| 1 | mmeineke | 10 | #include <cmath> | 
| 2 |  |  |  | 
| 3 |  |  | #include "Thermo.hpp" | 
| 4 |  |  | #include "SRI.hpp" | 
| 5 |  |  | #include "LRI.hpp" | 
| 6 |  |  | #include "Integrator.hpp" | 
| 7 |  |  |  | 
| 8 |  |  |  | 
| 9 |  |  | double Thermo::getKinetic(){ | 
| 10 |  |  |  | 
| 11 |  |  | const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 12 |  |  | double vx2, vy2, vz2; | 
| 13 |  |  | double kinetic, v_sqr; | 
| 14 |  |  | int kl; | 
| 15 |  |  | double jx2, jy2, jz2; // the square of the angular momentums | 
| 16 |  |  |  | 
| 17 |  |  | DirectionalAtom *dAtom; | 
| 18 |  |  |  | 
| 19 |  |  | int n_atoms; | 
| 20 |  |  | Atom** atoms; | 
| 21 |  |  |  | 
| 22 |  |  | n_atoms = entry_plug->n_atoms; | 
| 23 |  |  | atoms = entry_plug->atoms; | 
| 24 |  |  |  | 
| 25 |  |  | kinetic = 0.0; | 
| 26 |  |  | for( kl=0; kl < n_atoms; kl++ ){ | 
| 27 |  |  |  | 
| 28 |  |  | vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); | 
| 29 |  |  | vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy(); | 
| 30 |  |  | vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz(); | 
| 31 |  |  |  | 
| 32 |  |  | v_sqr = vx2 + vy2 + vz2; | 
| 33 |  |  | kinetic += atoms[kl]->getMass() * v_sqr; | 
| 34 |  |  |  | 
| 35 |  |  | if( atoms[kl]->isDirectional() ){ | 
| 36 |  |  |  | 
| 37 |  |  | dAtom = (DirectionalAtom *)atoms[kl]; | 
| 38 |  |  |  | 
| 39 |  |  | jx2 = dAtom->getJx() * dAtom->getJx(); | 
| 40 |  |  | jy2 = dAtom->getJy() * dAtom->getJy(); | 
| 41 |  |  | jz2 = dAtom->getJz() * dAtom->getJz(); | 
| 42 |  |  |  | 
| 43 |  |  | kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy()) | 
| 44 |  |  | + (jz2 / dAtom->getIzz()); | 
| 45 |  |  | } | 
| 46 |  |  | } | 
| 47 |  |  |  | 
| 48 |  |  | kinetic = kinetic * 0.5 / e_convert; | 
| 49 |  |  |  | 
| 50 |  |  | return kinetic; | 
| 51 |  |  | } | 
| 52 |  |  |  | 
| 53 |  |  | double Thermo::getPotential(){ | 
| 54 |  |  |  | 
| 55 |  |  | double potential; | 
| 56 |  |  | int el, nSRI; | 
| 57 |  |  | SRI** sris; | 
| 58 |  |  |  | 
| 59 |  |  | sris = entry_plug->sr_interactions; | 
| 60 |  |  | nSRI = entry_plug->n_SRI; | 
| 61 |  |  |  | 
| 62 |  |  | potential = 0.0; | 
| 63 |  |  |  | 
| 64 |  |  | potential += entry_plug->longRange->get_potential();; | 
| 65 |  |  |  | 
| 66 |  |  | // std::cerr << "long range potential: " << potential << "\n"; | 
| 67 |  |  |  | 
| 68 |  |  | for( el=0; el<nSRI; el++ ){ | 
| 69 |  |  |  | 
| 70 |  |  | potential += sris[el]->get_potential(); | 
| 71 |  |  | } | 
| 72 |  |  |  | 
| 73 |  |  | return potential; | 
| 74 |  |  | } | 
| 75 |  |  |  | 
| 76 |  |  | double Thermo::getTotalE(){ | 
| 77 |  |  |  | 
| 78 |  |  | double total; | 
| 79 |  |  |  | 
| 80 |  |  | total = this->getKinetic() + this->getPotential(); | 
| 81 |  |  | return total; | 
| 82 |  |  | } | 
| 83 |  |  |  | 
| 84 |  |  | double Thermo::getTemperature(){ | 
| 85 |  |  |  | 
| 86 | mmeineke | 25 | const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) | 
| 87 | mmeineke | 10 | double temperature; | 
| 88 |  |  |  | 
| 89 |  |  | int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented | 
| 90 |  |  | - entry_plug->n_constraints - 3; | 
| 91 |  |  |  | 
| 92 |  |  | temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); | 
| 93 |  |  | return temperature; | 
| 94 |  |  | } | 
| 95 |  |  |  | 
| 96 |  |  | double Thermo::getPressure(){ | 
| 97 |  |  |  | 
| 98 | mmeineke | 117 | //  const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm | 
| 99 |  |  | // const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa | 
| 100 |  |  | //  const double conv_A_m = 1.0E-10; //convert A -> m | 
| 101 | mmeineke | 10 |  | 
| 102 |  |  | return 0.0; | 
| 103 |  |  | } | 
| 104 |  |  |  | 
| 105 |  |  | void Thermo::velocitize() { | 
| 106 |  |  |  | 
| 107 |  |  | double x,y; | 
| 108 |  |  | double vx, vy, vz; | 
| 109 |  |  | double jx, jy, jz; | 
| 110 |  |  | int i, vr, vd; // velocity randomizer loop counters | 
| 111 |  |  | double vdrift[3]; | 
| 112 |  |  | double mtot = 0.0; | 
| 113 |  |  | double vbar; | 
| 114 |  |  | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 115 |  |  | double av2; | 
| 116 |  |  | double kebar; | 
| 117 |  |  | int ndf; // number of degrees of freedom | 
| 118 |  |  | int ndfRaw; // the raw number of degrees of freedom | 
| 119 |  |  | int n_atoms; | 
| 120 |  |  | Atom** atoms; | 
| 121 |  |  | DirectionalAtom* dAtom; | 
| 122 |  |  | double temperature; | 
| 123 |  |  | int n_oriented; | 
| 124 |  |  | int n_constraints; | 
| 125 |  |  |  | 
| 126 |  |  | atoms         = entry_plug->atoms; | 
| 127 |  |  | n_atoms       = entry_plug->n_atoms; | 
| 128 |  |  | temperature   = entry_plug->target_temp; | 
| 129 |  |  | n_oriented    = entry_plug->n_oriented; | 
| 130 |  |  | n_constraints = entry_plug->n_constraints; | 
| 131 |  |  |  | 
| 132 |  |  |  | 
| 133 |  |  | ndfRaw = 3 * n_atoms + 3 * n_oriented; | 
| 134 |  |  | ndf = ndfRaw - n_constraints - 3; | 
| 135 |  |  | kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); | 
| 136 |  |  |  | 
| 137 |  |  | for(vr = 0; vr < n_atoms; vr++){ | 
| 138 |  |  |  | 
| 139 |  |  | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 140 |  |  |  | 
| 141 |  |  | av2 = 2.0 * kebar / atoms[vr]->getMass(); | 
| 142 |  |  | vbar = sqrt( av2 ); | 
| 143 |  |  |  | 
| 144 |  |  | //     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); | 
| 145 |  |  |  | 
| 146 |  |  | // picks random velocities from a gaussian distribution | 
| 147 |  |  | // centered on vbar | 
| 148 |  |  |  | 
| 149 |  |  | x = drand48(); | 
| 150 |  |  | y = drand48(); | 
| 151 |  |  | vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 152 |  |  |  | 
| 153 |  |  | x = drand48(); | 
| 154 |  |  | y = drand48(); | 
| 155 |  |  | vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 156 |  |  |  | 
| 157 |  |  | x = drand48(); | 
| 158 |  |  | y = drand48(); | 
| 159 |  |  | vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 160 |  |  |  | 
| 161 |  |  | atoms[vr]->set_vx( vx ); | 
| 162 |  |  | atoms[vr]->set_vy( vy ); | 
| 163 |  |  | atoms[vr]->set_vz( vz ); | 
| 164 |  |  | } | 
| 165 |  |  |  | 
| 166 |  |  | //  Corrects for the center of mass drift. | 
| 167 |  |  | // sums all the momentum and divides by total mass. | 
| 168 |  |  |  | 
| 169 |  |  | mtot = 0.0; | 
| 170 |  |  | vdrift[0] = 0.0; | 
| 171 |  |  | vdrift[1] = 0.0; | 
| 172 |  |  | vdrift[2] = 0.0; | 
| 173 |  |  | for(vd = 0; vd < n_atoms; vd++){ | 
| 174 |  |  |  | 
| 175 |  |  | vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); | 
| 176 |  |  | vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); | 
| 177 |  |  | vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); | 
| 178 |  |  |  | 
| 179 |  |  | mtot = mtot + atoms[vd]->getMass(); | 
| 180 |  |  | } | 
| 181 |  |  |  | 
| 182 |  |  | for (vd = 0; vd < 3; vd++) { | 
| 183 |  |  | vdrift[vd] = vdrift[vd] / mtot; | 
| 184 |  |  | } | 
| 185 |  |  |  | 
| 186 |  |  | for(vd = 0; vd < n_atoms; vd++){ | 
| 187 |  |  |  | 
| 188 |  |  | vx = atoms[vd]->get_vx(); | 
| 189 |  |  | vy = atoms[vd]->get_vy(); | 
| 190 |  |  | vz = atoms[vd]->get_vz(); | 
| 191 |  |  |  | 
| 192 |  |  |  | 
| 193 |  |  | vx -= vdrift[0]; | 
| 194 |  |  | vy -= vdrift[1]; | 
| 195 |  |  | vz -= vdrift[2]; | 
| 196 |  |  |  | 
| 197 |  |  | atoms[vd]->set_vx(vx); | 
| 198 |  |  | atoms[vd]->set_vy(vy); | 
| 199 |  |  | atoms[vd]->set_vz(vz); | 
| 200 |  |  | } | 
| 201 |  |  | if( n_oriented ){ | 
| 202 |  |  |  | 
| 203 |  |  | for( i=0; i<n_atoms; i++ ){ | 
| 204 |  |  |  | 
| 205 |  |  | if( atoms[i]->isDirectional() ){ | 
| 206 |  |  |  | 
| 207 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 208 |  |  |  | 
| 209 |  |  | vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); | 
| 210 |  |  | x = drand48(); | 
| 211 |  |  | y = drand48(); | 
| 212 |  |  | jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 213 |  |  |  | 
| 214 |  |  | vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); | 
| 215 |  |  | x = drand48(); | 
| 216 |  |  | y = drand48(); | 
| 217 |  |  | jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 218 |  |  |  | 
| 219 |  |  | vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); | 
| 220 |  |  | x = drand48(); | 
| 221 |  |  | y = drand48(); | 
| 222 |  |  | jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 223 |  |  |  | 
| 224 |  |  | dAtom->setJx( jx ); | 
| 225 |  |  | dAtom->setJy( jy ); | 
| 226 |  |  | dAtom->setJz( jz ); | 
| 227 |  |  | } | 
| 228 |  |  | } | 
| 229 |  |  | } | 
| 230 |  |  | } |