| 1 | 
#include <iostream> | 
| 2 | 
#include <cstdlib> | 
| 3 | 
 | 
| 4 | 
#include "Integrator.hpp" | 
| 5 | 
#include "Thermo.hpp" | 
| 6 | 
#include "ReadWrite.hpp" | 
| 7 | 
#include "simError.h" | 
| 8 | 
 | 
| 9 | 
extern "C"{ | 
| 10 | 
   | 
| 11 | 
  void v_constrain_a_( double &dt, int &n_atoms, double* mass,  | 
| 12 | 
                       double* Rx, double* Ry, double* Rz,  | 
| 13 | 
                       double* Vx, double* Vy, double* Vz,  | 
| 14 | 
                       double* Fx, double* Fy, double* Fz,  | 
| 15 | 
                       int &n_constrained, double *constr_sqr, | 
| 16 | 
                       int* constr_i, int* constr_j,  | 
| 17 | 
                       double &box_x, double &box_y, double &box_z ); | 
| 18 | 
 | 
| 19 | 
  void v_constrain_b_( double &dt, int &n_atoms, double* mass,  | 
| 20 | 
                       double* Rx, double* Ry, double* Rz,  | 
| 21 | 
                       double* Vx, double* Vy, double* Vz,  | 
| 22 | 
                       double* Fx, double* Fy, double* Fz,  | 
| 23 | 
                       double &Kinetic,  | 
| 24 | 
                       int &n_constrained, double *constr_sqr, | 
| 25 | 
                       int* constr_i, int* constr_j,  | 
| 26 | 
                       double &box_x, double &box_y, double &box_z ); | 
| 27 | 
} | 
| 28 | 
 | 
| 29 | 
 | 
| 30 | 
 | 
| 31 | 
 | 
| 32 | 
Symplectic::Symplectic( SimInfo* the_entry_plug ){ | 
| 33 | 
  entry_plug = the_entry_plug; | 
| 34 | 
  isFirst = 1; | 
| 35 | 
 | 
| 36 | 
  srInteractions = entry_plug->sr_interactions; | 
| 37 | 
  longRange      =       entry_plug->longRange; | 
| 38 | 
  nSRI           =           entry_plug->n_SRI; | 
| 39 | 
 | 
| 40 | 
  // give a little love back to the SimInfo object | 
| 41 | 
   | 
| 42 | 
  if( entry_plug->the_integrator != NULL ) delete entry_plug->the_integrator; | 
| 43 | 
  entry_plug->the_integrator = this; | 
| 44 | 
 | 
| 45 | 
  // grab the masses | 
| 46 | 
 | 
| 47 | 
  mass = new double[entry_plug->n_atoms]; | 
| 48 | 
  for(int i = 0; i < entry_plug->n_atoms; i++){ | 
| 49 | 
    mass[i] = entry_plug->atoms[i]->getMass(); | 
| 50 | 
  } | 
| 51 | 
 | 
| 52 | 
  | 
| 53 | 
  // check for constraints | 
| 54 | 
 | 
| 55 | 
  is_constrained = 0; | 
| 56 | 
 | 
| 57 | 
  Constraint *temp_con; | 
| 58 | 
  Constraint *dummy_plug; | 
| 59 | 
  temp_con = new Constraint[nSRI]; | 
| 60 | 
  n_constrained = 0; | 
| 61 | 
  int constrained = 0; | 
| 62 | 
   | 
| 63 | 
  for(int i = 0; i < nSRI; i++){ | 
| 64 | 
     | 
| 65 | 
    constrained = srInteractions[i]->is_constrained(); | 
| 66 | 
     | 
| 67 | 
    if(constrained){ | 
| 68 | 
       | 
| 69 | 
      dummy_plug = srInteractions[i]->get_constraint(); | 
| 70 | 
      temp_con[n_constrained].set_a( dummy_plug->get_a() ); | 
| 71 | 
      temp_con[n_constrained].set_b( dummy_plug->get_b() ); | 
| 72 | 
      temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 73 | 
 | 
| 74 | 
      n_constrained++; | 
| 75 | 
      constrained = 0; | 
| 76 | 
    } | 
| 77 | 
  } | 
| 78 | 
 | 
| 79 | 
  if(n_constrained > 0){ | 
| 80 | 
     | 
| 81 | 
    is_constrained = 1; | 
| 82 | 
    constrained_i = new int[n_constrained]; | 
| 83 | 
    constrained_j = new int[n_constrained]; | 
| 84 | 
    constrained_dsqr = new double[n_constrained]; | 
| 85 | 
     | 
| 86 | 
    for( int i = 0; i < n_constrained; i++){ | 
| 87 | 
       | 
| 88 | 
      /* add 1 to the index for the fortran arrays. */ | 
| 89 | 
 | 
| 90 | 
      constrained_i[i] = temp_con[i].get_a() + 1; | 
| 91 | 
      constrained_j[i] = temp_con[i].get_b() + 1; | 
| 92 | 
      constrained_dsqr[i] = temp_con[i].get_dsqr(); | 
| 93 | 
    } | 
| 94 | 
  } | 
| 95 | 
   | 
| 96 | 
  delete[] temp_con; | 
| 97 | 
} | 
| 98 | 
 | 
| 99 | 
Symplectic::~Symplectic() { | 
| 100 | 
   | 
| 101 | 
  if( n_constrained ){ | 
| 102 | 
    delete[] constrained_i; | 
| 103 | 
    delete[] constrained_j; | 
| 104 | 
    delete[] constrained_dsqr; | 
| 105 | 
  } | 
| 106 | 
   | 
| 107 | 
} | 
| 108 | 
 | 
| 109 | 
 | 
| 110 | 
void Symplectic::integrate( void ){ | 
| 111 | 
 | 
| 112 | 
  const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2 | 
| 113 | 
 | 
| 114 | 
  int i, j;                         // loop counters | 
| 115 | 
  int nAtoms = entry_plug->n_atoms; // the number of atoms | 
| 116 | 
  double kE = 0.0;                  // the kinetic energy   | 
| 117 | 
  double rot_kE; | 
| 118 | 
  double trans_kE; | 
| 119 | 
  int tl;                        // the time loop conter | 
| 120 | 
  double dt2;                       // half the dt | 
| 121 | 
 | 
| 122 | 
  double vx, vy, vz;    // the velocities | 
| 123 | 
//  double vx2, vy2, vz2; // the square of the velocities | 
| 124 | 
  double rx, ry, rz;    // the postitions | 
| 125 | 
   | 
| 126 | 
  double ji[3];   // the body frame angular momentum | 
| 127 | 
  double jx2, jy2, jz2; // the square of the angular momentums | 
| 128 | 
  double Tb[3];   // torque in the body frame | 
| 129 | 
  double angle;   // the angle through which to rotate the rotation matrix | 
| 130 | 
  double A[3][3]; // the rotation matrix | 
| 131 | 
 | 
| 132 | 
  int time; | 
| 133 | 
 | 
| 134 | 
  double dt          = entry_plug->dt; | 
| 135 | 
  double runTime     = entry_plug->run_time; | 
| 136 | 
  double sampleTime  = entry_plug->sampleTime; | 
| 137 | 
  double statusTime  = entry_plug->statusTime; | 
| 138 | 
  double thermalTime = entry_plug->thermalTime; | 
| 139 | 
 | 
| 140 | 
  int n_loops  = (int)( runTime / dt ); | 
| 141 | 
  int sample_n = (int)( sampleTime / dt ); | 
| 142 | 
  int status_n = (int)( statusTime / dt ); | 
| 143 | 
  int vel_n    = (int)( thermalTime / dt ); | 
| 144 | 
 | 
| 145 | 
  Thermo *tStats = new Thermo( entry_plug ); | 
| 146 | 
 | 
| 147 | 
  StatWriter*  e_out    = new StatWriter( entry_plug ); | 
| 148 | 
  DumpWriter*  dump_out = new DumpWriter( entry_plug ); | 
| 149 | 
 | 
| 150 | 
  strcpy( checkPointMsg, "Fast foward!" ); | 
| 151 | 
  MPIcheckPoint(); | 
| 152 | 
 | 
| 153 | 
  strcpy( checkPointMsg, "Fast fowarding!" ); | 
| 154 | 
  MPIcheckPoint(); | 
| 155 | 
 | 
| 156 | 
  Atom** atoms = entry_plug->atoms; | 
| 157 | 
  DirectionalAtom* dAtom; | 
| 158 | 
  dt2 = 0.5 * dt; | 
| 159 | 
 | 
| 160 | 
  // initialize the forces the before the first step | 
| 161 | 
 | 
| 162 | 
   | 
| 163 | 
  for(i = 0; i < nAtoms; i++){ | 
| 164 | 
    atoms[i]->zeroForces(); | 
| 165 | 
  } | 
| 166 | 
   | 
| 167 | 
  for(i = 0; i < nSRI; i++){ | 
| 168 | 
     | 
| 169 | 
    srInteractions[i]->calc_forces(); | 
| 170 | 
  } | 
| 171 | 
   | 
| 172 | 
  longRange->calc_forces(); | 
| 173 | 
 | 
| 174 | 
  if( entry_plug->setTemp ){ | 
| 175 | 
     | 
| 176 | 
    tStats->velocitize(); | 
| 177 | 
  } | 
| 178 | 
   | 
| 179 | 
  dump_out->writeDump( 0.0 ); | 
| 180 | 
  e_out->writeStat( 0.0 ); | 
| 181 | 
 | 
| 182 | 
  if( n_constrained ){ | 
| 183 | 
 | 
| 184 | 
    double *Rx = new double[nAtoms]; | 
| 185 | 
    double *Ry = new double[nAtoms]; | 
| 186 | 
    double *Rz = new double[nAtoms]; | 
| 187 | 
     | 
| 188 | 
    double *Vx = new double[nAtoms]; | 
| 189 | 
    double *Vy = new double[nAtoms]; | 
| 190 | 
    double *Vz = new double[nAtoms]; | 
| 191 | 
     | 
| 192 | 
    double *Fx = new double[nAtoms]; | 
| 193 | 
    double *Fy = new double[nAtoms]; | 
| 194 | 
    double *Fz = new double[nAtoms]; | 
| 195 | 
     | 
| 196 | 
 | 
| 197 | 
    for( tl=0; tl < n_loops; tl++ ){ | 
| 198 | 
       | 
| 199 | 
      for( j=0; j<nAtoms; j++ ){ | 
| 200 | 
 | 
| 201 | 
        Rx[j] = atoms[j]->getX(); | 
| 202 | 
        Ry[j] = atoms[j]->getY(); | 
| 203 | 
        Rz[j] = atoms[j]->getZ(); | 
| 204 | 
 | 
| 205 | 
        Vx[j] = atoms[j]->get_vx(); | 
| 206 | 
        Vy[j] = atoms[j]->get_vy(); | 
| 207 | 
        Vz[j] = atoms[j]->get_vz(); | 
| 208 | 
 | 
| 209 | 
        Fx[j] = atoms[j]->getFx(); | 
| 210 | 
        Fy[j] = atoms[j]->getFy(); | 
| 211 | 
        Fz[j] = atoms[j]->getFz(); | 
| 212 | 
 | 
| 213 | 
      } | 
| 214 | 
         | 
| 215 | 
      v_constrain_a_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,  | 
| 216 | 
                      Fx, Fy, Fz, | 
| 217 | 
                      n_constrained, constrained_dsqr,  | 
| 218 | 
                      constrained_i, constrained_j, | 
| 219 | 
                      entry_plug->box_x,  | 
| 220 | 
                      entry_plug->box_y,  | 
| 221 | 
                      entry_plug->box_z ); | 
| 222 | 
       | 
| 223 | 
      for( j=0; j<nAtoms; j++ ){ | 
| 224 | 
 | 
| 225 | 
        atoms[j]->setX(Rx[j]); | 
| 226 | 
        atoms[j]->setY(Ry[j]); | 
| 227 | 
        atoms[j]->setZ(Rz[j]); | 
| 228 | 
         | 
| 229 | 
        atoms[j]->set_vx(Vx[j]); | 
| 230 | 
        atoms[j]->set_vy(Vy[j]); | 
| 231 | 
        atoms[j]->set_vz(Vz[j]); | 
| 232 | 
      } | 
| 233 | 
 | 
| 234 | 
 | 
| 235 | 
      for( i=0; i<nAtoms; i++ ){ | 
| 236 | 
        if( atoms[i]->isDirectional() ){ | 
| 237 | 
                   | 
| 238 | 
          dAtom = (DirectionalAtom *)atoms[i]; | 
| 239 | 
           | 
| 240 | 
          // get and convert the torque to body frame | 
| 241 | 
           | 
| 242 | 
          Tb[0] = dAtom->getTx(); | 
| 243 | 
          Tb[1] = dAtom->getTy(); | 
| 244 | 
          Tb[2] = dAtom->getTz(); | 
| 245 | 
           | 
| 246 | 
          dAtom->lab2Body( Tb ); | 
| 247 | 
           | 
| 248 | 
          // get the angular momentum, and propagate a half step | 
| 249 | 
           | 
| 250 | 
          ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert; | 
| 251 | 
          ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert; | 
| 252 | 
          ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert; | 
| 253 | 
           | 
| 254 | 
          // get the atom's rotation matrix | 
| 255 | 
           | 
| 256 | 
          A[0][0] = dAtom->getAxx(); | 
| 257 | 
          A[0][1] = dAtom->getAxy(); | 
| 258 | 
          A[0][2] = dAtom->getAxz(); | 
| 259 | 
           | 
| 260 | 
          A[1][0] = dAtom->getAyx(); | 
| 261 | 
          A[1][1] = dAtom->getAyy(); | 
| 262 | 
          A[1][2] = dAtom->getAyz(); | 
| 263 | 
           | 
| 264 | 
          A[2][0] = dAtom->getAzx(); | 
| 265 | 
          A[2][1] = dAtom->getAzy(); | 
| 266 | 
          A[2][2] = dAtom->getAzz(); | 
| 267 | 
           | 
| 268 | 
           | 
| 269 | 
          // use the angular velocities to propagate the rotation matrix a | 
| 270 | 
          // full time step | 
| 271 | 
           | 
| 272 | 
           | 
| 273 | 
          angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 274 | 
          this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis | 
| 275 | 
           | 
| 276 | 
          angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 277 | 
          this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis | 
| 278 | 
           | 
| 279 | 
          angle = dt * ji[2] / dAtom->getIzz(); | 
| 280 | 
          this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis | 
| 281 | 
           | 
| 282 | 
          angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 283 | 
          this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis | 
| 284 | 
           | 
| 285 | 
          angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 286 | 
          this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis | 
| 287 | 
           | 
| 288 | 
           | 
| 289 | 
          dAtom->setA( A ); | 
| 290 | 
          dAtom->setJx( ji[0] ); | 
| 291 | 
          dAtom->setJy( ji[1] ); | 
| 292 | 
          dAtom->setJz( ji[2] ); | 
| 293 | 
        } | 
| 294 | 
      } | 
| 295 | 
       | 
| 296 | 
      // calculate the forces | 
| 297 | 
       | 
| 298 | 
      for(j = 0; j < nAtoms; j++){ | 
| 299 | 
        atoms[j]->zeroForces(); | 
| 300 | 
      } | 
| 301 | 
       | 
| 302 | 
      for(j = 0; j < nSRI; j++){ | 
| 303 | 
        srInteractions[j]->calc_forces(); | 
| 304 | 
      } | 
| 305 | 
       | 
| 306 | 
      longRange->calc_forces(); | 
| 307 | 
       | 
| 308 | 
      // move b | 
| 309 | 
 | 
| 310 | 
      for( j=0; j<nAtoms; j++ ){ | 
| 311 | 
 | 
| 312 | 
        Rx[j] = atoms[j]->getX(); | 
| 313 | 
        Ry[j] = atoms[j]->getY(); | 
| 314 | 
        Rz[j] = atoms[j]->getZ(); | 
| 315 | 
 | 
| 316 | 
        Vx[j] = atoms[j]->get_vx(); | 
| 317 | 
        Vy[j] = atoms[j]->get_vy(); | 
| 318 | 
        Vz[j] = atoms[j]->get_vz(); | 
| 319 | 
 | 
| 320 | 
        Fx[j] = atoms[j]->getFx(); | 
| 321 | 
        Fy[j] = atoms[j]->getFy(); | 
| 322 | 
        Fz[j] = atoms[j]->getFz(); | 
| 323 | 
      } | 
| 324 | 
         | 
| 325 | 
      v_constrain_b_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz,  | 
| 326 | 
                      Fx, Fy, Fz, | 
| 327 | 
                      kE, n_constrained, constrained_dsqr,  | 
| 328 | 
                      constrained_i, constrained_j, | 
| 329 | 
                      entry_plug->box_x, | 
| 330 | 
                      entry_plug->box_y,  | 
| 331 | 
                      entry_plug->box_z ); | 
| 332 | 
       | 
| 333 | 
      for( j=0; j<nAtoms; j++ ){ | 
| 334 | 
 | 
| 335 | 
        atoms[j]->setX(Rx[j]); | 
| 336 | 
        atoms[j]->setY(Ry[j]); | 
| 337 | 
        atoms[j]->setZ(Rz[j]); | 
| 338 | 
 | 
| 339 | 
        atoms[j]->set_vx(Vx[j]); | 
| 340 | 
        atoms[j]->set_vy(Vy[j]); | 
| 341 | 
        atoms[j]->set_vz(Vz[j]); | 
| 342 | 
      } | 
| 343 | 
       | 
| 344 | 
      for( i=0; i< nAtoms; i++ ){ | 
| 345 | 
 | 
| 346 | 
        if( atoms[i]->isDirectional() ){ | 
| 347 | 
 | 
| 348 | 
          dAtom = (DirectionalAtom *)atoms[i]; | 
| 349 | 
           | 
| 350 | 
          // get and convert the torque to body frame | 
| 351 | 
           | 
| 352 | 
          Tb[0] = dAtom->getTx(); | 
| 353 | 
          Tb[1] = dAtom->getTy(); | 
| 354 | 
          Tb[2] = dAtom->getTz(); | 
| 355 | 
           | 
| 356 | 
          dAtom->lab2Body( Tb ); | 
| 357 | 
           | 
| 358 | 
          // get the angular momentum, and complete the angular momentum | 
| 359 | 
          // half step | 
| 360 | 
           | 
| 361 | 
          ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert; | 
| 362 | 
          ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert; | 
| 363 | 
          ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert; | 
| 364 | 
           | 
| 365 | 
          dAtom->setJx( ji[0] ); | 
| 366 | 
          dAtom->setJy( ji[1] ); | 
| 367 | 
          dAtom->setJz( ji[2] ); | 
| 368 | 
        } | 
| 369 | 
      } | 
| 370 | 
      | 
| 371 | 
      time = tl + 1; | 
| 372 | 
       | 
| 373 | 
      if( entry_plug->setTemp ){ | 
| 374 | 
        if( !(time % vel_n) ) tStats->velocitize(); | 
| 375 | 
      } | 
| 376 | 
      if( !(time % sample_n) ) dump_out->writeDump( time * dt ); | 
| 377 | 
      if( !(time % status_n) ) e_out->writeStat( time * dt ); | 
| 378 | 
    } | 
| 379 | 
  } | 
| 380 | 
  else{ | 
| 381 | 
 | 
| 382 | 
    for( tl=0; tl<n_loops; tl++ ){ | 
| 383 | 
       | 
| 384 | 
      kE = 0.0; | 
| 385 | 
      rot_kE= 0.0; | 
| 386 | 
      trans_kE = 0.0; | 
| 387 | 
       | 
| 388 | 
      for( i=0; i<nAtoms; i++ ){ | 
| 389 | 
         | 
| 390 | 
        // velocity half step | 
| 391 | 
         | 
| 392 | 
        vx = atoms[i]->get_vx() +  | 
| 393 | 
          ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert; | 
| 394 | 
        vy = atoms[i]->get_vy() +  | 
| 395 | 
          ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert; | 
| 396 | 
        vz = atoms[i]->get_vz() +  | 
| 397 | 
          ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert; | 
| 398 | 
         | 
| 399 | 
        // position whole step | 
| 400 | 
         | 
| 401 | 
        rx = atoms[i]->getX() + dt * vx; | 
| 402 | 
        ry = atoms[i]->getY() + dt * vy; | 
| 403 | 
        rz = atoms[i]->getZ() + dt * vz; | 
| 404 | 
         | 
| 405 | 
        atoms[i]->setX( rx ); | 
| 406 | 
        atoms[i]->setY( ry ); | 
| 407 | 
        atoms[i]->setZ( rz ); | 
| 408 | 
         | 
| 409 | 
        atoms[i]->set_vx( vx ); | 
| 410 | 
        atoms[i]->set_vy( vy ); | 
| 411 | 
        atoms[i]->set_vz( vz ); | 
| 412 | 
         | 
| 413 | 
        if( atoms[i]->isDirectional() ){ | 
| 414 | 
 | 
| 415 | 
          dAtom = (DirectionalAtom *)atoms[i]; | 
| 416 | 
           | 
| 417 | 
          // get and convert the torque to body frame | 
| 418 | 
           | 
| 419 | 
          Tb[0] = dAtom->getTx(); | 
| 420 | 
          Tb[1] = dAtom->getTy(); | 
| 421 | 
          Tb[2] = dAtom->getTz(); | 
| 422 | 
           | 
| 423 | 
          dAtom->lab2Body( Tb ); | 
| 424 | 
           | 
| 425 | 
          // get the angular momentum, and propagate a half step | 
| 426 | 
           | 
| 427 | 
          ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert; | 
| 428 | 
          ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert; | 
| 429 | 
          ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert; | 
| 430 | 
           | 
| 431 | 
          // get the atom's rotation matrix | 
| 432 | 
           | 
| 433 | 
          A[0][0] = dAtom->getAxx(); | 
| 434 | 
          A[0][1] = dAtom->getAxy(); | 
| 435 | 
          A[0][2] = dAtom->getAxz(); | 
| 436 | 
           | 
| 437 | 
          A[1][0] = dAtom->getAyx(); | 
| 438 | 
          A[1][1] = dAtom->getAyy(); | 
| 439 | 
          A[1][2] = dAtom->getAyz(); | 
| 440 | 
           | 
| 441 | 
          A[2][0] = dAtom->getAzx(); | 
| 442 | 
          A[2][1] = dAtom->getAzy(); | 
| 443 | 
          A[2][2] = dAtom->getAzz(); | 
| 444 | 
           | 
| 445 | 
           | 
| 446 | 
          // use the angular velocities to propagate the rotation matrix a | 
| 447 | 
          // full time step | 
| 448 | 
           | 
| 449 | 
           | 
| 450 | 
          angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 451 | 
          this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis | 
| 452 | 
           | 
| 453 | 
          angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 454 | 
          this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis | 
| 455 | 
           | 
| 456 | 
          angle = dt * ji[2] / dAtom->getIzz(); | 
| 457 | 
          this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis | 
| 458 | 
           | 
| 459 | 
          angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 460 | 
          this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis | 
| 461 | 
           | 
| 462 | 
          angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 463 | 
          this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis | 
| 464 | 
           | 
| 465 | 
           | 
| 466 | 
          dAtom->setA( A ); | 
| 467 | 
          dAtom->setJx( ji[0] ); | 
| 468 | 
          dAtom->setJy( ji[1] ); | 
| 469 | 
          dAtom->setJz( ji[2] ); | 
| 470 | 
        } | 
| 471 | 
      } | 
| 472 | 
       | 
| 473 | 
      // calculate the forces | 
| 474 | 
       | 
| 475 | 
      for(j = 0; j < nAtoms; j++){ | 
| 476 | 
        atoms[j]->zeroForces(); | 
| 477 | 
      } | 
| 478 | 
       | 
| 479 | 
      for(j = 0; j < nSRI; j++){ | 
| 480 | 
        srInteractions[j]->calc_forces(); | 
| 481 | 
      } | 
| 482 | 
       | 
| 483 | 
      longRange->calc_forces(); | 
| 484 | 
       | 
| 485 | 
      for( i=0; i< nAtoms; i++ ){ | 
| 486 | 
         | 
| 487 | 
        // complete the velocity half step | 
| 488 | 
         | 
| 489 | 
        vx = atoms[i]->get_vx() +  | 
| 490 | 
          ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert; | 
| 491 | 
        vy = atoms[i]->get_vy() +  | 
| 492 | 
          ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert; | 
| 493 | 
        vz = atoms[i]->get_vz() +  | 
| 494 | 
          ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert; | 
| 495 | 
         | 
| 496 | 
        atoms[i]->set_vx( vx ); | 
| 497 | 
        atoms[i]->set_vy( vy ); | 
| 498 | 
        atoms[i]->set_vz( vz ); | 
| 499 | 
         | 
| 500 | 
//      vx2 = vx * vx; | 
| 501 | 
//      vy2 = vy * vy; | 
| 502 | 
//      vz2 = vz * vz; | 
| 503 | 
         | 
| 504 | 
        if( atoms[i]->isDirectional() ){ | 
| 505 | 
 | 
| 506 | 
          dAtom = (DirectionalAtom *)atoms[i]; | 
| 507 | 
           | 
| 508 | 
          // get and convert the torque to body frame | 
| 509 | 
           | 
| 510 | 
          Tb[0] = dAtom->getTx(); | 
| 511 | 
          Tb[1] = dAtom->getTy(); | 
| 512 | 
          Tb[2] = dAtom->getTz(); | 
| 513 | 
           | 
| 514 | 
          dAtom->lab2Body( Tb ); | 
| 515 | 
           | 
| 516 | 
          // get the angular momentum, and complete the angular momentum | 
| 517 | 
          // half step | 
| 518 | 
           | 
| 519 | 
          ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert; | 
| 520 | 
          ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert; | 
| 521 | 
          ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert; | 
| 522 | 
           | 
| 523 | 
          jx2 = ji[0] * ji[0]; | 
| 524 | 
          jy2 = ji[1] * ji[1]; | 
| 525 | 
          jz2 = ji[2] * ji[2]; | 
| 526 | 
           | 
| 527 | 
          rot_kE += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())  | 
| 528 | 
            + (jz2 / dAtom->getIzz()); | 
| 529 | 
           | 
| 530 | 
          dAtom->setJx( ji[0] ); | 
| 531 | 
          dAtom->setJy( ji[1] ); | 
| 532 | 
          dAtom->setJz( ji[2] ); | 
| 533 | 
        } | 
| 534 | 
      } | 
| 535 | 
       | 
| 536 | 
      time = tl + 1; | 
| 537 | 
       | 
| 538 | 
      if( entry_plug->setTemp ){ | 
| 539 | 
        if( !(time % vel_n) ) tStats->velocitize(); | 
| 540 | 
      } | 
| 541 | 
      if( !(time % sample_n) ) dump_out->writeDump( time * dt ); | 
| 542 | 
      if( !(time % status_n) ) e_out->writeStat( time * dt ); | 
| 543 | 
    } | 
| 544 | 
  } | 
| 545 | 
 | 
| 546 | 
  dump_out->writeFinal(); | 
| 547 | 
 | 
| 548 | 
  delete dump_out; | 
| 549 | 
  delete e_out; | 
| 550 | 
} | 
| 551 | 
 | 
| 552 | 
void Symplectic::rotate( int axes1, int axes2, double angle, double ji[3],  | 
| 553 | 
                         double A[3][3] ){ | 
| 554 | 
 | 
| 555 | 
  int i,j,k; | 
| 556 | 
  double sinAngle; | 
| 557 | 
  double cosAngle; | 
| 558 | 
  double angleSqr; | 
| 559 | 
  double angleSqrOver4; | 
| 560 | 
  double top, bottom; | 
| 561 | 
  double rot[3][3]; | 
| 562 | 
  double tempA[3][3]; | 
| 563 | 
  double tempJ[3]; | 
| 564 | 
 | 
| 565 | 
  // initialize the tempA | 
| 566 | 
 | 
| 567 | 
  for(i=0; i<3; i++){ | 
| 568 | 
    for(j=0; j<3; j++){ | 
| 569 | 
      tempA[i][j] = A[i][j]; | 
| 570 | 
    } | 
| 571 | 
  } | 
| 572 | 
 | 
| 573 | 
  // initialize the tempJ | 
| 574 | 
 | 
| 575 | 
  for( i=0; i<3; i++) tempJ[i] = ji[i]; | 
| 576 | 
   | 
| 577 | 
  // initalize rot as a unit matrix | 
| 578 | 
 | 
| 579 | 
  rot[0][0] = 1.0; | 
| 580 | 
  rot[0][1] = 0.0; | 
| 581 | 
  rot[0][2] = 0.0; | 
| 582 | 
 | 
| 583 | 
  rot[1][0] = 0.0; | 
| 584 | 
  rot[1][1] = 1.0; | 
| 585 | 
  rot[1][2] = 0.0; | 
| 586 | 
   | 
| 587 | 
  rot[2][0] = 0.0; | 
| 588 | 
  rot[2][1] = 0.0; | 
| 589 | 
  rot[2][2] = 1.0; | 
| 590 | 
   | 
| 591 | 
  // use a small angle aproximation for sin and cosine | 
| 592 | 
 | 
| 593 | 
  angleSqr  = angle * angle; | 
| 594 | 
  angleSqrOver4 = angleSqr / 4.0; | 
| 595 | 
  top = 1.0 - angleSqrOver4; | 
| 596 | 
  bottom = 1.0 + angleSqrOver4; | 
| 597 | 
 | 
| 598 | 
  cosAngle = top / bottom; | 
| 599 | 
  sinAngle = angle / bottom; | 
| 600 | 
 | 
| 601 | 
  rot[axes1][axes1] = cosAngle; | 
| 602 | 
  rot[axes2][axes2] = cosAngle; | 
| 603 | 
 | 
| 604 | 
  rot[axes1][axes2] = sinAngle; | 
| 605 | 
  rot[axes2][axes1] = -sinAngle; | 
| 606 | 
   | 
| 607 | 
  // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 608 | 
   | 
| 609 | 
  for(i=0; i<3; i++){ | 
| 610 | 
    ji[i] = 0.0; | 
| 611 | 
    for(k=0; k<3; k++){ | 
| 612 | 
      ji[i] += rot[i][k] * tempJ[k]; | 
| 613 | 
    } | 
| 614 | 
  } | 
| 615 | 
 | 
| 616 | 
  // rotate the Rotation matrix acording to:  | 
| 617 | 
  //            A[][] = A[][] * transpose(rot[][]) | 
| 618 | 
 | 
| 619 | 
 | 
| 620 | 
  // NOte for as yet unknown reason, we are setting the performing the | 
| 621 | 
  // calculation as: | 
| 622 | 
  //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | 
| 623 | 
 | 
| 624 | 
  for(i=0; i<3; i++){ | 
| 625 | 
    for(j=0; j<3; j++){ | 
| 626 | 
      A[j][i] = 0.0; | 
| 627 | 
      for(k=0; k<3; k++){ | 
| 628 | 
        A[j][i] += tempA[k][i] * rot[j][k]; | 
| 629 | 
      } | 
| 630 | 
    } | 
| 631 | 
  } | 
| 632 | 
} |