| 1 | mmeineke | 10 | #include <iostream> | 
| 2 |  |  | #include <stdlib.h> | 
| 3 |  |  |  | 
| 4 |  |  | #include "Atom.hpp" | 
| 5 |  |  | #include "SRI.hpp" | 
| 6 |  |  | #include "LRI.hpp" | 
| 7 |  |  | #include "Integrator.hpp" | 
| 8 |  |  | #include "SimInfo.hpp" | 
| 9 |  |  | #include "Thermo.hpp" | 
| 10 |  |  | #include "ReadWrite.hpp" | 
| 11 |  |  |  | 
| 12 |  |  | extern "C"{ | 
| 13 |  |  |  | 
| 14 |  |  | void v_constrain_a_( double &dt, int &n_atoms, double* mass, | 
| 15 |  |  | double* Rx, double* Ry, double* Rz, | 
| 16 |  |  | double* Vx, double* Vy, double* Vz, | 
| 17 |  |  | double* Fx, double* Fy, double* Fz, | 
| 18 |  |  | int &n_constrained, double *constr_sqr, | 
| 19 |  |  | int* constr_i, int* constr_j, | 
| 20 |  |  | double &box_x, double &box_y, double &box_z ); | 
| 21 |  |  |  | 
| 22 |  |  | void v_constrain_b_( double &dt, int &n_atoms, double* mass, | 
| 23 |  |  | double* Rx, double* Ry, double* Rz, | 
| 24 |  |  | double* Vx, double* Vy, double* Vz, | 
| 25 |  |  | double* Fx, double* Fy, double* Fz, | 
| 26 |  |  | double &Kinetic, | 
| 27 |  |  | int &n_constrained, double *constr_sqr, | 
| 28 |  |  | int* constr_i, int* constr_j, | 
| 29 |  |  | double &box_x, double &box_y, double &box_z ); | 
| 30 |  |  | } | 
| 31 |  |  |  | 
| 32 |  |  |  | 
| 33 | chuckv | 249 | Verlet::Verlet( SimInfo &info, ForceFields* the_ff ){ | 
| 34 | mmeineke | 10 |  | 
| 35 |  |  | // get what information we need from the SimInfo object | 
| 36 |  |  |  | 
| 37 |  |  | entry_plug = &info; | 
| 38 | chuckv | 248 | myFF = the_ff; | 
| 39 | mmeineke | 10 |  | 
| 40 | chuckv | 248 |  | 
| 41 | mmeineke | 10 | c_natoms = info.n_atoms; | 
| 42 |  |  | c_atoms = info.atoms; | 
| 43 |  |  | c_sr_interactions = info.sr_interactions; | 
| 44 |  |  | c_n_SRI = info.n_SRI; | 
| 45 |  |  | c_is_constrained = 0; | 
| 46 |  |  | c_box_x = info.box_x; | 
| 47 |  |  | c_box_y = info.box_y; | 
| 48 |  |  | c_box_z = info.box_z; | 
| 49 |  |  |  | 
| 50 |  |  | // give a little love back to the SimInfo object | 
| 51 |  |  |  | 
| 52 |  |  | if( info.the_integrator != NULL ) delete info.the_integrator; | 
| 53 |  |  | info.the_integrator = this; | 
| 54 |  |  |  | 
| 55 |  |  | // the rest are initialization issues | 
| 56 |  |  |  | 
| 57 |  |  | is_first = 1; // let the integrate method know when the first call is | 
| 58 |  |  |  | 
| 59 |  |  | // mass array setup | 
| 60 |  |  |  | 
| 61 |  |  | c_mass = new double[c_natoms]; | 
| 62 |  |  |  | 
| 63 |  |  | for(int i = 0; i < c_natoms; i++){ | 
| 64 |  |  | c_mass[i] = c_atoms[i]->getMass(); | 
| 65 |  |  | } | 
| 66 |  |  |  | 
| 67 |  |  | // check for constraints | 
| 68 |  |  |  | 
| 69 |  |  | Constraint *temp_con; | 
| 70 |  |  | Constraint *dummy_plug; | 
| 71 |  |  | temp_con = new Constraint[c_n_SRI]; | 
| 72 |  |  |  | 
| 73 |  |  | c_n_constrained = 0; | 
| 74 |  |  | int constrained = 0; | 
| 75 |  |  |  | 
| 76 |  |  | for(int i = 0; i < c_n_SRI; i++){ | 
| 77 |  |  |  | 
| 78 |  |  | constrained = c_sr_interactions[i]->is_constrained(); | 
| 79 |  |  |  | 
| 80 |  |  | if(constrained){ | 
| 81 |  |  |  | 
| 82 |  |  | dummy_plug = c_sr_interactions[i]->get_constraint(); | 
| 83 |  |  | temp_con[c_n_constrained].set_a( dummy_plug->get_a() ); | 
| 84 |  |  | temp_con[c_n_constrained].set_b( dummy_plug->get_b() ); | 
| 85 |  |  | temp_con[c_n_constrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 86 |  |  |  | 
| 87 |  |  | c_n_constrained++; | 
| 88 |  |  | constrained = 0; | 
| 89 |  |  | } | 
| 90 |  |  | } | 
| 91 |  |  |  | 
| 92 |  |  | if(c_n_constrained > 0){ | 
| 93 |  |  |  | 
| 94 |  |  | c_is_constrained = 1; | 
| 95 |  |  | c_constrained_i = new int[c_n_constrained]; | 
| 96 |  |  | c_constrained_j = new int[c_n_constrained]; | 
| 97 |  |  | c_constrained_dsqr = new double[c_n_constrained]; | 
| 98 |  |  |  | 
| 99 |  |  | for( int i = 0; i < c_n_constrained; i++){ | 
| 100 |  |  |  | 
| 101 |  |  | /* add 1 to the index for the fortran arrays. */ | 
| 102 |  |  |  | 
| 103 |  |  | c_constrained_i[i] = temp_con[i].get_a() + 1; | 
| 104 |  |  | c_constrained_j[i] = temp_con[i].get_b() + 1; | 
| 105 |  |  | c_constrained_dsqr[i] = temp_con[i].get_dsqr(); | 
| 106 |  |  | } | 
| 107 |  |  | } | 
| 108 |  |  |  | 
| 109 |  |  | delete[] temp_con; | 
| 110 |  |  | } | 
| 111 |  |  |  | 
| 112 |  |  |  | 
| 113 |  |  | Verlet::~Verlet(){ | 
| 114 |  |  |  | 
| 115 |  |  | if( c_is_constrained ){ | 
| 116 |  |  |  | 
| 117 |  |  | delete[] c_constrained_i; | 
| 118 |  |  | delete[] c_constrained_j; | 
| 119 |  |  | delete[] c_constrained_dsqr; | 
| 120 |  |  | } | 
| 121 |  |  |  | 
| 122 |  |  | delete[] c_mass; | 
| 123 |  |  | c_mass = 0; | 
| 124 |  |  | } | 
| 125 |  |  |  | 
| 126 |  |  |  | 
| 127 |  |  | void Verlet::integrate( void ){ | 
| 128 |  |  |  | 
| 129 |  |  | int i, j; /* loop counters */ | 
| 130 | chuckv | 253 | int calcPot; | 
| 131 |  |  |  | 
| 132 | mmeineke | 10 | double kE; | 
| 133 |  |  |  | 
| 134 |  |  | double *Rx = new double[c_natoms]; | 
| 135 |  |  | double *Ry = new double[c_natoms]; | 
| 136 |  |  | double *Rz = new double[c_natoms]; | 
| 137 |  |  |  | 
| 138 |  |  | double *Vx = new double[c_natoms]; | 
| 139 |  |  | double *Vy = new double[c_natoms]; | 
| 140 |  |  | double *Vz = new double[c_natoms]; | 
| 141 |  |  |  | 
| 142 |  |  | double *Fx = new double[c_natoms]; | 
| 143 |  |  | double *Fy = new double[c_natoms]; | 
| 144 |  |  | double *Fz = new double[c_natoms]; | 
| 145 |  |  |  | 
| 146 | mmeineke | 25 | int time; | 
| 147 |  |  |  | 
| 148 | mmeineke | 10 | double dt = entry_plug->dt; | 
| 149 |  |  | double runTime = entry_plug->run_time; | 
| 150 |  |  | double sampleTime = entry_plug->sampleTime; | 
| 151 |  |  | double statusTime = entry_plug->statusTime; | 
| 152 |  |  | double thermalTime = entry_plug->thermalTime; | 
| 153 |  |  |  | 
| 154 |  |  | int n_loops  = (int)( runTime / dt ); | 
| 155 |  |  | int sample_n = (int)( sampleTime / dt ); | 
| 156 |  |  | int status_n = (int)( statusTime / dt ); | 
| 157 |  |  | int vel_n    = (int)( thermalTime / dt ); | 
| 158 |  |  |  | 
| 159 |  |  | Thermo *tStats = new Thermo( entry_plug ); | 
| 160 |  |  |  | 
| 161 |  |  | StatWriter*  e_out    = new StatWriter( entry_plug ); | 
| 162 |  |  | DumpWriter*  dump_out = new DumpWriter( entry_plug ); | 
| 163 |  |  |  | 
| 164 |  |  | // the first time integrate is called, the forces need to be initialized | 
| 165 |  |  |  | 
| 166 |  |  |  | 
| 167 | chuckv | 253 | myFF->doForces(1); | 
| 168 | mmeineke | 10 |  | 
| 169 |  |  | if( entry_plug->setTemp ){ | 
| 170 |  |  | tStats->velocitize(); | 
| 171 |  |  | } | 
| 172 |  |  |  | 
| 173 | mmeineke | 25 | dump_out->writeDump( 0.0 ); | 
| 174 | chuckv | 253 |  | 
| 175 | mmeineke | 25 | e_out->writeStat( 0.0 ); | 
| 176 | chuckv | 253 | calcPot = 0; | 
| 177 | mmeineke | 25 |  | 
| 178 | mmeineke | 10 | if( c_is_constrained ){ | 
| 179 |  |  | for(i = 0; i < n_loops; i++){ | 
| 180 |  |  |  | 
| 181 |  |  | // fill R, V, and F arrays and RATTLE in fortran | 
| 182 |  |  |  | 
| 183 |  |  | for( j=0; j<c_natoms; j++ ){ | 
| 184 |  |  |  | 
| 185 |  |  | Rx[j] = c_atoms[j]->getX(); | 
| 186 |  |  | Ry[j] = c_atoms[j]->getY(); | 
| 187 |  |  | Rz[j] = c_atoms[j]->getZ(); | 
| 188 |  |  |  | 
| 189 |  |  | Vx[j] = c_atoms[j]->get_vx(); | 
| 190 |  |  | Vy[j] = c_atoms[j]->get_vy(); | 
| 191 |  |  | Vz[j] = c_atoms[j]->get_vz(); | 
| 192 |  |  |  | 
| 193 |  |  | Fx[j] = c_atoms[j]->getFx(); | 
| 194 |  |  | Fy[j] = c_atoms[j]->getFy(); | 
| 195 |  |  | Fz[j] = c_atoms[j]->getFz(); | 
| 196 |  |  |  | 
| 197 |  |  | } | 
| 198 |  |  |  | 
| 199 |  |  | v_constrain_a_( dt, c_natoms, c_mass, Rx, Ry, Rz, Vx, Vy, Vz, | 
| 200 |  |  | Fx, Fy, Fz, | 
| 201 |  |  | c_n_constrained, c_constrained_dsqr, | 
| 202 |  |  | c_constrained_i, c_constrained_j, | 
| 203 |  |  | c_box_x, c_box_y, c_box_z ); | 
| 204 |  |  |  | 
| 205 |  |  | for( j=0; j<c_natoms; j++ ){ | 
| 206 |  |  |  | 
| 207 |  |  | c_atoms[j]->setX(Rx[j]); | 
| 208 |  |  | c_atoms[j]->setY(Ry[j]); | 
| 209 |  |  | c_atoms[j]->setZ(Rz[j]); | 
| 210 |  |  |  | 
| 211 |  |  | c_atoms[j]->set_vx(Vx[j]); | 
| 212 |  |  | c_atoms[j]->set_vy(Vy[j]); | 
| 213 |  |  | c_atoms[j]->set_vz(Vz[j]); | 
| 214 |  |  | } | 
| 215 |  |  |  | 
| 216 |  |  | // calculate the forces | 
| 217 |  |  |  | 
| 218 | chuckv | 253 | myFF->doForces(calcPot); | 
| 219 | mmeineke | 10 |  | 
| 220 |  |  | // finish the constrain move ( same as above. ) | 
| 221 |  |  |  | 
| 222 |  |  | for( j=0; j<c_natoms; j++ ){ | 
| 223 |  |  |  | 
| 224 |  |  | Rx[j] = c_atoms[j]->getX(); | 
| 225 |  |  | Ry[j] = c_atoms[j]->getY(); | 
| 226 |  |  | Rz[j] = c_atoms[j]->getZ(); | 
| 227 |  |  |  | 
| 228 |  |  | Vx[j] = c_atoms[j]->get_vx(); | 
| 229 |  |  | Vy[j] = c_atoms[j]->get_vy(); | 
| 230 |  |  | Vz[j] = c_atoms[j]->get_vz(); | 
| 231 |  |  |  | 
| 232 |  |  | Fx[j] = c_atoms[j]->getFx(); | 
| 233 |  |  | Fy[j] = c_atoms[j]->getFy(); | 
| 234 |  |  | Fz[j] = c_atoms[j]->getFz(); | 
| 235 |  |  | } | 
| 236 |  |  |  | 
| 237 |  |  | v_constrain_b_( dt, c_natoms, c_mass, Rx, Ry, Rz, Vx, Vy, Vz, | 
| 238 |  |  | Fx, Fy, Fz, | 
| 239 |  |  | kE, c_n_constrained, c_constrained_dsqr, | 
| 240 |  |  | c_constrained_i, c_constrained_j, | 
| 241 |  |  | c_box_x, c_box_y, c_box_z ); | 
| 242 |  |  |  | 
| 243 |  |  | for( j=0; j<c_natoms; j++ ){ | 
| 244 |  |  |  | 
| 245 |  |  | c_atoms[j]->setX(Rx[j]); | 
| 246 |  |  | c_atoms[j]->setY(Ry[j]); | 
| 247 |  |  | c_atoms[j]->setZ(Rz[j]); | 
| 248 |  |  |  | 
| 249 |  |  | c_atoms[j]->set_vx(Vx[j]); | 
| 250 |  |  | c_atoms[j]->set_vy(Vy[j]); | 
| 251 |  |  | c_atoms[j]->set_vz(Vz[j]); | 
| 252 |  |  | } | 
| 253 |  |  |  | 
| 254 | mmeineke | 25 | time = i + 1; | 
| 255 |  |  |  | 
| 256 | mmeineke | 10 | if( entry_plug->setTemp ){ | 
| 257 | mmeineke | 25 | if( !(time % vel_n) ) tStats->velocitize(); | 
| 258 | mmeineke | 10 | } | 
| 259 | mmeineke | 25 | if( !(time % sample_n) ) dump_out->writeDump( time * dt ); | 
| 260 | chuckv | 253 | if( !((time+1) % status_n) ) calcPot = 1; | 
| 261 |  |  | if( !(time % status_n) ){ e_out->writeStat( time * dt ); calcPot = 0; } | 
| 262 | mmeineke | 10 | } | 
| 263 |  |  | } | 
| 264 |  |  | else{ | 
| 265 |  |  | for(i = 0; i < n_loops; i++){ | 
| 266 |  |  |  | 
| 267 |  |  | move_a( dt ); | 
| 268 |  |  |  | 
| 269 |  |  | // calculate the forces | 
| 270 |  |  |  | 
| 271 | chuckv | 253 | myFF->doForces(calcPot); | 
| 272 | mmeineke | 10 |  | 
| 273 |  |  | // complete the verlet move | 
| 274 |  |  |  | 
| 275 |  |  | move_b( dt ); | 
| 276 |  |  |  | 
| 277 | mmeineke | 25 | time = i + 1; | 
| 278 |  |  |  | 
| 279 | mmeineke | 10 | if( entry_plug->setTemp ){ | 
| 280 | mmeineke | 25 | if( !(time % vel_n) ) tStats->velocitize(); | 
| 281 | mmeineke | 10 | } | 
| 282 | chuckv | 253 | if( !(time % sample_n) )  dump_out->writeDump( time * dt ); | 
| 283 |  |  | if( !((time+1) % status_n) ) calcPot = 1; | 
| 284 |  |  | if( !(time % status_n) ){ e_out->writeStat( time * dt ); calcPot = 0; } | 
| 285 | mmeineke | 10 | } | 
| 286 |  |  | } | 
| 287 |  |  |  | 
| 288 |  |  | dump_out->writeFinal(); | 
| 289 |  |  |  | 
| 290 |  |  | delete dump_out; | 
| 291 |  |  | delete e_out; | 
| 292 |  |  |  | 
| 293 |  |  | } | 
| 294 |  |  |  | 
| 295 |  |  |  | 
| 296 |  |  | void Verlet::move_a(double dt){ | 
| 297 |  |  |  | 
| 298 |  |  | const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2 | 
| 299 |  |  |  | 
| 300 |  |  | double qx, qy, qz; | 
| 301 |  |  | double vx, vy, vz; | 
| 302 |  |  | int ma; | 
| 303 |  |  | double h_dt = 0.5 * dt; | 
| 304 |  |  | double h_dt2 = h_dt * dt; | 
| 305 |  |  |  | 
| 306 |  |  | for( ma = 0; ma < c_natoms; ma++){ | 
| 307 |  |  |  | 
| 308 |  |  | qx = c_atoms[ma]->getX() + dt * c_atoms[ma]->get_vx() + | 
| 309 |  |  | h_dt2 * c_atoms[ma]->getFx() * e_convert / c_atoms[ma]->getMass(); | 
| 310 |  |  | qy = c_atoms[ma]->getY() + dt * c_atoms[ma]->get_vy() + | 
| 311 |  |  | h_dt2 * c_atoms[ma]->getFy() * e_convert / c_atoms[ma]->getMass(); | 
| 312 |  |  | qz = c_atoms[ma]->getZ() + dt * c_atoms[ma]->get_vz() + | 
| 313 |  |  | h_dt2 * c_atoms[ma]->getFz() * e_convert / c_atoms[ma]->getMass(); | 
| 314 |  |  |  | 
| 315 |  |  | vx = c_atoms[ma]->get_vx() + | 
| 316 |  |  | h_dt * c_atoms[ma]->getFx() * e_convert / c_atoms[ma]->getMass(); | 
| 317 |  |  | vy = c_atoms[ma]->get_vy() + | 
| 318 |  |  | h_dt * c_atoms[ma]->getFy() * e_convert / c_atoms[ma]->getMass(); | 
| 319 |  |  | vz = c_atoms[ma]->get_vz() + | 
| 320 |  |  | h_dt * c_atoms[ma]->getFz() * e_convert / c_atoms[ma]->getMass(); | 
| 321 |  |  |  | 
| 322 |  |  | c_atoms[ma]->setX(qx); | 
| 323 |  |  | c_atoms[ma]->setY(qy); | 
| 324 |  |  | c_atoms[ma]->setZ(qz); | 
| 325 |  |  |  | 
| 326 |  |  | c_atoms[ma]->set_vx(vx); | 
| 327 |  |  | c_atoms[ma]->set_vy(vy); | 
| 328 |  |  | c_atoms[ma]->set_vz(vz); | 
| 329 |  |  | } | 
| 330 |  |  | } | 
| 331 |  |  |  | 
| 332 |  |  | void Verlet::move_b( double dt ){ | 
| 333 |  |  |  | 
| 334 |  |  | const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2 | 
| 335 |  |  |  | 
| 336 |  |  | double vx, vy, vz; | 
| 337 |  |  | int mb; | 
| 338 |  |  | double h_dt = 0.5 * dt; | 
| 339 |  |  |  | 
| 340 |  |  |  | 
| 341 |  |  | for( mb = 0; mb < c_natoms; mb++){ | 
| 342 |  |  |  | 
| 343 |  |  | vx = c_atoms[mb]->get_vx() + | 
| 344 |  |  | h_dt * c_atoms[mb]->getFx() * e_convert / c_atoms[mb]->getMass(); | 
| 345 |  |  | vy = c_atoms[mb]->get_vy() + | 
| 346 |  |  | h_dt * c_atoms[mb]->getFy() * e_convert / c_atoms[mb]->getMass(); | 
| 347 |  |  | vz = c_atoms[mb]->get_vz() + | 
| 348 |  |  | h_dt * c_atoms[mb]->getFz() * e_convert / c_atoms[mb]->getMass(); | 
| 349 |  |  |  | 
| 350 |  |  | c_atoms[mb]->set_vx(vx); | 
| 351 |  |  | c_atoms[mb]->set_vy(vy); | 
| 352 |  |  | c_atoms[mb]->set_vz(vz); | 
| 353 |  |  | } | 
| 354 |  |  | } |