1 |
|
#include <cmath> |
2 |
+ |
#include <iostream> |
3 |
+ |
using namespace std; |
4 |
|
|
5 |
+ |
#ifdef IS_MPI |
6 |
+ |
#include <mpi.h> |
7 |
+ |
#include <mpi++.h> |
8 |
+ |
#endif //is_mpi |
9 |
+ |
|
10 |
|
#include "Thermo.hpp" |
11 |
|
#include "SRI.hpp" |
12 |
|
#include "LRI.hpp" |
13 |
|
#include "Integrator.hpp" |
14 |
|
|
15 |
+ |
#define BASE_SEED 123456789 |
16 |
|
|
17 |
+ |
Thermo::Thermo( SimInfo* the_entry_plug ) { |
18 |
+ |
entry_plug = the_entry_plug; |
19 |
+ |
int baseSeed = BASE_SEED; |
20 |
+ |
|
21 |
+ |
cerr << "creating thermo stream\n"; |
22 |
+ |
gaussStream = new gaussianSPRNG( baseSeed ); |
23 |
+ |
cerr << "created thermo stream\n"; |
24 |
+ |
} |
25 |
+ |
|
26 |
+ |
Thermo::~Thermo(){ |
27 |
+ |
delete gaussStream; |
28 |
+ |
} |
29 |
+ |
|
30 |
|
double Thermo::getKinetic(){ |
31 |
|
|
32 |
|
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
38 |
|
DirectionalAtom *dAtom; |
39 |
|
|
40 |
|
int n_atoms; |
41 |
+ |
double kinetic_global; |
42 |
|
Atom** atoms; |
43 |
+ |
|
44 |
|
|
45 |
|
n_atoms = entry_plug->n_atoms; |
46 |
|
atoms = entry_plug->atoms; |
47 |
|
|
48 |
|
kinetic = 0.0; |
49 |
+ |
kinetic_global = 0.0; |
50 |
|
for( kl=0; kl < n_atoms; kl++ ){ |
51 |
|
|
52 |
|
vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); |
68 |
|
+ (jz2 / dAtom->getIzz()); |
69 |
|
} |
70 |
|
} |
71 |
< |
|
71 |
> |
#ifdef IS_MPI |
72 |
> |
MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM); |
73 |
> |
kinetic = kinetic_global; |
74 |
> |
#endif //is_mpi |
75 |
> |
|
76 |
|
kinetic = kinetic * 0.5 / e_convert; |
77 |
|
|
78 |
|
return kinetic; |
81 |
|
double Thermo::getPotential(){ |
82 |
|
|
83 |
|
double potential; |
84 |
+ |
double potential_global; |
85 |
|
int el, nSRI; |
86 |
|
SRI** sris; |
87 |
|
|
89 |
|
nSRI = entry_plug->n_SRI; |
90 |
|
|
91 |
|
potential = 0.0; |
92 |
+ |
potential_global = 0.0; |
93 |
+ |
potential += entry_plug->lrPot; |
94 |
|
|
64 |
– |
potential += entry_plug->longRange->get_potential();; |
65 |
– |
|
95 |
|
// std::cerr << "long range potential: " << potential << "\n"; |
67 |
– |
|
96 |
|
for( el=0; el<nSRI; el++ ){ |
97 |
|
|
98 |
|
potential += sris[el]->get_potential(); |
99 |
|
} |
100 |
|
|
101 |
+ |
// Get total potential for entire system from MPI. |
102 |
+ |
#ifdef IS_MPI |
103 |
+ |
MPI::COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM); |
104 |
+ |
potential = potential_global; |
105 |
+ |
#endif // is_mpi |
106 |
+ |
|
107 |
|
return potential; |
108 |
|
} |
109 |
|
|
117 |
|
|
118 |
|
double Thermo::getTemperature(){ |
119 |
|
|
120 |
< |
const double kb = 1.88E-3; // boltzman's constant in kcal/(mol K) |
120 |
> |
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
121 |
|
double temperature; |
122 |
|
|
123 |
|
int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
129 |
|
|
130 |
|
double Thermo::getPressure(){ |
131 |
|
|
132 |
< |
const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm |
133 |
< |
const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa |
134 |
< |
const double conv_A_m = 1.0E-10; //convert A -> m |
132 |
> |
// const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm |
133 |
> |
// const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa |
134 |
> |
// const double conv_A_m = 1.0E-10; //convert A -> m |
135 |
|
|
136 |
|
return 0.0; |
137 |
|
} |
179 |
|
|
180 |
|
// picks random velocities from a gaussian distribution |
181 |
|
// centered on vbar |
182 |
< |
|
182 |
> |
#ifndef USE_SPRNG |
183 |
> |
/* If we are using mpi, we need to use the SPRNG random |
184 |
> |
generator. The non drand48 generator will just repeat |
185 |
> |
the same numbers for every node creating a non-gaussian |
186 |
> |
distribution for the simulation. drand48 is fine for the |
187 |
> |
single processor version of the code, but SPRNG should |
188 |
> |
still be preferred for consistency. |
189 |
> |
*/ |
190 |
> |
|
191 |
> |
#ifdef IS_MPI |
192 |
> |
#error "SPRNG random number generator must be used for MPI" |
193 |
> |
#else |
194 |
> |
// warning "Using drand48 for random number generation" |
195 |
> |
#endif // is_mpi |
196 |
> |
|
197 |
|
x = drand48(); |
198 |
|
y = drand48(); |
199 |
|
vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
205 |
|
x = drand48(); |
206 |
|
y = drand48(); |
207 |
|
vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
208 |
< |
|
208 |
> |
|
209 |
> |
#endif // use_spring |
210 |
> |
|
211 |
> |
#ifdef USE_SPRNG |
212 |
> |
vx = vbar * gaussStream->getGaussian(); |
213 |
> |
vy = vbar * gaussStream->getGaussian(); |
214 |
> |
vz = vbar * gaussStream->getGaussian(); |
215 |
> |
#endif // use_spring |
216 |
> |
|
217 |
|
atoms[vr]->set_vx( vx ); |
218 |
|
atoms[vr]->set_vy( vy ); |
219 |
|
atoms[vr]->set_vz( vz ); |
261 |
|
if( atoms[i]->isDirectional() ){ |
262 |
|
|
263 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
264 |
+ |
|
265 |
+ |
#ifndef USE_SPRNG |
266 |
+ |
|
267 |
+ |
#ifdef IS_MPI |
268 |
+ |
#error "SPRNG random number generator must be used for MPI" |
269 |
+ |
#else // is_mpi |
270 |
+ |
//warning "Using drand48 for random number generation" |
271 |
+ |
#endif // is_MPI |
272 |
|
|
273 |
|
vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); |
274 |
|
x = drand48(); |
284 |
|
x = drand48(); |
285 |
|
y = drand48(); |
286 |
|
jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); |
287 |
+ |
|
288 |
+ |
#else //use_sprng |
289 |
+ |
|
290 |
+ |
vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); |
291 |
+ |
jx = vbar * gaussStream->getGaussian(); |
292 |
+ |
|
293 |
+ |
vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); |
294 |
+ |
jy = vbar * gaussStream->getGaussian(); |
295 |
+ |
|
296 |
+ |
vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); |
297 |
+ |
jz = vbar * gaussStream->getGaussian(); |
298 |
+ |
#endif //use_sprng |
299 |
|
|
300 |
|
dAtom->setJx( jx ); |
301 |
|
dAtom->setJy( jy ); |