| 1 | mmeineke | 10 | #include <iostream> | 
| 2 |  |  | #include <cstdlib> | 
| 3 |  |  |  | 
| 4 |  |  | #include "Integrator.hpp" | 
| 5 |  |  | #include "Thermo.hpp" | 
| 6 |  |  | #include "ReadWrite.hpp" | 
| 7 | mmeineke | 238 | #include "ForceField.hpp" | 
| 8 | mmeineke | 184 | #include "simError.h" | 
| 9 | mmeineke | 10 |  | 
| 10 |  |  | extern "C"{ | 
| 11 |  |  |  | 
| 12 |  |  | void v_constrain_a_( double &dt, int &n_atoms, double* mass, | 
| 13 |  |  | double* Rx, double* Ry, double* Rz, | 
| 14 |  |  | double* Vx, double* Vy, double* Vz, | 
| 15 |  |  | double* Fx, double* Fy, double* Fz, | 
| 16 |  |  | int &n_constrained, double *constr_sqr, | 
| 17 |  |  | int* constr_i, int* constr_j, | 
| 18 |  |  | double &box_x, double &box_y, double &box_z ); | 
| 19 |  |  |  | 
| 20 |  |  | void v_constrain_b_( double &dt, int &n_atoms, double* mass, | 
| 21 |  |  | double* Rx, double* Ry, double* Rz, | 
| 22 |  |  | double* Vx, double* Vy, double* Vz, | 
| 23 |  |  | double* Fx, double* Fy, double* Fz, | 
| 24 |  |  | double &Kinetic, | 
| 25 |  |  | int &n_constrained, double *constr_sqr, | 
| 26 |  |  | int* constr_i, int* constr_j, | 
| 27 |  |  | double &box_x, double &box_y, double &box_z ); | 
| 28 |  |  | } | 
| 29 |  |  |  | 
| 30 |  |  |  | 
| 31 |  |  |  | 
| 32 |  |  |  | 
| 33 |  |  | Symplectic::Symplectic( SimInfo* the_entry_plug ){ | 
| 34 |  |  | entry_plug = the_entry_plug; | 
| 35 |  |  | isFirst = 1; | 
| 36 |  |  |  | 
| 37 |  |  | srInteractions = entry_plug->sr_interactions; | 
| 38 |  |  | nSRI           =           entry_plug->n_SRI; | 
| 39 |  |  |  | 
| 40 |  |  | // give a little love back to the SimInfo object | 
| 41 |  |  |  | 
| 42 |  |  | if( entry_plug->the_integrator != NULL ) delete entry_plug->the_integrator; | 
| 43 |  |  | entry_plug->the_integrator = this; | 
| 44 |  |  |  | 
| 45 |  |  | // grab the masses | 
| 46 |  |  |  | 
| 47 |  |  | mass = new double[entry_plug->n_atoms]; | 
| 48 |  |  | for(int i = 0; i < entry_plug->n_atoms; i++){ | 
| 49 |  |  | mass[i] = entry_plug->atoms[i]->getMass(); | 
| 50 |  |  | } | 
| 51 |  |  |  | 
| 52 |  |  |  | 
| 53 |  |  | // check for constraints | 
| 54 |  |  |  | 
| 55 |  |  | is_constrained = 0; | 
| 56 |  |  |  | 
| 57 |  |  | Constraint *temp_con; | 
| 58 |  |  | Constraint *dummy_plug; | 
| 59 |  |  | temp_con = new Constraint[nSRI]; | 
| 60 |  |  | n_constrained = 0; | 
| 61 |  |  | int constrained = 0; | 
| 62 |  |  |  | 
| 63 |  |  | for(int i = 0; i < nSRI; i++){ | 
| 64 |  |  |  | 
| 65 |  |  | constrained = srInteractions[i]->is_constrained(); | 
| 66 |  |  |  | 
| 67 |  |  | if(constrained){ | 
| 68 |  |  |  | 
| 69 |  |  | dummy_plug = srInteractions[i]->get_constraint(); | 
| 70 |  |  | temp_con[n_constrained].set_a( dummy_plug->get_a() ); | 
| 71 |  |  | temp_con[n_constrained].set_b( dummy_plug->get_b() ); | 
| 72 |  |  | temp_con[n_constrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 73 |  |  |  | 
| 74 |  |  | n_constrained++; | 
| 75 |  |  | constrained = 0; | 
| 76 |  |  | } | 
| 77 |  |  | } | 
| 78 |  |  |  | 
| 79 |  |  | if(n_constrained > 0){ | 
| 80 |  |  |  | 
| 81 |  |  | is_constrained = 1; | 
| 82 |  |  | constrained_i = new int[n_constrained]; | 
| 83 |  |  | constrained_j = new int[n_constrained]; | 
| 84 |  |  | constrained_dsqr = new double[n_constrained]; | 
| 85 |  |  |  | 
| 86 |  |  | for( int i = 0; i < n_constrained; i++){ | 
| 87 |  |  |  | 
| 88 |  |  | /* add 1 to the index for the fortran arrays. */ | 
| 89 |  |  |  | 
| 90 |  |  | constrained_i[i] = temp_con[i].get_a() + 1; | 
| 91 |  |  | constrained_j[i] = temp_con[i].get_b() + 1; | 
| 92 |  |  | constrained_dsqr[i] = temp_con[i].get_dsqr(); | 
| 93 |  |  | } | 
| 94 |  |  | } | 
| 95 |  |  |  | 
| 96 |  |  | delete[] temp_con; | 
| 97 |  |  | } | 
| 98 |  |  |  | 
| 99 |  |  | Symplectic::~Symplectic() { | 
| 100 |  |  |  | 
| 101 |  |  | if( n_constrained ){ | 
| 102 |  |  | delete[] constrained_i; | 
| 103 |  |  | delete[] constrained_j; | 
| 104 |  |  | delete[] constrained_dsqr; | 
| 105 |  |  | } | 
| 106 |  |  |  | 
| 107 |  |  | } | 
| 108 |  |  |  | 
| 109 |  |  |  | 
| 110 |  |  | void Symplectic::integrate( void ){ | 
| 111 |  |  |  | 
| 112 |  |  | const double e_convert = 4.184e-4; // converts kcal/mol -> amu*A^2/fs^2 | 
| 113 |  |  |  | 
| 114 |  |  | int i, j;                         // loop counters | 
| 115 |  |  | int nAtoms = entry_plug->n_atoms; // the number of atoms | 
| 116 |  |  | double kE = 0.0;                  // the kinetic energy | 
| 117 |  |  | double rot_kE; | 
| 118 |  |  | double trans_kE; | 
| 119 |  |  | int tl;                        // the time loop conter | 
| 120 |  |  | double dt2;                       // half the dt | 
| 121 |  |  |  | 
| 122 |  |  | double vx, vy, vz;    // the velocities | 
| 123 | chuckv | 134 | //  double vx2, vy2, vz2; // the square of the velocities | 
| 124 | mmeineke | 10 | double rx, ry, rz;    // the postitions | 
| 125 |  |  |  | 
| 126 |  |  | double ji[3];   // the body frame angular momentum | 
| 127 |  |  | double jx2, jy2, jz2; // the square of the angular momentums | 
| 128 |  |  | double Tb[3];   // torque in the body frame | 
| 129 |  |  | double angle;   // the angle through which to rotate the rotation matrix | 
| 130 |  |  | double A[3][3]; // the rotation matrix | 
| 131 |  |  |  | 
| 132 | mmeineke | 25 | int time; | 
| 133 | mmeineke | 10 |  | 
| 134 |  |  | double dt          = entry_plug->dt; | 
| 135 |  |  | double runTime     = entry_plug->run_time; | 
| 136 |  |  | double sampleTime  = entry_plug->sampleTime; | 
| 137 |  |  | double statusTime  = entry_plug->statusTime; | 
| 138 |  |  | double thermalTime = entry_plug->thermalTime; | 
| 139 |  |  |  | 
| 140 |  |  | int n_loops  = (int)( runTime / dt ); | 
| 141 |  |  | int sample_n = (int)( sampleTime / dt ); | 
| 142 |  |  | int status_n = (int)( statusTime / dt ); | 
| 143 |  |  | int vel_n    = (int)( thermalTime / dt ); | 
| 144 |  |  |  | 
| 145 | mmeineke | 238 | ForceFields *ff = entry_plug-> | 
| 146 |  |  |  | 
| 147 | mmeineke | 10 | Thermo *tStats = new Thermo( entry_plug ); | 
| 148 |  |  |  | 
| 149 |  |  | StatWriter*  e_out    = new StatWriter( entry_plug ); | 
| 150 |  |  | DumpWriter*  dump_out = new DumpWriter( entry_plug ); | 
| 151 |  |  |  | 
| 152 |  |  | Atom** atoms = entry_plug->atoms; | 
| 153 |  |  | DirectionalAtom* dAtom; | 
| 154 |  |  | dt2 = 0.5 * dt; | 
| 155 |  |  |  | 
| 156 |  |  | // initialize the forces the before the first step | 
| 157 |  |  |  | 
| 158 |  |  |  | 
| 159 | mmeineke | 238 |  | 
| 160 | mmeineke | 10 | for(i = 0; i < nAtoms; i++){ | 
| 161 |  |  | atoms[i]->zeroForces(); | 
| 162 |  |  | } | 
| 163 |  |  |  | 
| 164 |  |  | for(i = 0; i < nSRI; i++){ | 
| 165 |  |  |  | 
| 166 |  |  | srInteractions[i]->calc_forces(); | 
| 167 |  |  | } | 
| 168 |  |  |  | 
| 169 |  |  | longRange->calc_forces(); | 
| 170 |  |  |  | 
| 171 |  |  | if( entry_plug->setTemp ){ | 
| 172 |  |  |  | 
| 173 |  |  | tStats->velocitize(); | 
| 174 |  |  | } | 
| 175 |  |  |  | 
| 176 | mmeineke | 25 | dump_out->writeDump( 0.0 ); | 
| 177 |  |  | e_out->writeStat( 0.0 ); | 
| 178 |  |  |  | 
| 179 | mmeineke | 10 | if( n_constrained ){ | 
| 180 |  |  |  | 
| 181 |  |  | double *Rx = new double[nAtoms]; | 
| 182 |  |  | double *Ry = new double[nAtoms]; | 
| 183 |  |  | double *Rz = new double[nAtoms]; | 
| 184 |  |  |  | 
| 185 |  |  | double *Vx = new double[nAtoms]; | 
| 186 |  |  | double *Vy = new double[nAtoms]; | 
| 187 |  |  | double *Vz = new double[nAtoms]; | 
| 188 |  |  |  | 
| 189 |  |  | double *Fx = new double[nAtoms]; | 
| 190 |  |  | double *Fy = new double[nAtoms]; | 
| 191 |  |  | double *Fz = new double[nAtoms]; | 
| 192 |  |  |  | 
| 193 |  |  |  | 
| 194 |  |  | for( tl=0; tl < n_loops; tl++ ){ | 
| 195 |  |  |  | 
| 196 |  |  | for( j=0; j<nAtoms; j++ ){ | 
| 197 |  |  |  | 
| 198 |  |  | Rx[j] = atoms[j]->getX(); | 
| 199 |  |  | Ry[j] = atoms[j]->getY(); | 
| 200 |  |  | Rz[j] = atoms[j]->getZ(); | 
| 201 |  |  |  | 
| 202 |  |  | Vx[j] = atoms[j]->get_vx(); | 
| 203 |  |  | Vy[j] = atoms[j]->get_vy(); | 
| 204 |  |  | Vz[j] = atoms[j]->get_vz(); | 
| 205 |  |  |  | 
| 206 |  |  | Fx[j] = atoms[j]->getFx(); | 
| 207 |  |  | Fy[j] = atoms[j]->getFy(); | 
| 208 |  |  | Fz[j] = atoms[j]->getFz(); | 
| 209 |  |  |  | 
| 210 |  |  | } | 
| 211 |  |  |  | 
| 212 |  |  | v_constrain_a_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz, | 
| 213 |  |  | Fx, Fy, Fz, | 
| 214 |  |  | n_constrained, constrained_dsqr, | 
| 215 |  |  | constrained_i, constrained_j, | 
| 216 |  |  | entry_plug->box_x, | 
| 217 |  |  | entry_plug->box_y, | 
| 218 |  |  | entry_plug->box_z ); | 
| 219 |  |  |  | 
| 220 |  |  | for( j=0; j<nAtoms; j++ ){ | 
| 221 |  |  |  | 
| 222 |  |  | atoms[j]->setX(Rx[j]); | 
| 223 |  |  | atoms[j]->setY(Ry[j]); | 
| 224 |  |  | atoms[j]->setZ(Rz[j]); | 
| 225 |  |  |  | 
| 226 |  |  | atoms[j]->set_vx(Vx[j]); | 
| 227 |  |  | atoms[j]->set_vy(Vy[j]); | 
| 228 |  |  | atoms[j]->set_vz(Vz[j]); | 
| 229 |  |  | } | 
| 230 |  |  |  | 
| 231 |  |  |  | 
| 232 |  |  | for( i=0; i<nAtoms; i++ ){ | 
| 233 |  |  | if( atoms[i]->isDirectional() ){ | 
| 234 |  |  |  | 
| 235 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 236 |  |  |  | 
| 237 |  |  | // get and convert the torque to body frame | 
| 238 |  |  |  | 
| 239 |  |  | Tb[0] = dAtom->getTx(); | 
| 240 |  |  | Tb[1] = dAtom->getTy(); | 
| 241 |  |  | Tb[2] = dAtom->getTz(); | 
| 242 |  |  |  | 
| 243 |  |  | dAtom->lab2Body( Tb ); | 
| 244 |  |  |  | 
| 245 |  |  | // get the angular momentum, and propagate a half step | 
| 246 |  |  |  | 
| 247 |  |  | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert; | 
| 248 |  |  | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert; | 
| 249 |  |  | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert; | 
| 250 |  |  |  | 
| 251 |  |  | // get the atom's rotation matrix | 
| 252 |  |  |  | 
| 253 |  |  | A[0][0] = dAtom->getAxx(); | 
| 254 |  |  | A[0][1] = dAtom->getAxy(); | 
| 255 |  |  | A[0][2] = dAtom->getAxz(); | 
| 256 |  |  |  | 
| 257 |  |  | A[1][0] = dAtom->getAyx(); | 
| 258 |  |  | A[1][1] = dAtom->getAyy(); | 
| 259 |  |  | A[1][2] = dAtom->getAyz(); | 
| 260 |  |  |  | 
| 261 |  |  | A[2][0] = dAtom->getAzx(); | 
| 262 |  |  | A[2][1] = dAtom->getAzy(); | 
| 263 |  |  | A[2][2] = dAtom->getAzz(); | 
| 264 |  |  |  | 
| 265 |  |  |  | 
| 266 |  |  | // use the angular velocities to propagate the rotation matrix a | 
| 267 |  |  | // full time step | 
| 268 |  |  |  | 
| 269 |  |  |  | 
| 270 |  |  | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 271 |  |  | this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis | 
| 272 |  |  |  | 
| 273 |  |  | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 274 |  |  | this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis | 
| 275 |  |  |  | 
| 276 |  |  | angle = dt * ji[2] / dAtom->getIzz(); | 
| 277 |  |  | this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis | 
| 278 |  |  |  | 
| 279 |  |  | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 280 |  |  | this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis | 
| 281 |  |  |  | 
| 282 |  |  | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 283 |  |  | this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis | 
| 284 |  |  |  | 
| 285 |  |  |  | 
| 286 |  |  | dAtom->setA( A ); | 
| 287 |  |  | dAtom->setJx( ji[0] ); | 
| 288 |  |  | dAtom->setJy( ji[1] ); | 
| 289 |  |  | dAtom->setJz( ji[2] ); | 
| 290 |  |  | } | 
| 291 |  |  | } | 
| 292 |  |  |  | 
| 293 |  |  | // calculate the forces | 
| 294 |  |  |  | 
| 295 |  |  | for(j = 0; j < nAtoms; j++){ | 
| 296 |  |  | atoms[j]->zeroForces(); | 
| 297 |  |  | } | 
| 298 |  |  |  | 
| 299 |  |  | for(j = 0; j < nSRI; j++){ | 
| 300 |  |  | srInteractions[j]->calc_forces(); | 
| 301 |  |  | } | 
| 302 |  |  |  | 
| 303 |  |  | longRange->calc_forces(); | 
| 304 |  |  |  | 
| 305 |  |  | // move b | 
| 306 |  |  |  | 
| 307 |  |  | for( j=0; j<nAtoms; j++ ){ | 
| 308 |  |  |  | 
| 309 |  |  | Rx[j] = atoms[j]->getX(); | 
| 310 |  |  | Ry[j] = atoms[j]->getY(); | 
| 311 |  |  | Rz[j] = atoms[j]->getZ(); | 
| 312 |  |  |  | 
| 313 |  |  | Vx[j] = atoms[j]->get_vx(); | 
| 314 |  |  | Vy[j] = atoms[j]->get_vy(); | 
| 315 |  |  | Vz[j] = atoms[j]->get_vz(); | 
| 316 |  |  |  | 
| 317 |  |  | Fx[j] = atoms[j]->getFx(); | 
| 318 |  |  | Fy[j] = atoms[j]->getFy(); | 
| 319 |  |  | Fz[j] = atoms[j]->getFz(); | 
| 320 |  |  | } | 
| 321 |  |  |  | 
| 322 |  |  | v_constrain_b_( dt, nAtoms, mass, Rx, Ry, Rz, Vx, Vy, Vz, | 
| 323 |  |  | Fx, Fy, Fz, | 
| 324 |  |  | kE, n_constrained, constrained_dsqr, | 
| 325 |  |  | constrained_i, constrained_j, | 
| 326 |  |  | entry_plug->box_x, | 
| 327 |  |  | entry_plug->box_y, | 
| 328 |  |  | entry_plug->box_z ); | 
| 329 |  |  |  | 
| 330 |  |  | for( j=0; j<nAtoms; j++ ){ | 
| 331 |  |  |  | 
| 332 |  |  | atoms[j]->setX(Rx[j]); | 
| 333 |  |  | atoms[j]->setY(Ry[j]); | 
| 334 |  |  | atoms[j]->setZ(Rz[j]); | 
| 335 |  |  |  | 
| 336 |  |  | atoms[j]->set_vx(Vx[j]); | 
| 337 |  |  | atoms[j]->set_vy(Vy[j]); | 
| 338 |  |  | atoms[j]->set_vz(Vz[j]); | 
| 339 |  |  | } | 
| 340 |  |  |  | 
| 341 |  |  | for( i=0; i< nAtoms; i++ ){ | 
| 342 |  |  |  | 
| 343 |  |  | if( atoms[i]->isDirectional() ){ | 
| 344 |  |  |  | 
| 345 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 346 |  |  |  | 
| 347 |  |  | // get and convert the torque to body frame | 
| 348 |  |  |  | 
| 349 |  |  | Tb[0] = dAtom->getTx(); | 
| 350 |  |  | Tb[1] = dAtom->getTy(); | 
| 351 |  |  | Tb[2] = dAtom->getTz(); | 
| 352 |  |  |  | 
| 353 |  |  | dAtom->lab2Body( Tb ); | 
| 354 |  |  |  | 
| 355 |  |  | // get the angular momentum, and complete the angular momentum | 
| 356 |  |  | // half step | 
| 357 |  |  |  | 
| 358 |  |  | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert; | 
| 359 |  |  | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert; | 
| 360 |  |  | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert; | 
| 361 |  |  |  | 
| 362 |  |  | dAtom->setJx( ji[0] ); | 
| 363 |  |  | dAtom->setJy( ji[1] ); | 
| 364 |  |  | dAtom->setJz( ji[2] ); | 
| 365 |  |  | } | 
| 366 |  |  | } | 
| 367 | mmeineke | 25 |  | 
| 368 |  |  | time = tl + 1; | 
| 369 |  |  |  | 
| 370 | mmeineke | 10 | if( entry_plug->setTemp ){ | 
| 371 | mmeineke | 25 | if( !(time % vel_n) ) tStats->velocitize(); | 
| 372 | mmeineke | 10 | } | 
| 373 | mmeineke | 25 | if( !(time % sample_n) ) dump_out->writeDump( time * dt ); | 
| 374 |  |  | if( !(time % status_n) ) e_out->writeStat( time * dt ); | 
| 375 | mmeineke | 10 | } | 
| 376 |  |  | } | 
| 377 |  |  | else{ | 
| 378 |  |  |  | 
| 379 |  |  | for( tl=0; tl<n_loops; tl++ ){ | 
| 380 |  |  |  | 
| 381 |  |  | kE = 0.0; | 
| 382 |  |  | rot_kE= 0.0; | 
| 383 |  |  | trans_kE = 0.0; | 
| 384 |  |  |  | 
| 385 |  |  | for( i=0; i<nAtoms; i++ ){ | 
| 386 |  |  |  | 
| 387 |  |  | // velocity half step | 
| 388 |  |  |  | 
| 389 |  |  | vx = atoms[i]->get_vx() + | 
| 390 |  |  | ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert; | 
| 391 |  |  | vy = atoms[i]->get_vy() + | 
| 392 |  |  | ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert; | 
| 393 |  |  | vz = atoms[i]->get_vz() + | 
| 394 |  |  | ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert; | 
| 395 |  |  |  | 
| 396 |  |  | // position whole step | 
| 397 |  |  |  | 
| 398 |  |  | rx = atoms[i]->getX() + dt * vx; | 
| 399 |  |  | ry = atoms[i]->getY() + dt * vy; | 
| 400 |  |  | rz = atoms[i]->getZ() + dt * vz; | 
| 401 |  |  |  | 
| 402 |  |  | atoms[i]->setX( rx ); | 
| 403 |  |  | atoms[i]->setY( ry ); | 
| 404 |  |  | atoms[i]->setZ( rz ); | 
| 405 |  |  |  | 
| 406 |  |  | atoms[i]->set_vx( vx ); | 
| 407 |  |  | atoms[i]->set_vy( vy ); | 
| 408 |  |  | atoms[i]->set_vz( vz ); | 
| 409 |  |  |  | 
| 410 |  |  | if( atoms[i]->isDirectional() ){ | 
| 411 |  |  |  | 
| 412 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 413 |  |  |  | 
| 414 |  |  | // get and convert the torque to body frame | 
| 415 |  |  |  | 
| 416 |  |  | Tb[0] = dAtom->getTx(); | 
| 417 |  |  | Tb[1] = dAtom->getTy(); | 
| 418 |  |  | Tb[2] = dAtom->getTz(); | 
| 419 |  |  |  | 
| 420 |  |  | dAtom->lab2Body( Tb ); | 
| 421 |  |  |  | 
| 422 |  |  | // get the angular momentum, and propagate a half step | 
| 423 |  |  |  | 
| 424 |  |  | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert; | 
| 425 |  |  | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert; | 
| 426 |  |  | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert; | 
| 427 |  |  |  | 
| 428 |  |  | // get the atom's rotation matrix | 
| 429 |  |  |  | 
| 430 |  |  | A[0][0] = dAtom->getAxx(); | 
| 431 |  |  | A[0][1] = dAtom->getAxy(); | 
| 432 |  |  | A[0][2] = dAtom->getAxz(); | 
| 433 |  |  |  | 
| 434 |  |  | A[1][0] = dAtom->getAyx(); | 
| 435 |  |  | A[1][1] = dAtom->getAyy(); | 
| 436 |  |  | A[1][2] = dAtom->getAyz(); | 
| 437 |  |  |  | 
| 438 |  |  | A[2][0] = dAtom->getAzx(); | 
| 439 |  |  | A[2][1] = dAtom->getAzy(); | 
| 440 |  |  | A[2][2] = dAtom->getAzz(); | 
| 441 |  |  |  | 
| 442 |  |  |  | 
| 443 |  |  | // use the angular velocities to propagate the rotation matrix a | 
| 444 |  |  | // full time step | 
| 445 |  |  |  | 
| 446 |  |  |  | 
| 447 |  |  | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 448 |  |  | this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis | 
| 449 |  |  |  | 
| 450 |  |  | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 451 |  |  | this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis | 
| 452 |  |  |  | 
| 453 |  |  | angle = dt * ji[2] / dAtom->getIzz(); | 
| 454 |  |  | this->rotate( 0, 1, angle, ji, A ); // rotate about the z-axis | 
| 455 |  |  |  | 
| 456 |  |  | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 457 |  |  | this->rotate( 2, 0, angle, ji, A ); // rotate about the y-axis | 
| 458 |  |  |  | 
| 459 |  |  | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 460 |  |  | this->rotate( 1, 2, angle, ji, A ); // rotate about the x-axis | 
| 461 |  |  |  | 
| 462 |  |  |  | 
| 463 |  |  | dAtom->setA( A ); | 
| 464 |  |  | dAtom->setJx( ji[0] ); | 
| 465 |  |  | dAtom->setJy( ji[1] ); | 
| 466 |  |  | dAtom->setJz( ji[2] ); | 
| 467 |  |  | } | 
| 468 |  |  | } | 
| 469 |  |  |  | 
| 470 |  |  | // calculate the forces | 
| 471 |  |  |  | 
| 472 |  |  | for(j = 0; j < nAtoms; j++){ | 
| 473 |  |  | atoms[j]->zeroForces(); | 
| 474 |  |  | } | 
| 475 |  |  |  | 
| 476 |  |  | for(j = 0; j < nSRI; j++){ | 
| 477 |  |  | srInteractions[j]->calc_forces(); | 
| 478 |  |  | } | 
| 479 |  |  |  | 
| 480 |  |  | longRange->calc_forces(); | 
| 481 |  |  |  | 
| 482 |  |  | for( i=0; i< nAtoms; i++ ){ | 
| 483 |  |  |  | 
| 484 |  |  | // complete the velocity half step | 
| 485 |  |  |  | 
| 486 |  |  | vx = atoms[i]->get_vx() + | 
| 487 |  |  | ( dt2 * atoms[i]->getFx() / atoms[i]->getMass() ) * e_convert; | 
| 488 |  |  | vy = atoms[i]->get_vy() + | 
| 489 |  |  | ( dt2 * atoms[i]->getFy() / atoms[i]->getMass() ) * e_convert; | 
| 490 |  |  | vz = atoms[i]->get_vz() + | 
| 491 |  |  | ( dt2 * atoms[i]->getFz() / atoms[i]->getMass() ) * e_convert; | 
| 492 |  |  |  | 
| 493 |  |  | atoms[i]->set_vx( vx ); | 
| 494 |  |  | atoms[i]->set_vy( vy ); | 
| 495 |  |  | atoms[i]->set_vz( vz ); | 
| 496 |  |  |  | 
| 497 | chuckv | 134 | //      vx2 = vx * vx; | 
| 498 |  |  | //      vy2 = vy * vy; | 
| 499 |  |  | //      vz2 = vz * vz; | 
| 500 | mmeineke | 10 |  | 
| 501 |  |  | if( atoms[i]->isDirectional() ){ | 
| 502 |  |  |  | 
| 503 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 504 |  |  |  | 
| 505 |  |  | // get and convert the torque to body frame | 
| 506 |  |  |  | 
| 507 |  |  | Tb[0] = dAtom->getTx(); | 
| 508 |  |  | Tb[1] = dAtom->getTy(); | 
| 509 |  |  | Tb[2] = dAtom->getTz(); | 
| 510 |  |  |  | 
| 511 |  |  | dAtom->lab2Body( Tb ); | 
| 512 |  |  |  | 
| 513 |  |  | // get the angular momentum, and complete the angular momentum | 
| 514 |  |  | // half step | 
| 515 |  |  |  | 
| 516 |  |  | ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * e_convert; | 
| 517 |  |  | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * e_convert; | 
| 518 |  |  | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * e_convert; | 
| 519 |  |  |  | 
| 520 |  |  | jx2 = ji[0] * ji[0]; | 
| 521 |  |  | jy2 = ji[1] * ji[1]; | 
| 522 |  |  | jz2 = ji[2] * ji[2]; | 
| 523 |  |  |  | 
| 524 |  |  | rot_kE += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy()) | 
| 525 |  |  | + (jz2 / dAtom->getIzz()); | 
| 526 |  |  |  | 
| 527 |  |  | dAtom->setJx( ji[0] ); | 
| 528 |  |  | dAtom->setJy( ji[1] ); | 
| 529 |  |  | dAtom->setJz( ji[2] ); | 
| 530 |  |  | } | 
| 531 |  |  | } | 
| 532 | mmeineke | 25 |  | 
| 533 |  |  | time = tl + 1; | 
| 534 |  |  |  | 
| 535 | mmeineke | 10 | if( entry_plug->setTemp ){ | 
| 536 | mmeineke | 25 | if( !(time % vel_n) ) tStats->velocitize(); | 
| 537 | mmeineke | 10 | } | 
| 538 | mmeineke | 25 | if( !(time % sample_n) ) dump_out->writeDump( time * dt ); | 
| 539 |  |  | if( !(time % status_n) ) e_out->writeStat( time * dt ); | 
| 540 | mmeineke | 10 | } | 
| 541 |  |  | } | 
| 542 |  |  |  | 
| 543 |  |  | dump_out->writeFinal(); | 
| 544 |  |  |  | 
| 545 |  |  | delete dump_out; | 
| 546 |  |  | delete e_out; | 
| 547 |  |  | } | 
| 548 |  |  |  | 
| 549 |  |  | void Symplectic::rotate( int axes1, int axes2, double angle, double ji[3], | 
| 550 |  |  | double A[3][3] ){ | 
| 551 |  |  |  | 
| 552 |  |  | int i,j,k; | 
| 553 |  |  | double sinAngle; | 
| 554 |  |  | double cosAngle; | 
| 555 |  |  | double angleSqr; | 
| 556 |  |  | double angleSqrOver4; | 
| 557 |  |  | double top, bottom; | 
| 558 |  |  | double rot[3][3]; | 
| 559 |  |  | double tempA[3][3]; | 
| 560 |  |  | double tempJ[3]; | 
| 561 |  |  |  | 
| 562 |  |  | // initialize the tempA | 
| 563 |  |  |  | 
| 564 |  |  | for(i=0; i<3; i++){ | 
| 565 |  |  | for(j=0; j<3; j++){ | 
| 566 |  |  | tempA[i][j] = A[i][j]; | 
| 567 |  |  | } | 
| 568 |  |  | } | 
| 569 |  |  |  | 
| 570 |  |  | // initialize the tempJ | 
| 571 |  |  |  | 
| 572 |  |  | for( i=0; i<3; i++) tempJ[i] = ji[i]; | 
| 573 |  |  |  | 
| 574 |  |  | // initalize rot as a unit matrix | 
| 575 |  |  |  | 
| 576 |  |  | rot[0][0] = 1.0; | 
| 577 |  |  | rot[0][1] = 0.0; | 
| 578 |  |  | rot[0][2] = 0.0; | 
| 579 |  |  |  | 
| 580 |  |  | rot[1][0] = 0.0; | 
| 581 |  |  | rot[1][1] = 1.0; | 
| 582 |  |  | rot[1][2] = 0.0; | 
| 583 |  |  |  | 
| 584 |  |  | rot[2][0] = 0.0; | 
| 585 |  |  | rot[2][1] = 0.0; | 
| 586 |  |  | rot[2][2] = 1.0; | 
| 587 |  |  |  | 
| 588 |  |  | // use a small angle aproximation for sin and cosine | 
| 589 |  |  |  | 
| 590 |  |  | angleSqr  = angle * angle; | 
| 591 |  |  | angleSqrOver4 = angleSqr / 4.0; | 
| 592 |  |  | top = 1.0 - angleSqrOver4; | 
| 593 |  |  | bottom = 1.0 + angleSqrOver4; | 
| 594 |  |  |  | 
| 595 |  |  | cosAngle = top / bottom; | 
| 596 |  |  | sinAngle = angle / bottom; | 
| 597 |  |  |  | 
| 598 |  |  | rot[axes1][axes1] = cosAngle; | 
| 599 |  |  | rot[axes2][axes2] = cosAngle; | 
| 600 |  |  |  | 
| 601 |  |  | rot[axes1][axes2] = sinAngle; | 
| 602 |  |  | rot[axes2][axes1] = -sinAngle; | 
| 603 |  |  |  | 
| 604 |  |  | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 605 |  |  |  | 
| 606 |  |  | for(i=0; i<3; i++){ | 
| 607 |  |  | ji[i] = 0.0; | 
| 608 |  |  | for(k=0; k<3; k++){ | 
| 609 |  |  | ji[i] += rot[i][k] * tempJ[k]; | 
| 610 |  |  | } | 
| 611 |  |  | } | 
| 612 |  |  |  | 
| 613 |  |  | // rotate the Rotation matrix acording to: | 
| 614 |  |  | //            A[][] = A[][] * transpose(rot[][]) | 
| 615 |  |  |  | 
| 616 |  |  |  | 
| 617 |  |  | // NOte for as yet unknown reason, we are setting the performing the | 
| 618 |  |  | // calculation as: | 
| 619 |  |  | //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | 
| 620 |  |  |  | 
| 621 |  |  | for(i=0; i<3; i++){ | 
| 622 |  |  | for(j=0; j<3; j++){ | 
| 623 |  |  | A[j][i] = 0.0; | 
| 624 |  |  | for(k=0; k<3; k++){ | 
| 625 |  |  | A[j][i] += tempA[k][i] * rot[j][k]; | 
| 626 |  |  | } | 
| 627 |  |  | } | 
| 628 |  |  | } | 
| 629 |  |  | } |