\it et al.} for all point-charge kernels which
189     have forces that go to zero at a cutoff radius and which maintain a
190     pole of first order at $r=0$.\cite{Izvekov:2008wo} When $\tilde{T}(0)
191     = 4 \pi/ 3$, the expression for the dielectric constant reduces to the
192     widely-used {\it conducting boundary} formula,
193     \begin{equation}
194     \frac{4\pi}{3}\frac{\left< M^2 \right>}{3 V k_B T} = \frac{\epsilon -
195     1}{3}
196     \end{equation}
197 gezelter 4351 It is convenient to define a quantity $A = \frac{3}{4 \pi}
198 gezelter 4195 \tilde{T}(0)$, and to combine all of the fluctuation formulae
199     together:
200     \begin{equation}
201     \frac{4 \pi}{3} \frac{\left< M^2 \right>}{3 V k_B T} =
202     \left\{\begin{array}{ll}
203     \frac{\epsilon-1}{\epsilon+2} \left[1- \frac{\epsilon-1}{\epsilon+2}
204 gezelter 4351 A\right]^{-1} & \mathrm{General~Case} \\
205     \frac{\epsilon-1}{\epsilon+2} & A \rightarrow 0 \mathrm{~limit} \\
206     \frac{\epsilon-1}{3} & A \rightarrow 1 \mathrm{~limit}
207 gezelter 4195 \end{array}\right.
208     \end{equation}
209    
210 gezelter 4351 The Clausius-Mossotti $(A\rightarrow 0)$ approach is subject to noise
211 gezelter 4195 and error magnification,\cite{Allen:1989fp} and the conducting
212 gezelter 4351 boundary approach $(A \rightarrow 1)$ has become widely used as a
213     result. If the electrostatic method being used has $A < 1$, the
214 gezelter 4195 relative dielectric permittivity $\epsilon$ can be estimated once the
215     conducting boundary fluctuation result has been found,
216     \begin{equation}
217 gezelter 4351 \epsilon = \frac{(A+2) (\epsilon_\text{CB}-1)+3} {(A-1) (\epsilon_\text{CB}-1)+3}
218 gezelter 4195 \end{equation}
219     Note that this expression becomes quite numerically sensitive when the
220 gezelter 4351 value of $A$ deviates significantly from 1.
221 gezelter 4195
222 gezelter 4351 We have derived a set of expressions for the value of $A$ for the new
223     real space methods that are shown in Table \ref{tab:A}.
224 gezelter 4195
225     \begin{table}
226 gezelter 4351 \caption{Expressions for the dielectric correction factor ($A$) for the
227 gezelter 4195 real-space electrostatic methods in terms of the damping parameter
228     ($\alpha$) and the cutoff radius ($r_c$). The Ewald-Kornfeld result
229     derived in Refs. \onlinecite{Adams:1980rt,Adams:1981fr,Neumann:1983yq} is shown for comparison using the Ewald
230     convergence parameter ($\kappa$) and the real-space cutoff value ($r_c$). }
231 gezelter 4351 \label{tab:A}
232 gezelter 4195 \begin{tabular}{l|c|c|c|c|}
233     & \multicolumn{2}{c|}{damped} & \multicolumn{2}{c|}{undamped} \\ \cline{2-3} \cline{4-5}
234 gezelter 4351 Method & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ & $A_\mathrm{charges}$ & $A_\mathrm{dipoles}$ \\
235 gezelter 4195 \hline
236     Spherical Cutoff (SC) & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ &0 &0\\
237     Shifted Potental (SP) & $ \mathrm{erf}(r_c \alpha) - \frac{2 \alpha r_c}{\sqrt{\pi}} e^{-\alpha^2 r_c^2}$ & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c }{\sqrt{\pi }} \left(1 + \frac{2 \alpha^2 r_c^2}{3} \right) e^{-\alpha ^2 r_c^2} $ &0 &0\\
238     Gradient-shifted (GSF) & 1 & $\mathrm{erf}(\alpha r_c)-\frac{2 \alpha r_c}{\sqrt{\pi}} \left(1 + \frac{2 \alpha^2 r_c^2}{3} + \frac{\alpha^4 r_c^4}{3}\right)e^{-\alpha ^2 r_c^2} $ &1 &1\\
239     Taylor-shifted (TSF) & 1 & 1 & 1 & 1\\
240     Ewald-Kornfeld (EK) & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & $\mathrm{erf}(r_c \kappa) - \frac{2 \kappa r_c}{\sqrt{\pi}} e^{-\kappa^2 r_c^2}$ & - & - \\\hline
241     \end{tabular}
242     \end{table}
243 gezelter 4218
244 gezelter 4351 \section{Boltzman average of the dipole polarization density}
245     Consider a dipolar fluid with polarization density $\mathbf{P}(r)$ at
246     equlibrium at temperature $T$. The average of polarization density is
247     given by,
248     \begin{equation}
249     \left<\mathbf{P}(r)\right> = \frac{\int\mathbf{P}(r) e^{-H/k_B T} d
250     \Gamma^N}{\int e^{-H/k_B T} d \Gamma^N}
251     \end{equation}
252     where $d \Gamma^N = dr_1...dr_N dp_1...dp_N$ is the volume element in
253     phase space, and $H$ is the Hamiltonian of the $N$-particle system in
254     the absence of applied external field. The Hamiltonian of the system
255     is given by,
256     \begin{equation}
257     H = \frac{1}{2}\sum_{i=1}^N m_i {\dot{\mathbf{r}}_i}^2 + \sum_{i<j} U(\mathbf{r}_i - \mathbf{r}_j)
258     \end{equation}
259     where $m_i$ is mass of site $i$, and $U(\mathbf{r}_i - \mathbf{r}_j)$
260     is the interaction potential between sites $i$ and $j$.
261    
262     Let $E'$ be the applied external electric field. The Hamiltonian for
263     the polarized system then becomes
264     \begin{equation}
265     H' = H - {M}_\alpha {E'}_\alpha
266     \end{equation}
267     where $\mathbf{M}$ is the total dipole moment in zero field. The
268     polarization density changes in the presence of the external field
269     $\mathbf{E'}$. The modified polarization is given by
270     \begin{equation}
271     \left< P'_\alpha(r) \right>_{E'} = \frac{\int P_\alpha(r) e^{-H'/k_B
272     T} d \Gamma^N}{\int e^{-H'/k_B T} d \Gamma^N} \equiv \frac{F}{G}
273     \end{equation}
274     For small values of the applied electric field we can expand the
275     polarization density as,
276     \begin{equation}
277     \left< P'_\alpha(r) \right>_{E'} = \left< P'_\alpha(r) \right> + \frac{\partial
278     \left< P'_\alpha(r) \right>}{\partial E'_\beta }\bigg|_{E'=0} E'_\beta
279     \end{equation}
280     and
281     \begin{equation}
282     \frac{\partial{\left<P'_\alpha(r)\right>}}{\partial{E'_\beta}}\bigg|_{E'=0} = \frac{F'G-FG'}{G^2}
283     \end{equation}
284     where
285     \begin{equation}
286     \begin{split}
287     F' & = \frac{1}{k_BT} \int {P}_\alpha M_\beta\; e^{-H/k_B T} d\Gamma^N\\
288     \textit{and} \\
289     G' & = \frac{1}{k_BT} \int M_\beta\; e^{-H/k_B T} d\Gamma^N
290     \end{split}
291     \end{equation}
292    
293     \section{Boltzmann average of a quadrupole moment}
294     The average quadrupole moment at temperature T in the presence of applied
295     field gradient is given by,
296     \begin{equation}
297     \braket{q_{\alpha\beta}} \;=\; \frac{\int d\Omega\; e^{\frac{-U(r)}{k_B T}}q_{\alpha\beta}}{\int d\Omega\; e^{\frac{-U(r)}{k_B T}}} \;=\; \frac{\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}q_{\alpha\beta}}{\int d\Omega\; e^{\frac{q_{\mu\nu}\;\partial_\nu E_\mu}{k_B T}}},
298     \label{eq:1}
299     \end{equation}
300     where $\int \Omega = \int_0^{2\pi} \int_0^\pi \int_0^{2\pi}
301     sin\theta\; d\theta\ d\phi\ d\psi$ is the integration over Euler
302     angles and $ U(r) = -q_{\mu\nu}\;\partial_\nu E_\mu $ is the energy of
303     a quadrupole in the gradient of the
304     applied field. The energy and quadrupole moment can be transformed
305     into body frame using following relation,
306     \begin{equation}
307     \begin{split}
308     q_{\alpha\beta} &= \eta_{\alpha\alpha'}{q}^* _{\alpha'\beta'}\eta_{\beta'\beta} \\
309     U(r) &= - q:\vec{\nabla}\vec{E} = - q_{\mu\nu}\;\partial_\nu E_\mu = -\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu.
310     \end{split}
311     \label{eq:2}
312     \end{equation}
313     Here the starred tensors are the components in the body fixed
314     frame. Substituting equation (\ref{eq:2}) in the equation (\ref{eq:1})
315     and taking linear terms in the expansion we get,
316     \begin{equation}
317     \braket{q_{\alpha\beta}} = \frac{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu }{k_B T}\right)q_{\alpha\beta}}{ \int d\Omega \left(1 + \frac{\eta_{\mu\mu'}{q}^*_{\mu'\nu'}\eta_{\nu'\nu}\;\partial_\nu E_\mu }{k_B T}\right)},
318     \label{eq:3}
319     \end{equation}
320     where $\eta_{\alpha\alpha'}$ is the rotation matrix that transforms
321     the body fixed to the space fixed frame,
322     \[\eta_{\alpha\alpha'}
323     = \left(\begin{array}{ccc}
324     cos\phi\; cos\psi - cos\theta\; sin\phi\; sin\psi & cos\theta\; cos\psi\; sin\phi + cos\phi\; sin\psi & sin\theta\; sin\phi \\
325     -cos\psi\; sin\phi - cos\theta\; cos\phi \; sin\psi & cos\theta\; cos\phi\; cos\psi - sin\phi\; sin\psi & cos\phi\; cos\theta \\
326     sin\theta\; sin\psi & -cos\psi\; sin\theta & cos\theta
327     \end{array} \right).\]
328     Integration of 1st and 2nd terms in the denominator gives $8 \pi^2$
329     and ($8 \pi^2 /3) \vec{\nabla}.\vec{E}\; Tr(q^*) $ respectively. The
330     second term vanishes for charge free space
331     (i.e. $\vec{\nabla}.\vec{E} \; = \; 0)$. Similarly integration of the
332     1st term in the numerator produces
333     $(8 \pi^2 /3)\; Tr(q^*)\delta_{\alpha\beta}$ and the 2nd term produces
334     $(8 \pi^2 /15k_B T) (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'} -
335     {q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})\partial_\alpha E_\beta$,
336     if $\vec{\nabla}.\vec{E} \; = \; 0$,
337     $ \partial_\alpha E_\beta = \partial_\beta E_\alpha$ and
338     ${q}^*_{\alpha'\beta'}= {q}^*_{\beta'\alpha'}$. Therefore the
339     Boltzmann average of a quadrupole moment can be written as,
340    
341     \begin{equation}
342     \braket{q_{\alpha\beta}}\; = \; \frac{1}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta,
343     \label{eq:4}
344     \end{equation}
345     here ${\bar{q_o}}^2=
346     (3{q}^*_{\alpha'\beta'}{q}^*_{\beta'\alpha'}-{q}^*_{\alpha'\alpha'}{q}^*_{\beta'\beta'})$
347     which is a net quadrupole moment of a molecule.
348    
349     To find the average quadrupole moment for the entire system, we can
350     multiply above equation with number of molecules $N$.
351     \begin{equation}
352     \braket{Q_{\alpha\beta}} \;=\; N\braket{q_{\alpha\beta}}\; = \; \frac{N}{3} Tr(q^*)\;\delta_{\alpha\beta} + \frac{{N\;\bar{q_o}}^2}{15k_BT}\;\partial_\alpha E_\beta
353     \label{eq:5}
354     \end{equation}
355     The analogous relation in a system of the $N$ quadrupoles is,
356     \begin{equation}
357     \braket{Q_{\alpha\beta}} \; = \; \frac{1}{3}\;Tr(Q)\;\delta_{\alpha\beta} + \frac{({\braket{Q^2}}_{en} - {\braket{Q}}_{en}^2)}{15k_BT}\;\partial_\alpha E_\beta
358     \label{eq:6}
359     \end{equation}
360     where $\braket{{Q^2}}_{en}$ and $\braket{Q}_{en}^2$ are the ensemble
361     average of the square of the magnitude of the box quadrupole moment
362     and the square of the ensemble average of the box quadrupole moment
363     respectively. The ensemble averages in the above equation can be
364     obtained using relations,
365     ${\braket{Q^2}}_{en} =
366     {\braket{3Q_{\alpha'\beta'}Q_{\beta'\alpha'}-Q_{\alpha'\alpha'}Q_{\beta'\beta'}}}_{en}$
367     and
368     ${\braket{Q}}_{en}^2 = 3{\braket{Q_{\alpha'\beta'}}}_{en}\;
369     \braket{Q_{\beta'\alpha'}}_{en} -{\braket{Q_{\alpha'\alpha'}}}_{en}\;
370     {\braket{Q_{\beta'\beta'}}}_{en}$
371     respectively. The non-zero value of the $\braket{Q}_{en}^2$ is due to
372     the applied gradient, therefore its contribution is subtracted to find
373     the actual fluctuation in the box quadrupole moment. From the
374     equations (\ref{eq:5}) and (\ref{eq:6}) we get,
375     \begin{equation}
376     \begin{split}
377     \braket{{Q^2}}_{en}-{\braket{Q}_{en}}^2 &= N\; {\bar{q_o}}^2\\
378     & and \\
379     \braket{Q_{\alpha\beta}}\; &= \; N\braket{q_{\alpha\beta}}.
380     \end{split}
381     \label{eq:7}
382     \end{equation}
383    
384     \section{Gradient of the field due to quadrupolar polarization}
385     \label{singular}
386     In this section, we will discuss the gradient of the field produced by
387     quadrupolar polarization. For this purpose, we consider a distribution
388     of charge ${\rho}(r)$ which gives rise to an electric field
389     $\vec{E}(r)$ and gradient of the field $\vec{\nabla} \vec{E}(r)$
390     throughout space. The total gradient of the electric field over volume
391     due to the all charges within the sphere of radius $R$ is given by
392     (cf. Jackson equation 4.14):
393     \begin{equation}
394     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = -\int_{r=R} R^2 \vec{E}\;\hat{n}\; d\Omega
395     \label{eq:8}
396     \end{equation}
397     where $d\Omega$ is the solid angle and $\hat{n}$ is the normal vector
398     of the surface of the sphere which is equal to
399     $sin[\theta]cos[\phi]\hat{x} + sin[\theta]sin[\phi]\hat{y} +
400     cos[\theta]\hat{z}$
401     in spherical coordinates. For the charge density ${\rho}(r')$, the
402     total gradient of the electric field can be written as (cf. Jackson
403     equation 4.16),
404     \begin{equation}
405     \int_{r<R} \vec{\nabla}\vec{E}\; d^3r=-\int_{r=R} R^2\; \vec{\nabla}\Phi\; \hat{n}\; d\Omega =-\frac{1}{4\pi\;\epsilon_o}\int_{r=R} R^2\; \vec{\nabla}\;\left(\int \frac{\rho(r')}{|\vec{r}-\vec{r'}|}\;d^3r'\right) \hat{n}\; d\Omega
406     \label{eq:9}
407     \end{equation}
408     The radial function in the equation (\ref{eq:9}) can be expressed in
409     terms of spherical harmonics as (cf. Jackson equation 3.70),
410     \begin{equation}
411     \frac{1}{|\vec{r} - \vec{r'}|} = 4\pi \sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r^l_<}}{{r^{l+1}_>}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)
412     \label{eq:10}
413     \end{equation}
414     If the sphere completely encloses the charge density then $ r_< = r'$ and $r_> = R$. Substituting equation (\ref{eq:10}) into (\ref{eq:9}) we get,
415     \begin{equation}
416     \begin{split}
417     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &=-\frac{R^2}{\epsilon_o}\int_{r=R} \; \vec{\nabla}\;\left(\int \rho(r')\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\frac{{r'^l}}{{R^{l+1}}}\;{Y^*}_{lm}(\theta', \phi')\;Y_{lm}(\theta, \phi)\;d^3r'\right) \hat{n}\; d\Omega \\
418     &= -\frac{R^2}{\epsilon_o}\sum_{l=0}^{\infty}\sum_{m=-l}^{m=l}\frac{1}{2l+1}\;\int \rho(r')\;{r'^l}\;{Y^*}_{lm}(\theta', \phi')\left(\int_{r=R}\vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right)\hat{n}\; d\Omega \right)d^3r
419     '
420     \end{split}
421     \label{eq:11}
422     \end{equation}
423     The gradient of the product of radial function and spherical harmonics
424     is given by (cf. Arfken, p.811 eq. 16.94):
425     \begin{equation}
426     \begin{split}
427     \vec{\nabla}\left[ f(r)\;Y_{lm}(\theta, \phi)\right] = &-\left(\frac{l+1}{2l+1}\right)^{1/2}\; \left[\frac{\partial}{\partial r}-\frac{l}{r} \right]f(r)\; Y_{l, l+1, m}(\theta, \phi)\\ &+ \left(\frac{l}{2l+1}\right)^{1/2}\left[\frac
428     {\partial}{\partial r}+\frac{l}{r} \right]f(r)\; Y_{l, l-1, m}(\theta, \phi).
429     \end{split}
430     \label{eq:12}
431     \end{equation}
432     Using equation (\ref{eq:12}) we get,
433     \begin{equation}
434     \vec{\nabla}\left({R^{-(l+1)}}\;Y_{lm}(\theta, \phi)\right) = [(l+1)(2l+1)]^{1/2}\; Y_{l,l+1,m}(\theta, \phi) \; \frac{1}{R^{l+2}},
435     \label{eq:13}
436     \end{equation}
437     where $ Y_{l,l+1,m}(\theta, \phi)$ is the vector spherical harmonics
438     which can be expressed in terms of spherical harmonics as shown in
439     below (cf. Arfkan p.811),
440     \begin{equation}
441     Y_{l,l+1,m}(\theta, \phi) = \sum_{m_1, m_2} C(l+1,1,l|m_1,m_2,m)\; {Y_{l+1}}^{m_1}(\theta,\phi)\; \hat{e}_{m_2},
442     \label{eq:14}
443     \end{equation}
444     where $C(l+1,1,l|m_1,m_2,m)$ is a Clebsch-Gordan coefficient and
445     $\hat{e}_{m_2}$ is a spherical tensor of rank 1 which can be expressed
446     in terms of Cartesian coordinates,
447     \begin{equation}
448     {\hat{e}}_{+1} = - \frac{\hat{x}+i\hat{y}}{\sqrt{2}},\quad {\hat{e}}_{0} = \hat{z},\quad and \quad {\hat{e}}_{-1} = \frac{\hat{x}-i\hat{y}}{\sqrt{2}}
449     \label{eq:15}
450     \end{equation}
451     The normal vector $\hat{n} $ can be expressed in terms of spherical tensor of rank 1 as shown in below,
452     \begin{equation}
453     \hat{n} = \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)
454     \label{eq:16}
455     \end{equation}
456     The surface integral of the product of $\hat{n}$ and
457     ${Y_{l+1}}^{m_1}(\theta, \phi)$ gives,
458     \begin{equation}
459     \begin{split}
460     \int \hat{n}\;{Y_{l+1}}^{m_1}\;d\Omega &= \int \sqrt{\frac{4\pi}{3}}\left(-{Y_1}^{-1}{\hat{e}}_1 -{Y_1}^{1}{\hat{e}}_{-1} + {Y_1}^{0}{\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
461     &= \int \sqrt{\frac{4\pi}{3}}\left({{Y_1}^{1}}^* {\hat{e}}_1 +{{Y_1}^{-1}}^* {\hat{e}}_{-1} + {{Y_1}^{0}}^* {\hat{e}}_0 \right)\;{Y_{l+1}}^{m_1}\; d\Omega \\
462     &= \sqrt{\frac{4\pi}{3}}\left({\delta}_{l+1, 1}\;{\delta}_{1, m_1}\;{\hat{e}}_1 + {\delta}_{l+1, 1}\;{\delta}_{-1, m_1}\;{\hat{e}}_{-1}+ {\delta}_{l+1, 1}\;{\delta}_{0, m_1} \;{\hat{e}}_0\right),
463     \end{split}
464     \label{eq:17}
465     \end{equation}
466     where ${Y_{l}}^{-m} = (-1)^m\;{{Y_{l}}^{m}}^* $ and
467     $ \int {{Y_{l}}^{m}}^*\;{Y_{l'}}^{m'}\;d\Omega =
468     \delta_{ll'}\delta_{mm'} $.
469     Non-vanishing values of equation \ref{eq:17} require $l = 0$,
470     therefore the value of $ m = 0 $. Since the values of $ m_1$ are -1,
471     1, and 0 then $m_2$ takes the values 1, -1, and 0, respectively
472     provided that $m = m_1 + m_2$. Equation \ref{eq:11} can therefore be
473     modified,
474     \begin{equation}
475     \begin{split}
476     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = &- \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;{Y^*}_{00}(\theta', \phi')[ C(1, 1, 0|-1,1,0)\;{\hat{e}_{-1}}{\hat{e}_{1}}\\ &+ C(1, 1, 0|-1,1,0)\;{\hat{e}_{1}}{\hat{e}_{-1}}+C(
477     1, 1, 0|0,0,0)\;{\hat{e}_{0}}{\hat{e}_{0}} ]\; d^3r'.
478     \end{split}
479     \label{eq:18}
480     \end{equation}
481     After substituting ${Y^*}_{00} = \frac{1}{\sqrt{4\pi}} $ and using the
482     values of the Clebsch-Gorden coefficients: $ C(1, 1, 0|-1,1,0) =
483     \frac{1}{\sqrt{3}}, \; C(1, 1, 0|-1,1,0)= \frac{1}{\sqrt{3}}$ and $
484     C(1, 1, 0|0,0,0) = -\frac{1}{\sqrt{3}}$ in equation \ref{eq:18} we
485     obtain,
486     \begin{equation}
487     \begin{split}
488     \int_{r<R} \vec{\nabla}\vec{E}\;d^3r &= -\sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\int \rho(r')\;d^3r'\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right)\\
489     &= - \sqrt{\frac{4\pi}{{3}}}\;\frac{1}{\epsilon_o}\;C_{total}\;\left({\hat{e}_{-1}}{\hat{e}_{1}}+{\hat{e}_{1}}{\hat{e}_{-1}}-{\hat{e}_{0}}{\hat{e}_{0}}\right).
490     \end{split}
491     \label{eq:19}
492     \end{equation}
493     Equation (\ref{eq:19}) gives the total gradient of the field over a
494     sphere due to the distribution of the charges. For quadrupolar fluids
495     the total charge within a sphere is zero, therefore
496     $ \int_{r<R} \vec{\nabla}\vec{E}\;d^3r = 0 $. Hence the quadrupolar
497     polarization produces zero net gradient of the field inside the
498     sphere.
499    
500     \section{Relation between quadrupolar polarization and applied field gradient}
501     In the presence of the field gradient $\partial_\alpha {E}_\beta $, a
502     non-vanishing quadrupolar polarization (quadrupole moment per unit
503     volume) $\bar{Q}_{\alpha\beta}$ will be induced in the entire volume
504     of a sample. The total field at any point $\vec{r}$ in the sample is
505     given by,
506     \begin{equation}
507     \partial_\alpha E_\beta(\vec{r}) = \partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{4\pi \epsilon_o}\int T_{\alpha\beta\gamma\delta}(\vec{r}-\vec{r'})\;\bar{Q}_{\gamma\delta}(\vec{r'})\; d^3r'
508     \label{eq:20}
509     \end{equation}
510     where $ T_{\alpha\beta\gamma\delta}$ is the quadrupole-quadrupole interaction tensor and $\partial_\alpha {E^o}_\beta$ is the applied field gradient. Now the total quadrupolar polarization can be written as,
511     \begin{equation}
512     \bar{Q}_{\alpha\beta}(\vec{r}) = \frac{1}{3}\delta_{\alpha\beta}\;Tr(\bar{Q})+\epsilon_o \bar{\chi^*}_Q\;\partial_\alpha E_\beta(\vec{r}),
513     \label{eq:21}
514     \end{equation}
515     where $\bar{\chi^*}_Q = \frac{\braket{{Q^2}} - \braket{Q}^2}{15\epsilon_o Vk_BT}$ is the susceptibility of the quadrupolar fluid. In terms of traceless quadrupole moment, equations (\ref{eq:20}) and (\ref{eq:21}) can be written as,
516     \begin{equation}
517     \frac{1}{3}\bar{\Theta}_{\alpha\beta}(\vec{r}) = \epsilon_o \bar{\chi^*}_Q \; \partial_\alpha E_\beta (\vec{r})= \epsilon_o \bar{\chi^*}_Q \left(\partial_\alpha {E^o}_\beta(\vec{r}) + \frac{1}{12\pi \epsilon_o}\int T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{\Theta}_{\gamma\delta}(\vec{r'})\; d^3r'\right)
518     \label{eq:22}
519     \end{equation}
520     where
521     $\Theta_{\alpha\beta} = 3Q_{\alpha\beta} - \delta_{\alpha\beta}Tr(Q)$
522     is the traceless quadrupole moment. The integral in equation
523     \ref{eq:22} can be divided into two parts, $|\vec{r}-\vec{r'}|< R $
524     and $|\vec{r}-\vec{r'}|> R $ where $R \rightarrow 0 $. Since the total
525     field gradient vanishes at the singularity (see Sec. \ref{singular}),
526     equation (\ref{eq:22}) can be written as,
527     \begin{equation}
528     \frac{1}{3}\bar{\Theta}_{\alpha\beta}(\vec{r}) = \epsilon_o
529     \bar{\chi^*}_Q \left(\partial_\alpha {E^o}_\beta(\vec{r}) +
530     \frac{1}{12\pi \epsilon_o}\lim_{R \to
531     0}\int\limits_{|\vec{r}-\vec{r'}|> R }
532     T_{\alpha\beta\gamma\delta}(|\vec{r}-\vec{r'}|)\;\bar{\Theta}_{\gamma\delta}(\vec{r'})\;
533     d^3r'\right).
534     \label{eq:23}
535     \end{equation}
536     For toroidal boundary conditions, both $\partial_\alpha E_\beta$ and
537     $\bar{\Theta}_{\alpha\beta}$ are uniform over the entire space. After
538     performing a Fourier transform (see the Appendix in the Neumann Paper),
539     we get,
540     \begin{equation}
541     \frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})=
542     \epsilon_o \bar{\chi^*}_Q \;\left[\widetilde{\partial_\alpha
543     {E^o}_\beta}(\vec{k})+ \frac{1}{12\pi
544     \epsilon_o}\;\widetilde{T}_{\alpha\beta\gamma\delta}(\vec{k})\;
545     \widetilde{\bar{\Theta}}_{\gamma\delta}(\vec{k})\right]
546     \label{eq:24}
547     \end{equation}
548     Since the quadrupolar polarization is in the direction of the applied
549     field
550     $\widetilde{\bar{\Theta}}_{\gamma\delta}(\vec{k}) =
551     \widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})$
552     and
553     $\widetilde{T}_{\alpha\beta\gamma\delta}(\vec{k}) =
554     \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})$.
555     (Note: This is true for orientational polarization but might not be
556     true for polarization due to changes in the atomic distribution. For
557     the orientational case, we need only to work with individual
558     components of the matrix.)
559     \begin{equation}
560     \begin{split}
561     \frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k}) &= \epsilon_o \bar{\chi^*}_Q \left[\widetilde{\partial_\alpha {E^o}_\beta}(\vec{k})+ \frac{1}{12\pi \epsilon_o}\widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})\;\widetilde{\bar{\Theta}}_{\alpha\beta}(\vec{k})\right] \\
562     &= \epsilon_o \bar{\chi^*}_Q\;\left(1-\frac{1}{4\pi} \bar{\chi^*}_Q
563     \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})\right)^{-1}
564     \widetilde{\partial_\alpha {E^o}_\beta}(\vec{k})
565     \end{split}
566     \label{eq:25}
567     \end{equation}
568     Matrix contraction of quadrupole-quadrupole tensor and quadrupole
569     moment gives the identity matrix. Therefore each component can be
570     treated as scalar. If the field gradient is homogeneous over the
571     entire volume, $\widetilde{\partial_ \alpha E_\beta} = 0 $ except at
572     $ \vec{k} = 0$, hence it is sufficient to know
573     $ \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{k})$ at $ \vec{k} =
574     0$. Therefore equation (\ref{eq:25}) can be written as,
575     \begin{equation}
576     \begin{split}
577     \frac{1}{3}\widetilde{\bar{\Theta}}_{\alpha\beta}({0}) &= \epsilon_o \bar{\chi^*}_Q\left(1-\frac{1}{4\pi} \bar{\chi^*}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1} \widetilde{\partial_\alpha {E^o}}_\beta({0})
578     \end{split}
579     \label{eq:26}
580     \end{equation}
581     where $ \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{0})$ can be evaluated as,
582     \begin{equation}
583     \widetilde{T}_{\alpha\beta\alpha\beta}({0}) = \int \widetilde{T}_{\alpha\beta\alpha\beta}(\vec{r})d^3r
584     \label{eq:27}
585     \end{equation}
586     The susceptibility is modified as,
587     \begin{equation}
588     \Xi_Q = \bar{\chi^*}_Q\left(1-\frac{1}{4\pi} \bar{\chi^*}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}.
589     \label{eq:28}
590     \end{equation}
591     In terms of traced quadrupole moment equation (\ref{eq:25}) can be written as,
592     \begin{equation}
593     {\bar{Q}}_{\alpha\beta} = \frac{1}{3}\delta_{\alpha\beta}\;Tr(\bar{Q}) + \epsilon_o\; \Xi_Q\; \widetilde{\partial_\alpha {E^o}}_\beta
594     \label{eq:29}
595     \end{equation}
596     From equations (\ref{eq:6}) (\ref{eq:28}) and (\ref{eq:29}) we get,
597     \begin{equation}
598     \begin{split}
599     &\frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\; =\; \bar{\chi^*}_Q\left(1-\frac{1}{4\pi} \bar{\chi^*}_Q\;\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}, \\
600     &\bar{\chi^*}_Q \;=\; \frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\left(1 + \frac{1}{4\pi} \frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right)^{-1}
601     \end{split}
602     \end{equation}
603    
604     \section{The effective dielectric constant of a quadrupolar fluid}
605     The dielectric constant of a material is a measure of the screening of
606     the electrostatic energy when a material is placed in the
607     electrostatic field. If $U_{field}(r)$ and $U_{int}(r)$ are the total
608     electrostatic energies of a system due to the applied field and
609     interaction of the quadrupole with the gradient of the field
610     respectively. The dielectric constant can be written as,
611     \begin{equation}
612     \epsilon = \frac{U_{field} + U_{int}}{U_{field}}
613     \label{eq:31}
614     \end{equation}
615     The total electrostatic energy due to the electric field can be written as,
616     \begin{equation}
617     U_{field}(r) = \int_V u(r)dv,
618     \label{eq:32}
619     \end{equation}
620     where $u(r)$ is the energy density for applied electric field, which
621     can be written as $\epsilon_o {|E|}^2/2$ and $V$ is the total volume
622     of the system. Similarly the interaction energy can be written as,
623     \begin{equation}
624     U_{int}(r) = \int_V \frac{N < q_{\alpha\beta} > \partial_\beta E_{\alpha} dv}{V} = \int_V \bar{Q}_{\alpha\beta}\partial_\beta E_{\alpha} dv,
625     \label{eq:33}
626     \end{equation}
627     where $\braket{q_{\alpha\beta}}$ is the Boltzmann average of a
628     quadrupole moment, N is the total number of quadrupoles in the system
629     and $\bar{Q}_{\alpha\beta}$ is the quadrupolar polarization. Now
630     average quadrupole moment can be expressed as linear function of the
631     gradient of the applied field as shown in below,
632     \begin{equation}
633     \braket{q_{\alpha\beta}} = \epsilon_{o} {\chi_o}^* \partial_\alpha E_\beta ,
634     \label{eq:34}
635     \end{equation}
636     where ${\chi_o}^* $ is the orientational susceptibility of a
637     molecule. In terms of quadrupolar polarization,
638     \begin{equation}
639     \bar{Q}_{\alpha\beta} = \frac{N \braket{q_{\alpha\beta}}}{V} = \epsilon_{o} \frac{N{\chi_o}^*}{V} \partial_\alpha E_\beta = \epsilon_{o}{\bar{\chi}_Q}^*\,\partial_\alpha E_\beta ,
640     \label{eq:35}
641     \end{equation}
642     here ${\bar{\chi}_Q}^* = (N/V){\chi_o}^*$ is a macroscopic quadrupolar
643     susceptibility of a quadrupolar system. In terms of the box quadrupole
644     moment it can be expressed as,
645     \begin{equation}
646     \bar{\chi^*}_Q \;=\; \frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\left(1 + \frac{1}{4\pi}\frac{(\braket{{Q^2}}_{en} - \braket{Q}_{en}^2)}{15 \epsilon_o Vk_BT}\widetilde{T}_{\alpha\beta\alpha\beta}({0})\right
647     )^{-1}.
648     \label{eq:36}
649     \end{equation}
650     Using above relations (equation (\ref{eq:32}\;-\;\ref{eq:35})) in the
651     equation (\ref{eq:31}) produce,
652     \begin{equation}
653     \epsilon = 1 + 2{\bar{\chi}_Q}^* \frac{\int_V |\partial_\alpha E_\beta|^2 dv}{\int_V{|E|}^2 dv}.
654     \end{equation}
655    
656 gezelter 4195 \newpage
657    
658 gezelter 4218 \appendix
659     \section{Point-multipolar interactions with a spatially-varying electric field}
660 gezelter 4195
661 gezelter 4218 We can treat objects $a$, $b$, and $c$ containing embedded collections
662     of charges. When we define the primitive moments, we sum over that
663     collections of charges using a local coordinate system within each
664     object. The point charge, dipole, and quadrupole for object $a$ are
665     given by $C_a$, $\mathbf{D}_a$, and $\mathsf{Q}_a$, respectively.
666     These are the primitive multipoles which can be expressed as a
667     distribution of charges,
668     \begin{align}
669     C_a =&\sum_{k \, \text{in }a} q_k , \label{eq:charge} \\
670     D_{a\alpha} =&\sum_{k \, \text{in }a} q_k r_{k\alpha}, \label{eq:dipole}\\
671     Q_{a\alpha\beta} =& \frac{1}{2} \sum_{k \, \text{in } a} q_k
672     r_{k\alpha} r_{k\beta} . \label{eq:quadrupole}
673     \end{align}
674     Note that the definition of the primitive quadrupole here differs from
675     the standard traceless form, and contains an additional Taylor-series
676     based factor of $1/2$. In Paper 1, we derived the forces and torques
677     each object exerts on the others.
678    
679     Here we must also consider an external electric field that varies in
680     space: $\mathbf E(\mathbf r)$. Each of the local charges $q_k$ in
681     object $a$ will then experience a slightly different field. This
682     electric field can be expanded in a Taylor series around the local
683     origin of each object. A different Taylor series expansion is carried
684     out for each object.
685    
686     For a particular charge $q_k$, the electric field at that site's
687     position is given by:
688     \begin{equation}
689     E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
690     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
691     r_{k \varepsilon} + ...
692     \end{equation}
693     Note that the electric field is always evaluated at the origin of the
694     objects, and treating each object using point multipoles simplifies
695     this greatly.
696    
697     To find the force exerted on object $a$ by the electric field, one
698     takes the electric field expression, and multiplies it by $q_k$, and
699     then sum over all charges in $a$:
700    
701     \begin{align}
702     F_\gamma &= \sum_{k \textrm{~in~} a} q_k \lbrace E_\gamma + \nabla_\delta E_\gamma r_{k \delta}
703     + \frac {1}{2} \nabla_\delta \nabla_\varepsilon E_\gamma r_{k \delta}
704     r_{k \varepsilon} + ... \rbrace \\
705     &= C_a E_\gamma + D_{a \delta} \nabla_\delta E_\gamma
706     + Q_{a \delta \varepsilon} \nabla_\delta \nabla_\varepsilon E_\gamma +
707     ...
708     \end{align}
709    
710     Similarly, the torque exerted by the field on $a$ can be expressed as
711     \begin{align}
712     \tau_\alpha &= \sum_{k \textrm{~in~} a} (\mathbf r_k \times q_k \mathbf E)_\alpha \\
713     & = \sum_{k \textrm{~in~} a} \epsilon_{\alpha \beta \gamma} q_k
714     r_{k\beta} E_\gamma(\mathbf r_k) \\
715     & = \epsilon_{\alpha \beta \gamma} D_\beta E_\gamma
716     + 2 \epsilon_{\alpha \beta \gamma} Q_{\beta \delta} \nabla_\delta
717     E_\gamma + ...
718     \end{align}
719    
720     The last term is essentially identical with form derived by Torres del
721     Castillo and M\'{e}ndez Garrido,\cite{Torres-del-Castillo:2006uo} although their derivation
722     utilized a traceless form of the quadrupole that is different than the
723     primitive definition in use here. We note that the Levi-Civita symbol
724     can be eliminated by utilizing the matrix cross product in an
725     identical form as in Ref. \onlinecite{Smith98}:
726     \begin{equation}
727     \left[\mathsf{A} \times \mathsf{B}\right]_\alpha = \sum_\beta
728     \left[\mathsf{A}_{\alpha+1,\beta} \mathsf{B}_{\alpha+2,\beta}
729     -\mathsf{A}_{\alpha+2,\beta} \mathsf{B}_{\alpha+1,\beta}
730     \right]
731     \label{eq:matrixCross}
732     \end{equation}
733     where $\alpha+1$ and $\alpha+2$ are regarded as cyclic permuations of
734     the matrix indices. In table \ref{tab:UFT} we give compact
735     expressions for how the multipole sites interact with an external
736     field that has exhibits spatial variations.
737    
738     \begin{table}
739     \caption{Potential energy $(U)$, force $(\mathbf{F})$, and torque
740     $(\mathbf{\tau})$ expressions for a multipolar site embedded in an
741     electric field with spatial variations, $\mathbf{E}(\mathbf{r})$.
742     \label{tab:UFT}}
743     \begin{tabular}{r|ccc}
744     & Charge & Dipole & Quadrupole \\ \hline
745     $U$ & $C \phi(\mathbf{r})$ & $-\mathbf{D} \cdot \mathbf{E}(\mathbf{r})$ & $- \mathsf{Q}:\nabla \mathbf{E}(\mathbf{r})$ \\
746     $\mathbf{F}$ & $C \mathbf{E}(\mathbf{r})$ & $+\mathbf{D} \cdot \nabla \mathbf{E}(\mathbf{r})$ & $+\mathsf{Q} : \nabla\nabla\mathbf{E}(\mathbf{r})$ \\
747     $\mathbf{\tau}$ & & $\mathbf{D} \times \mathbf{E}(\mathbf{r})$ & $+2 \mathsf{Q} \times \nabla \mathbf{E}(\mathbf{r})$
748     \end{tabular}
749     \end{table}
750    
751    
752     \newpage
753    
754 gezelter 4195 \bibliography{multipole}
755    
756     \end{document}