ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 87
Committed: Fri Aug 16 22:08:24 2002 UTC (22 years, 8 months ago) by mmeineke
Content type: application/x-tex
File size: 13938 byte(s)
Log Message:
VS: ----------------------------------------------------------------------
added more figures, and fixed the slides. GFave a practice talk 6-16-02 with this.

File Contents

# Content
1 % temporary preamble
2
3 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4
5 \documentclass[portrait]{seminar}
6 \usepackage[usenames,dvips]{pstcol}
7 \usepackage{semcolor}
8 \usepackage[dvips]{color}
9 \usepackage{graphicx}
10 \usepackage{subfigure}
11 \usepackage{amsmath}
12 \usepackage{amssymb}
13 \usepackage{wrapfig}
14 \usepackage{epsf}
15
16 \usepackage[citefull=first, chicago, pages=always]{jurabib}
17
18
19 \jurabibsetup{bibformat={tabular,ibidem,numbered}}
20 \centerslidesfalse
21
22 % -----------------------------
23 % | preamble + macros and crap |
24 % -----------------------------
25
26
27 % Basic Color Defs used within this file
28 \definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue
29 \definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue
30 \definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red
31 \definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue
32
33 %\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color
34
35 % Change itemize environment to use funky color bullets
36 \renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}}
37 \renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}}
38 \renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}}
39
40
41
42
43
44 % Input corrections to 'seminar'
45
46 \input{seminar.bug}
47 \input{seminar.bg2}
48
49 % Slides parameters: general setup
50
51 \centerslidesfalse % Text not centered
52 \slideframe{none} % No frame borders
53 \raggedslides[2em] % Semi-ragged-right text
54 \slidestyle{empty} % No labels
55 \rotateheaderstrue % Header and slide orientation synchronized
56
57 % Slides dimensions and header placement
58
59 \addtolength{\slidewidth}{10mm}
60 \addtolength{\slideheight}{10mm}
61 \renewcommand{\slideleftmargin}{10mm}
62 \renewcommand{\sliderightmargin}{10mm}
63 \renewcommand{\slidetopmargin}{10mm}
64 \renewcommand{\slidebottommargin}{15mm}
65
66 % Landscape printing sequence (for dvips)
67
68 \renewcommand{\printlandscape}{\special{landscape}}
69
70
71 % My-itemize environment (3 levels): essentially not indented from
72 % the left margin. New second- and third-level item markers.
73
74 \newenvironment{myt}
75 {\begin{list}{$\bullet$}%
76 {\setlength{\labelwidth}{9pt}%
77 \setlength{\labelsep}{4pt}%
78 \setlength{\leftmargin}{13pt}%
79 \setlength{\topsep}{\parskip}%
80 \setlength{\partopsep}{\parskip}%
81 \setlength{\itemsep}{0pt}}}%
82 {\end{list}}
83
84
85 \newenvironment{myt1}
86 {\begin{list}{$\star$}%
87 {\setlength{\labelwidth}{9pt}%
88 \setlength{\labelsep}{4pt}%
89 \setlength{\leftmargin}{13pt}%
90 \setlength{\topsep}{0pt}%
91 \setlength{\partopsep}{\parskip}%
92 \setlength{\itemsep}{0pt}}}%
93 {\end{list}}
94
95 \newenvironment{myt2}
96 {\begin{list}{$\rightsquigarrow$}%
97 {\setlength{\labelwidth}{9pt}%
98 \setlength{\labelsep}{4pt}%
99 \setlength{\leftmargin}{13pt}%
100 \setlength{\topsep}{0pt}%
101 \setlength{\partopsep}{\parskip}%
102 \setlength{\itemsep}{0pt}}}%
103 {\end{list}}
104
105
106 % Colors
107
108 \definecolor{Red}{rgb}{1,0,0} % Text
109 \definecolor{Green}{rgb}{0,1,0}
110 \definecolor{Blue}{rgb}{0,0,1}
111 \definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders
112 \definecolor{Blue2}{rgb}{0,0,0.93}
113 \definecolor{Gold}{rgb}{1,0.84,0}
114 %\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background
115 \definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page
116 \definecolor{Green3}{rgb}{0,0.8,0}
117 \definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31}
118 \definecolor{Purple2}{rgb}{0.57,0.17,0.93}
119
120 % Page and slides parameters
121
122 \newpagestyle{slidot}
123 {\color{Gold}\rule{10mm}{1.5pt}%
124 \lower.22ex\hbox{%
125 \textcolor{Blue2}{~~University of Notre Dame~~}}%
126 \leavevmode\leaders\hrule height1.5pt\hfil}
127 {\color{Gold}\rule{5mm}{1.5pt}%
128 \lower.22ex\hbox{%
129 \textcolor{SaddleBrown}{~~Matthew Meineke~~}}%
130 \leavevmode\leaders\hrule height1.5pt\hfil%
131 \lower.32ex\hbox{%
132 \textcolor{Blue2}{~~\thepage~~}}%
133 \rule{5mm}{1.5pt}}
134
135 \pagestyle{slidot}
136
137
138
139
140 % A couple of new counters for slide sequences
141
142 \newcounter{sliq}
143 \newcounter{slisup}
144 \renewcommand{\thesliq}{\Roman{sliq}}
145 \renewcommand{\theslisup}{\Roman{slisup}}
146
147 % Set the background color of every slide
148
149 \special{!userdict begin /bop-hook {gsave
150 1.0 1.0 1.0 setrgbcolor clippath fill
151 grestore} def end
152 }
153
154 % And here we are...
155
156 \setcounter{slide}{-1}
157 %\includeonly{slide10}
158
159
160 % setup the jurabib style
161
162 \renewcommand{\jbbtasep}{; } % bta = between two authors sep
163 \renewcommand{\jbbfsasep}{; } % bfsa = between first and second author sep
164 \renewcommand{\jbbstasep}{; } % bsta = between second and third author sep
165 %\renewcommand{\bibansep}{. } % seperator after name
166
167 \renewcommand{\bibtfont}{\textit} % change book title to italics
168 \renewcommand{\bibjtfont}{\textit} % change journal title to italics
169 \renewcommand{\bibapifont}[1]{} % gets rid of the article title in citation
170
171
172 \renewcommand{\theslidefootnote}{\arabic{footnote}}
173
174
175
176 % ----------------------
177 % | Title |
178 % ----------------------
179
180 \title{A Mezzoscale Model for Phospholipid MD Simulations}
181
182 \author{Matthew A. Meineke\\
183 Department of Chemistry and Biochemistry\\
184 University of Notre Dame\\
185 Notre Dame, Indiana 46556}
186
187 \date{\today}
188
189 %-------------------------------------------------------------------
190 % Begin Document
191
192 \begin{document}
193
194 %\maketitle
195
196
197
198
199
200 \nobibliography{canidacy_slides}
201 \bibliographystyle{jurabib}
202
203
204 % Slide 0 Title slide
205 \begin{slide}
206 \begin{center}
207 \bfseries
208 \fontsize{24pt}{30pt}\selectfont \color{Black}
209 A Mezzoscale Model for Phospholipid MD Simulations \par
210 \fontsize{16pt}{20pt}\selectfont \color{Green3}
211 Matthew A. Meineke\par
212 \fontsize{12pt}{15pt}\selectfont \color{Purple2}
213 Department of Chemistry and Biochemistry \par
214 University of Notre Dame \par
215 Notre Dame, IN 46556 \par
216 \fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par
217 \end{center}
218 \end{slide}
219
220
221 % Slide 1
222 \begin{slide} {\LARGE Talk Outline}
223 \begin{itemize}
224
225 \item Discussion of the research motivation and goals
226
227 \item Methodology
228
229 \item Discussion of current research and preliminary results
230
231 \item Future research
232
233 \end{itemize}
234 \end{slide}
235
236
237 % Slide 2
238
239 \begin{slide}
240
241 \centerline{\LARGE Motivation A: Long Length Scales}
242
243 \begin{wrapfigure}{r}{60mm}
244
245 \epsfxsize=45mm
246 \epsfbox{ripple.epsi}
247
248 \end{wrapfigure}
249
250 \mbox{}
251 Ripple phase:
252 \begin{itemize}
253
254 \item
255 The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
256 to fluid phase.
257
258 \item
259 Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Cevc87}
260
261 \item
262 Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$
263 on a side.\footcite{Venable93}\footcite{Heller93}
264
265 \end{itemize}
266 \vspace{10mm}
267 \end{slide}
268
269
270 \begin{slide}{\LARGE Motivation B: Long Time Scales}
271
272 \begin{itemize}
273
274 \item
275 Drug Diffusion
276 \begin{itemize}
277 \item
278 Some drug molecules may spend appreciable amounts of time in the
279 membrane
280
281 \item
282 Long time scale dynamics are need to observe and characterize their
283 actions
284 \end{itemize}
285
286 \item
287 Bilayer Formation Dynamics
288 \begin{itemize}
289 \item
290 Current bilayer simulations indicate that lipids can take nearly
291 20 ns to form completely.\footcite{Marrink01}
292 \end{itemize}
293 \end{itemize}
294 \end{slide}
295
296
297 % Slide 4
298
299 \begin{slide}{\LARGE Length Scale Simplification I}
300
301
302 Replace any charged interactions of the system with dipoles.
303
304 \begin{itemize}
305 \item Allows for computational scaling approximately by $N$ for
306 dipole-dipole interactions.
307 \begin{itemize}
308 \item Relatively short range, $\frac{1}{r^3}$, interactions allow
309 the application of computational simplification algorithms,
310 ie. neighbor lists.
311 \end{itemize}
312
313 \item In contrast, the Ewald sum, needed for calculating charge - charge
314 interactions, scales approximately by $N \log N$.
315 \end{itemize}
316 \end{slide}
317
318 \begin{slide}{\LARGE Length Scale Simplification II}
319
320 Use unified models for the water and the lipid chain.
321
322 \begin{itemize}
323 \item
324 Drastically reduces the number of atoms and interactions to simulate.
325
326 \end{itemize}
327
328
329
330 \begin{figure}
331 %\epsfxsize=30mm
332 %\leavevmode
333 \begin{center}
334 \includegraphics[width=50mm,angle=-90]{reduction.epsi}
335 \end{center}
336 \end{figure}
337
338
339 \end{slide}
340
341
342 % Slide 5
343
344 \begin{slide}{Time Scale Simplification}
345 \begin{itemize}
346 \item
347 Constrain all bonds to be of fixed length.
348
349 \begin{itemize}
350 \item bond vibrations are the fastest motion in
351 a simulation
352 \end{itemize}
353
354 \item
355 Allows time steps of up to 3 fs with the current integrator. In
356 contrast, a time step of 1 fs is usually required for resolving bond
357 vibration.
358
359 \end{itemize}
360 \end{slide}
361
362 % Slide 8
363
364 \begin{slide}{Soft Sticky Dipole Model\footcite{Liu96}}
365
366 \begin{figure}
367 \begin{center}
368 \includegraphics[width=40mm]{ssd.epsi}
369 \end{center}
370 \end{figure}
371
372
373 It's potential is as follows:
374
375 \begin{equation}
376 V_{s\!s\!d} = V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
377 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
378 \end{equation}
379 \end{slide}
380
381
382 % Slide 9
383 \begin{slide}{Hydrogen Bonding in SSD}
384
385 The SSD model's $V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})$ recreates
386 the hydrogen bonding network of water.
387
388
389 \begin{figure}
390 \begin{center}
391 \mbox{%
392 \subfigure[SSD relaxed on a diamond lattice]{%
393 \mbox{\includegraphics[angle=-90,width=55mm]{ssd_ice.epsi}}}%
394 \hspace{4mm}
395 \subfigure[Stockmayer spheres relaxed on a diamond lattice]{%
396 \mbox{\includegraphics[angle=-90,width=55mm]{dipole_ice.epsi}}}%
397 }
398
399 \end{center}
400 \end{figure}
401
402 \end{slide}
403
404
405 % Slide 10
406
407 \begin{slide}{The Lipid Model}
408
409 \begin{figure}
410 \begin{center}
411
412 \includegraphics[width=40mm,angle=-90]{lipidModel.epsi}
413
414 \end{center}
415 \end{figure}
416
417 \begin{equation}
418 V_{\mbox{lipid}} = \overbrace{%
419 V_{\mbox{bend}}(\theta_{ijk}) + V_{\mbox{tors.}}(\phi_{ijkl})%
420 }^{bonded}
421 + \overbrace{%
422 V_{L\!J}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})%
423 }^{non-bonded}
424 \end{equation}
425
426 \begin{itemize}
427 \item
428 Tail forcefield parameters taken from TraPPE\footcite{Siepmann1998}
429 \end{itemize}
430
431 \end{slide}
432
433
434
435 % Slide 12
436
437 \begin{slide}{Initial Runs: 25 Lipids in water}
438
439 \begin{wrapfigure}{r}{60mm}
440
441 \includegraphics[width=55mm]{5x5-initial.eps}
442
443 \end{wrapfigure}
444
445 \textbf{Simulation Parameters:}
446
447 \begin{itemize}
448
449 \item $N_{\mbox{lipids}} = 25$
450
451 \item $N_{\mbox{H}_{2}\mbox{O}} = 1386$
452
453 \item Water to lipid ratio of 55.4:1
454
455 \item Lipid had only a single saturated chain of 16 carbons
456
457 \item Box Size: 34.5~$\mbox{\AA}$~x~39.4~$\mbox{\AA}$~x~39.4~$\mbox{\AA}$
458
459 \item T = 300 K
460
461 \item NVE ensemble
462
463 \item Periodic boundary conditions
464 \end{itemize}
465
466 \end{slide}
467
468 \begin{slide}{5x5: Final}
469
470
471 \begin{figure}
472 \begin{center}
473 \includegraphics[angle=-90,width=75mm]{5x5-3.6ns.epsi}
474 \end{center}
475 \end{figure}
476
477 \begin{center}
478 The final configuration at 3.6 ns.
479 \end{center}
480
481 \end{slide}
482
483
484 % Slide 14
485
486 \begin{slide}{5x5: Head to Head $g(r)$}
487
488 \begin{figure}
489 \begin{center}
490 \includegraphics[width=55mm,angle=-90]{all5x5-HEAD-HEAD.GofR.eps}
491 \end{center}
492 \end{figure}
493
494 \begin{equation}
495 g(r) = \frac{V}{N^{2}}\langle \sum_{i} \sum_{j \neq i} \delta(\mathbf{r}
496 - \mathbf{r}_{ij}) \rangle
497 \end{equation}
498
499
500 \end{slide}
501
502 \begin{slide}{5x5: Head to Water $g(r)$}
503
504
505 \begin{figure}
506 \begin{center}
507 \includegraphics[width=70mm,angle=-90]{all5x5-HEAD-X.GofR.eps}
508 \end{center}
509 \end{figure}
510
511 \end{slide}
512
513
514 % Slide 15
515
516 \begin{slide}{5x5: Head to Head $\cos$ correlation}
517
518 \begin{figure}
519 \begin{center}
520 \includegraphics[width=70mm,angle=-90]{all5x5-HEAD-HEAD.cosCorr.eps}
521 \end{center}
522 \end{figure}
523
524 \end{slide}
525
526 \begin{slide}{5x5: Head to Water $\cos$ correlation}
527
528 \begin{figure}
529 \begin{center}
530 \includegraphics[width=70mm,angle=-90]{all5x5-HEAD-X.cosCorr.eps}
531 \end{center}
532 \end{figure}
533
534 \end{slide}
535
536
537 % Slide 16
538
539 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
540
541 \begin{wrapfigure}{r}{40mm}
542
543 \includegraphics[angle=-90,width=35mm]{r50-initial.eps}
544
545 \end{wrapfigure}
546
547 \textbf{Simulation Parameters:}
548
549 \begin{itemize}
550
551 \item $N_{\mbox{lipids}} = 50$
552
553 \item $N_{\mbox{H}_{2}\mbox{O}} = 1384$
554
555 \item Water to lipid ratio of 27:1
556
557 \item Lipid had only a single saturated chain of 16 carbons
558
559 \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
560
561 \item T = 300 K
562
563 \item NVE ensemble
564
565 \item Periodic boundary conditions
566
567 \end{itemize}
568
569 \end{slide}
570
571 \begin{slide}{R-50: Final}
572
573
574 \begin{figure}
575 \begin{center}
576 \includegraphics[angle=-90,width=110mm]{r50_1.3ns.epsi}
577 \end{center}
578 \end{figure}
579
580 \begin{center}
581 The final configuration at 1.3 ns
582 \end{center}
583
584 \end{slide}
585
586
587 % Slide 18
588
589 \begin{slide}{R-50: Head to Head $g(r)$}
590
591
592 \begin{figure}
593 \begin{center}
594 \includegraphics[width=70mm,angle=-90]{r50-HEAD-HEAD.GofR.eps}
595 \end{center}
596 \end{figure}
597
598 \end{slide}
599
600
601 \begin{slide}{R-50: Head to Water $g(r)$}
602
603
604 \begin{figure}
605 \begin{center}
606 \includegraphics[width=70mm,angle=-90]{r50-HEAD-X.GofR.eps}
607 \end{center}
608 \end{figure}
609
610 \end{slide}
611
612
613 % Slide 19
614
615 \begin{slide}{R-50: Head to Head $\cos$ correlation}
616
617
618 \begin{figure}
619 \begin{center}
620 \includegraphics[width=70mm,angle=-90]{r50-HEAD-HEAD.cosCorr.eps}
621 \end{center}
622 \end{figure}
623
624 \end{slide}
625
626 \begin{slide}{R-50: Head to Water $\cos$ correlation}
627
628 \begin{figure}
629 \begin{center}
630 \includegraphics[width=70mm,angle=-90]{r50-HEAD-X.cosCorr.eps}
631 \end{center}
632 \end{figure}
633
634 \end{slide}
635
636
637 % Slide 20
638
639 \begin{slide}{Future Directions}
640
641 \begin{itemize}
642
643 \item
644 Simulation of a lipid with 2 chains, or perhaps expand the current
645 unified chain atoms to take up greater steric bulk.
646
647 \item
648 Incorporate constant pressure and constant temperature into the ensemble.
649 \begin{itemize}
650 \item Start initial configuration in the gas phase, and
651 compress the system to STP.
652 \end{itemize}
653 \item
654 Parallelize the code.
655
656 \end{itemize}
657 \end{slide}
658
659
660 % Slide 21
661
662 \begin{slide}{Acknowledgements}
663
664 \begin{itemize}
665
666 \item Dr. J. Daniel Gezelter
667 \item Christopher Fennell
668 \item Charles Vardeman
669 \item Teng Lin
670 \item Megan Sprauge
671 \item Patrick Conforti
672 \item Dan Combest
673
674 \end{itemize}
675
676 Funding by:
677 \begin{itemize}
678 \item NSF
679 \end{itemize}
680
681 \end{slide}
682
683
684
685
686
687
688
689
690 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
691
692 \end{document}