| 1 | #include <iostream> | 
| 2 | #include <stdlib.h> | 
| 3 |  | 
| 4 | #include "Atom.hpp" | 
| 5 | #include "SRI.hpp" | 
| 6 | #include "LRI.hpp" | 
| 7 | #include "Integrator.hpp" | 
| 8 | #include "SimInfo.hpp" | 
| 9 | #include "Thermo.hpp" | 
| 10 | #include "ReadWrite.hpp" | 
| 11 |  | 
| 12 | extern "C"{ | 
| 13 |  | 
| 14 | void v_constrain_a_( double &dt, int &n_atoms, double* mass, | 
| 15 | double* Rx, double* Ry, double* Rz, | 
| 16 | double* Vx, double* Vy, double* Vz, | 
| 17 | double* Fx, double* Fy, double* Fz, | 
| 18 | int &n_constrained, double *constr_sqr, | 
| 19 | int* constr_i, int* constr_j, | 
| 20 | double &box_x, double &box_y, double &box_z ); | 
| 21 |  | 
| 22 | void v_constrain_b_( double &dt, int &n_atoms, double* mass, | 
| 23 | double* Rx, double* Ry, double* Rz, | 
| 24 | double* Vx, double* Vy, double* Vz, | 
| 25 | double* Fx, double* Fy, double* Fz, | 
| 26 | double &Kinetic, | 
| 27 | int &n_constrained, double *constr_sqr, | 
| 28 | int* constr_i, int* constr_j, | 
| 29 | double &box_x, double &box_y, double &box_z ); | 
| 30 | } | 
| 31 |  | 
| 32 |  | 
| 33 | Verlet::Verlet( SimInfo &info, ForceField* the_ff ){ | 
| 34 |  | 
| 35 | // get what information we need from the SimInfo object | 
| 36 |  | 
| 37 | entry_plug = &info; | 
| 38 | myFF = the_ff; | 
| 39 |  | 
| 40 |  | 
| 41 | c_natoms = info.n_atoms; | 
| 42 | c_atoms = info.atoms; | 
| 43 | c_sr_interactions = info.sr_interactions; | 
| 44 | longRange = info.longRange; | 
| 45 | c_n_SRI = info.n_SRI; | 
| 46 | c_is_constrained = 0; | 
| 47 | c_box_x = info.box_x; | 
| 48 | c_box_y = info.box_y; | 
| 49 | c_box_z = info.box_z; | 
| 50 |  | 
| 51 | // give a little love back to the SimInfo object | 
| 52 |  | 
| 53 | if( info.the_integrator != NULL ) delete info.the_integrator; | 
| 54 | info.the_integrator = this; | 
| 55 |  | 
| 56 | // the rest are initialization issues | 
| 57 |  | 
| 58 | is_first = 1; // let the integrate method know when the first call is | 
| 59 |  | 
| 60 | // mass array setup | 
| 61 |  | 
| 62 | c_mass = new double[c_natoms]; | 
| 63 |  | 
| 64 | for(int i = 0; i < c_natoms; i++){ | 
| 65 | c_mass[i] = c_atoms[i]->getMass(); | 
| 66 | } | 
| 67 |  | 
| 68 | // check for constraints | 
| 69 |  | 
| 70 | Constraint *temp_con; | 
| 71 | Constraint *dummy_plug; | 
| 72 | temp_con = new Constraint[c_n_SRI]; | 
| 73 |  | 
| 74 | c_n_constrained = 0; | 
| 75 | int constrained = 0; | 
| 76 |  | 
| 77 | for(int i = 0; i < c_n_SRI; i++){ | 
| 78 |  | 
| 79 | constrained = c_sr_interactions[i]->is_constrained(); | 
| 80 |  | 
| 81 | if(constrained){ | 
| 82 |  | 
| 83 | dummy_plug = c_sr_interactions[i]->get_constraint(); | 
| 84 | temp_con[c_n_constrained].set_a( dummy_plug->get_a() ); | 
| 85 | temp_con[c_n_constrained].set_b( dummy_plug->get_b() ); | 
| 86 | temp_con[c_n_constrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 87 |  | 
| 88 | c_n_constrained++; | 
| 89 | constrained = 0; | 
| 90 | } | 
| 91 | } | 
| 92 |  | 
| 93 | if(c_n_constrained > 0){ | 
| 94 |  | 
| 95 | c_is_constrained = 1; | 
| 96 | c_constrained_i = new int[c_n_constrained]; | 
| 97 | c_constrained_j = new int[c_n_constrained]; | 
| 98 | c_constrained_dsqr = new double[c_n_constrained]; | 
| 99 |  | 
| 100 | for( int i = 0; i < c_n_constrained; i++){ | 
| 101 |  | 
| 102 | /* add 1 to the index for the fortran arrays. */ | 
| 103 |  | 
| 104 | c_constrained_i[i] = temp_con[i].get_a() + 1; | 
| 105 | c_constrained_j[i] = temp_con[i].get_b() + 1; | 
| 106 | c_constrained_dsqr[i] = temp_con[i].get_dsqr(); | 
| 107 | } | 
| 108 | } | 
| 109 |  | 
| 110 | delete[] temp_con; | 
| 111 | } | 
| 112 |  | 
| 113 |  | 
| 114 | Verlet::~Verlet(){ | 
| 115 |  | 
| 116 | if( c_is_constrained ){ | 
| 117 |  | 
| 118 | delete[] c_constrained_i; | 
| 119 | delete[] c_constrained_j; | 
| 120 | delete[] c_constrained_dsqr; | 
| 121 | } | 
| 122 |  | 
| 123 | delete[] c_mass; | 
| 124 | c_mass = 0; | 
| 125 | } | 
| 126 |  | 
| 127 |  | 
| 128 | void Verlet::integrate( void ){ | 
| 129 |  | 
| 130 | int i, j; /* loop counters */ | 
| 131 |  | 
| 132 | double kE; | 
| 133 |  | 
| 134 | double *Rx = new double[c_natoms]; | 
| 135 | double *Ry = new double[c_natoms]; | 
| 136 | double *Rz = new double[c_natoms]; | 
| 137 |  | 
| 138 | double *Vx = new double[c_natoms]; | 
| 139 | double *Vy = new double[c_natoms]; | 
| 140 | double *Vz = new double[c_natoms]; | 
| 141 |  | 
| 142 | double *Fx = new double[c_natoms]; | 
| 143 | double *Fy = new double[c_natoms]; | 
| 144 | double *Fz = new double[c_natoms]; | 
| 145 |  | 
| 146 | int time; | 
| 147 |  | 
| 148 | double dt = entry_plug->dt; | 
| 149 | double runTime = entry_plug->run_time; | 
| 150 | double sampleTime = entry_plug->sampleTime; | 
| 151 | double statusTime = entry_plug->statusTime; | 
| 152 | double thermalTime = entry_plug->thermalTime; | 
| 153 |  | 
| 154 | int n_loops  = (int)( runTime / dt ); | 
| 155 | int sample_n = (int)( sampleTime / dt ); | 
| 156 | int status_n = (int)( statusTime / dt ); | 
| 157 | int vel_n    = (int)( thermalTime / dt ); | 
| 158 |  | 
| 159 | Thermo *tStats = new Thermo( entry_plug ); | 
| 160 |  | 
| 161 | StatWriter*  e_out    = new StatWriter( entry_plug ); | 
| 162 | DumpWriter*  dump_out = new DumpWriter( entry_plug ); | 
| 163 |  | 
| 164 | // the first time integrate is called, the forces need to be initialized | 
| 165 |  | 
| 166 |  | 
| 167 | myFF->doForces(); | 
| 168 |  | 
| 169 | if( entry_plug->setTemp ){ | 
| 170 | tStats->velocitize(); | 
| 171 | } | 
| 172 |  | 
| 173 | dump_out->writeDump( 0.0 ); | 
| 174 | e_out->writeStat( 0.0 ); | 
| 175 |  | 
| 176 | if( c_is_constrained ){ | 
| 177 | for(i = 0; i < n_loops; i++){ | 
| 178 |  | 
| 179 | // fill R, V, and F arrays and RATTLE in fortran | 
| 180 |  | 
| 181 | for( j=0; j<c_natoms; j++ ){ | 
| 182 |  | 
| 183 | Rx[j] = c_atoms[j]->getX(); | 
| 184 | Ry[j] = c_atoms[j]->getY(); | 
| 185 | Rz[j] = c_atoms[j]->getZ(); | 
| 186 |  | 
| 187 | Vx[j] = c_atoms[j]->get_vx(); | 
| 188 | Vy[j] = c_atoms[j]->get_vy(); | 
| 189 | Vz[j] = c_atoms[j]->get_vz(); | 
| 190 |  | 
| 191 | Fx[j] = c_atoms[j]->getFx(); | 
| 192 | Fy[j] = c_atoms[j]->getFy(); | 
| 193 | Fz[j] = c_atoms[j]->getFz(); | 
| 194 |  | 
| 195 | } | 
| 196 |  | 
| 197 | v_constrain_a_( dt, c_natoms, c_mass, Rx, Ry, Rz, Vx, Vy, Vz, | 
| 198 | Fx, Fy, Fz, | 
| 199 | c_n_constrained, c_constrained_dsqr, | 
| 200 | c_constrained_i, c_constrained_j, | 
| 201 | c_box_x, c_box_y, c_box_z ); | 
| 202 |  | 
| 203 | for( j=0; j<c_natoms; j++ ){ | 
| 204 |  | 
| 205 | c_atoms[j]->setX(Rx[j]); | 
| 206 | c_atoms[j]->setY(Ry[j]); | 
| 207 | c_atoms[j]->setZ(Rz[j]); | 
| 208 |  | 
| 209 | c_atoms[j]->set_vx(Vx[j]); | 
| 210 | c_atoms[j]->set_vy(Vy[j]); | 
| 211 | c_atoms[j]->set_vz(Vz[j]); | 
| 212 | } | 
| 213 |  | 
| 214 | // calculate the forces | 
| 215 |  | 
| 216 | myFF->doForces(); | 
| 217 |  | 
| 218 | // finish the constrain move ( same as above. ) | 
| 219 |  | 
| 220 | for( j=0; j<c_natoms; j++ ){ | 
| 221 |  | 
| 222 | Rx[j] = c_atoms[j]->getX(); | 
| 223 | Ry[j] = c_atoms[j]->getY(); | 
| 224 | Rz[j] = c_atoms[j]->getZ(); | 
| 225 |  | 
| 226 | Vx[j] = c_atoms[j]->get_vx(); | 
| 227 | Vy[j] = c_atoms[j]->get_vy(); | 
| 228 | Vz[j] = c_atoms[j]->get_vz(); | 
| 229 |  | 
| 230 | Fx[j] = c_atoms[j]->getFx(); | 
| 231 | Fy[j] = c_atoms[j]->getFy(); | 
| 232 | Fz[j] = c_atoms[j]->getFz(); | 
| 233 | } | 
| 234 |  | 
| 235 | v_constrain_b_( dt, c_natoms, c_mass, Rx, Ry, Rz, Vx, Vy, Vz, | 
| 236 | Fx, Fy, Fz, | 
| 237 | kE, c_n_constrained, c_constrained_dsqr, | 
| 238 | c_constrained_i, c_constrained_j, | 
| 239 | c_box_x, c_box_y, c_box_z ); | 
| 240 |  | 
| 241 | for( j=0; j<c_natoms; j++ ){ | 
| 242 |  | 
| 243 | c_atoms[j]->setX(Rx[j]); | 
| 244 | c_atoms[j]->setY(Ry[j]); | 
| 245 | c_atoms[j]->setZ(Rz[j]); | 
| 246 |  | 
| 247 | c_atoms[j]->set_vx(Vx[j]); | 
| 248 | c_atoms[j]->set_vy(Vy[j]); | 
| 249 | c_atoms[j]->set_vz(Vz[j]); | 
| 250 | } | 
| 251 |  | 
| 252 | time = i + 1; | 
| 253 |  | 
| 254 | if( entry_plug->setTemp ){ | 
| 255 | if( !(time % vel_n) ) tStats->velocitize(); | 
| 256 | } | 
| 257 | if( !(time % sample_n) ) dump_out->writeDump( time * dt ); | 
| 258 | if( !(time % status_n) ) e_out->writeStat( time * dt ); | 
| 259 | } | 
| 260 | } | 
| 261 | else{ | 
| 262 | for(i = 0; i < n_loops; i++){ | 
| 263 |  | 
| 264 | move_a( dt ); | 
| 265 |  | 
| 266 | // calculate the forces | 
| 267 |  | 
| 268 | myFF->doForces(); | 
| 269 |  | 
| 270 | // complete the verlet move | 
| 271 |  | 
| 272 | move_b( dt ); | 
| 273 |  | 
| 274 | time = i + 1; | 
| 275 |  | 
| 276 | if( entry_plug->setTemp ){ | 
| 277 | if( !(time % vel_n) ) tStats->velocitize(); | 
| 278 | } | 
| 279 | if( !(time % sample_n) ) dump_out->writeDump( time * dt ); | 
| 280 | if( !(time % status_n) ) e_out->writeStat( time * dt ); | 
| 281 | } | 
| 282 | } | 
| 283 |  | 
| 284 | dump_out->writeFinal(); | 
| 285 |  | 
| 286 | delete dump_out; | 
| 287 | delete e_out; | 
| 288 |  | 
| 289 | } | 
| 290 |  | 
| 291 |  | 
| 292 | void Verlet::move_a(double dt){ | 
| 293 |  | 
| 294 | const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2 | 
| 295 |  | 
| 296 | double qx, qy, qz; | 
| 297 | double vx, vy, vz; | 
| 298 | int ma; | 
| 299 | double h_dt = 0.5 * dt; | 
| 300 | double h_dt2 = h_dt * dt; | 
| 301 |  | 
| 302 | for( ma = 0; ma < c_natoms; ma++){ | 
| 303 |  | 
| 304 | qx = c_atoms[ma]->getX() + dt * c_atoms[ma]->get_vx() + | 
| 305 | h_dt2 * c_atoms[ma]->getFx() * e_convert / c_atoms[ma]->getMass(); | 
| 306 | qy = c_atoms[ma]->getY() + dt * c_atoms[ma]->get_vy() + | 
| 307 | h_dt2 * c_atoms[ma]->getFy() * e_convert / c_atoms[ma]->getMass(); | 
| 308 | qz = c_atoms[ma]->getZ() + dt * c_atoms[ma]->get_vz() + | 
| 309 | h_dt2 * c_atoms[ma]->getFz() * e_convert / c_atoms[ma]->getMass(); | 
| 310 |  | 
| 311 | vx = c_atoms[ma]->get_vx() + | 
| 312 | h_dt * c_atoms[ma]->getFx() * e_convert / c_atoms[ma]->getMass(); | 
| 313 | vy = c_atoms[ma]->get_vy() + | 
| 314 | h_dt * c_atoms[ma]->getFy() * e_convert / c_atoms[ma]->getMass(); | 
| 315 | vz = c_atoms[ma]->get_vz() + | 
| 316 | h_dt * c_atoms[ma]->getFz() * e_convert / c_atoms[ma]->getMass(); | 
| 317 |  | 
| 318 | c_atoms[ma]->setX(qx); | 
| 319 | c_atoms[ma]->setY(qy); | 
| 320 | c_atoms[ma]->setZ(qz); | 
| 321 |  | 
| 322 | c_atoms[ma]->set_vx(vx); | 
| 323 | c_atoms[ma]->set_vy(vy); | 
| 324 | c_atoms[ma]->set_vz(vz); | 
| 325 | } | 
| 326 | } | 
| 327 |  | 
| 328 | void Verlet::move_b( double dt ){ | 
| 329 |  | 
| 330 | const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2 | 
| 331 |  | 
| 332 | double vx, vy, vz; | 
| 333 | int mb; | 
| 334 | double h_dt = 0.5 * dt; | 
| 335 |  | 
| 336 |  | 
| 337 | for( mb = 0; mb < c_natoms; mb++){ | 
| 338 |  | 
| 339 | vx = c_atoms[mb]->get_vx() + | 
| 340 | h_dt * c_atoms[mb]->getFx() * e_convert / c_atoms[mb]->getMass(); | 
| 341 | vy = c_atoms[mb]->get_vy() + | 
| 342 | h_dt * c_atoms[mb]->getFy() * e_convert / c_atoms[mb]->getMass(); | 
| 343 | vz = c_atoms[mb]->get_vz() + | 
| 344 | h_dt * c_atoms[mb]->getFz() * e_convert / c_atoms[mb]->getMass(); | 
| 345 |  | 
| 346 | c_atoms[mb]->set_vx(vx); | 
| 347 | c_atoms[mb]->set_vy(vy); | 
| 348 | c_atoms[mb]->set_vz(vz); | 
| 349 | } | 
| 350 | } |