| 15 |
|
|
| 16 |
|
void divideLabor( void ); |
| 17 |
|
|
| 18 |
< |
int getMyNode(void) { return myNode; } |
| 19 |
< |
int getNumberProcessors(void) { return numberProcessors; } |
| 20 |
< |
int getMyMolStart( void ) { return myMolStart; } |
| 21 |
< |
int getMyMolEnd( void ) { return myMlEnd; } |
| 22 |
< |
int getMyMol( void ) { return myMol; } |
| 23 |
< |
int getMyAtomStart( void ) { return myAtomStart; } |
| 24 |
< |
int getMyAtomEnd( void ) { return myAtomEnd; } |
| 25 |
< |
int getMyNlocal( void ) { return myNlocal; } |
| 26 |
< |
|
| 27 |
< |
int getTotAtoms( void ) { return simTotAtoms; } |
| 18 |
> |
int getMyNode(void) { return mpiPlug->myNode; } |
| 19 |
> |
int getNumberProcessors(void) { return mpiPlug->numberProcessors; } |
| 20 |
> |
int getMyMolStart( void ) { return mpiPlug->myMolStart; } |
| 21 |
> |
int getMyMolEnd( void ) { return mpiPlug->myMolEnd; } |
| 22 |
> |
int getMyMol( void ) { return mpiPlug->myMol; } |
| 23 |
> |
int getMyAtomStart( void ) { return mpiPlug->myAtomStart; } |
| 24 |
> |
int getMyAtomEnd( void ) { return mpiPlug->myAtomEnd; } |
| 25 |
> |
int getMyNlocal( void ) { return mpiPlug->myNlocal; } |
| 26 |
> |
int getTotAtoms( void ) { return mpiPlug->nAtomsGlobal; } |
| 27 |
|
|
| 28 |
|
|
| 29 |
+ |
// sets the internal function pointer to fortran. |
| 30 |
+ |
|
| 31 |
+ |
void setInternal( void (*fSetup)( mpiSimData*, int*, int*, int*) ){ |
| 32 |
+ |
setFsimParallel = fSetup; |
| 33 |
+ |
} |
| 34 |
+ |
|
| 35 |
|
private: |
| 36 |
|
|
| 37 |
|
protected: |
| 38 |
|
SimInfo* entryPlug; |
| 39 |
|
mpiSimData* mpiPlug; |
| 40 |
|
|
| 41 |
+ |
// function to wrap the fortran function |
| 42 |
+ |
void wrapMe(); |
| 43 |
+ |
|
| 44 |
+ |
// private function to initialize the fortran side of the simulation |
| 45 |
+ |
void (*setFsimParallel)(mpiSimData* the_mpiPlug, int *nLocal, |
| 46 |
+ |
int* globalIndex, int* isError ); |
| 47 |
+ |
|
| 48 |
|
// int *myIdents; // is needed by Cpp only. It tells the molecule which stamp it is. |
| 49 |
|
|
| 50 |
|
}; |