ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 65
Committed: Mon Aug 12 22:12:45 2002 UTC (22 years, 8 months ago) by mmeineke
Content type: application/x-tex
File size: 15713 byte(s)
Log Message:
made a new figure. trying to add it to the slide

File Contents

# Content
1 % temporary preamble
2
3 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4
5 \documentclass[portrait]{seminar}
6 \usepackage[usenames,dvips]{pstcol}
7 \usepackage{semcolor}
8 \usepackage[dvips]{color}
9 %\usepackage[dvips]{graphicx}
10 \usepackage{amsmath}
11 \usepackage{amssymb}
12 \usepackage{wrapfig}
13 \usepackage{epsf}
14
15 \usepackage[citefull=first, chicago, pages=always]{jurabib}
16
17
18 \jurabibsetup{bibformat={tabular,ibidem,numbered}}
19 \centerslidesfalse
20
21 % -----------------------------
22 % | preamble + macros and crap |
23 % -----------------------------
24
25
26 % Basic Color Defs used within this file
27 \definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue
28 \definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue
29 \definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red
30 \definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue
31
32 %\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color
33
34 % Change itemize environment to use funky color bullets
35 \renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}}
36 \renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}}
37 \renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}}
38
39
40
41
42
43 % Input corrections to 'seminar'
44
45 \input{seminar.bug}
46 \input{seminar.bg2}
47
48 % Slides parameters: general setup
49
50 \centerslidesfalse % Text not centered
51 \slideframe{none} % No frame borders
52 \raggedslides[2em] % Semi-ragged-right text
53 \slidestyle{empty} % No labels
54 \rotateheaderstrue % Header and slide orientation synchronized
55
56 % Slides dimensions and header placement
57
58 \addtolength{\slidewidth}{10mm}
59 \addtolength{\slideheight}{10mm}
60 \renewcommand{\slideleftmargin}{10mm}
61 \renewcommand{\sliderightmargin}{10mm}
62 \renewcommand{\slidetopmargin}{10mm}
63 \renewcommand{\slidebottommargin}{15mm}
64
65 % Landscape printing sequence (for dvips)
66
67 \renewcommand{\printlandscape}{\special{landscape}}
68
69
70 % My-itemize environment (3 levels): essentially not indented from
71 % the left margin. New second- and third-level item markers.
72
73 \newenvironment{myt}
74 {\begin{list}{$\bullet$}%
75 {\setlength{\labelwidth}{9pt}%
76 \setlength{\labelsep}{4pt}%
77 \setlength{\leftmargin}{13pt}%
78 \setlength{\topsep}{\parskip}%
79 \setlength{\partopsep}{\parskip}%
80 \setlength{\itemsep}{0pt}}}%
81 {\end{list}}
82
83
84 \newenvironment{myt1}
85 {\begin{list}{$\star$}%
86 {\setlength{\labelwidth}{9pt}%
87 \setlength{\labelsep}{4pt}%
88 \setlength{\leftmargin}{13pt}%
89 \setlength{\topsep}{0pt}%
90 \setlength{\partopsep}{\parskip}%
91 \setlength{\itemsep}{0pt}}}%
92 {\end{list}}
93
94 \newenvironment{myt2}
95 {\begin{list}{$\rightsquigarrow$}%
96 {\setlength{\labelwidth}{9pt}%
97 \setlength{\labelsep}{4pt}%
98 \setlength{\leftmargin}{13pt}%
99 \setlength{\topsep}{0pt}%
100 \setlength{\partopsep}{\parskip}%
101 \setlength{\itemsep}{0pt}}}%
102 {\end{list}}
103
104
105 % Colors
106
107 \definecolor{Red}{rgb}{1,0,0} % Text
108 \definecolor{Green}{rgb}{0,1,0}
109 \definecolor{Blue}{rgb}{0,0,1}
110 \definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders
111 \definecolor{Blue2}{rgb}{0,0,0.93}
112 \definecolor{Gold}{rgb}{1,0.84,0}
113 %\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background
114 \definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page
115 \definecolor{Green3}{rgb}{0,0.8,0}
116 \definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31}
117 \definecolor{Purple2}{rgb}{0.57,0.17,0.93}
118
119 % Page and slides parameters
120
121 \newpagestyle{slidot}
122 {\color{Gold}\rule{10mm}{1.5pt}%
123 \lower.22ex\hbox{%
124 \textcolor{Blue2}{~~University of Notre Dame~~}}%
125 \leavevmode\leaders\hrule height1.5pt\hfil}
126 {\color{Gold}\rule{5mm}{1.5pt}%
127 \lower.22ex\hbox{%
128 \textcolor{SaddleBrown}{~~Matthew Meineke~~}}%
129 \leavevmode\leaders\hrule height1.5pt\hfil%
130 \lower.32ex\hbox{%
131 \textcolor{Blue2}{~~\thepage~~}}%
132 \rule{5mm}{1.5pt}}
133
134 \pagestyle{slidot}
135
136
137
138
139 % A couple of new counters for slide sequences
140
141 \newcounter{sliq}
142 \newcounter{slisup}
143 \renewcommand{\thesliq}{\Roman{sliq}}
144 \renewcommand{\theslisup}{\Roman{slisup}}
145
146 % Set the background color of every slide
147
148 \special{!userdict begin /bop-hook {gsave
149 1.0 1.0 1.0 setrgbcolor clippath fill
150 grestore} def end
151 }
152
153 % And here we are...
154
155 \setcounter{slide}{-1}
156 %\includeonly{slide10}
157
158
159 % setup the jurabib style
160
161 \renewcommand{\jbbtasep}{; } % bta = between two authors sep
162 \renewcommand{\jbbfsasep}{; } % bfsa = between first and second author sep
163 \renewcommand{\jbbstasep}{; } % bsta = between second and third author sep
164 %\renewcommand{\bibansep}{. } % seperator after name
165
166 \renewcommand{\bibtfont}{\textit} % change book title to italics
167 \renewcommand{\bibjtfont}{\textit} % change journal title to italics
168 \renewcommand{\bibapifont}[1]{} % gets rid of the article title in citation
169
170
171
172
173
174
175 % ----------------------
176 % | Title |
177 % ----------------------
178
179 \title{A Mezzoscale Model for Phospholipid MD Simulations}
180
181 \author{Matthew A. Meineke\\
182 Department of Chemistry and Biochemistry\\
183 University of Notre Dame\\
184 Notre Dame, Indiana 46556}
185
186 \date{\today}
187
188 %-------------------------------------------------------------------
189 % Begin Document
190
191 \begin{document}
192
193 %\maketitle
194
195
196
197
198
199 \nobibliography{canidacy_slides}
200 \bibliographystyle{jurabib}
201
202
203 % Slide 0 Title slide
204 \begin{slide}
205 \begin{center}
206 \bfseries
207 \fontsize{24pt}{30pt}\selectfont \color{Black}
208 A Mezzoscale Model for Phospholipid MD Simulations \par
209 \fontsize{16pt}{20pt}\selectfont \color{Green3}
210 Matthew A. Meineke\par
211 \fontsize{12pt}{15pt}\selectfont \color{Purple2}
212 Department of Chemistry and Biochemisty \par
213 University of Notre Dame \par
214 Notre Dame, IN 46556 \par
215 \fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par
216 \end{center}
217 \end{slide}
218
219
220 % Slide 1
221 \begin{slide} {\LARGE Talk Outline}
222 \begin{itemize}
223
224 \item Discussion of the research motivation and goals
225
226 \item Methodology
227
228 \item Discussion of current research and preliminary results
229
230 \item Future research
231
232 \end{itemize}
233 \end{slide}
234
235
236 % Slide 2
237
238 \begin{slide}
239
240 \centerline{\LARGE Motivation A: Long Length Scales}
241
242 \begin{wrapfigure}{r}{60mm}
243
244 \epsfxsize=45mm
245 \epsfbox{ripple.epsi}
246
247 \end{wrapfigure}
248
249
250
251
252 %\epsfbox{ripple.epsi}
253 %\begin{floatingfigure}{0.45\linewidth}
254 % \incffig{ripple.epsi}
255 %\end{floatingfigure}
256
257
258
259 \mbox{}
260 Ripple phase:
261 \begin{itemize}
262
263 \item
264 The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
265 to fluid phase.
266
267 \item
268 Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Cevc87}
269
270 \item
271 Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$
272 on a side.\footcite{Venable93}\footcite{Heller93}
273
274 \end{itemize}
275 \vspace{10mm}
276 \end{slide}
277
278
279 \begin{slide}{\LARGE Motivation B: Long Time Scales}
280
281 \begin{itemize}
282
283 \item
284 Drug Diffussion
285 \begin{itemize}
286 \item
287 Some drug molecules may spend appreciable amountsd of time in the
288 membrane
289
290 \item
291 Long time scale dynamics are need to observe and charecterize their
292 actions
293 \end{itemize}
294
295 \item
296 Bilayer Formation Dynamics
297 \begin{itemize}
298 \item
299 Current bilayer simulations indicate that lipids can take nearly
300 20 ns to form completely.\footcite{Marrink01}
301 \end{itemize}
302 \end{itemize}
303 \end{slide}
304
305
306 % Slide 4
307
308 \begin{slide}{\LARGE Length Scale Simplification I}
309
310
311 Replace any charged interactions of the system with dipoles.
312
313 \begin{itemize}
314 \item Allows for computational scaling approximately by $N$ for
315 dipole-dipole interactions.
316 \begin{itemize}
317 \item Relatively short range, $\frac{1}{r^3}$, interactions allow
318 the application of computational simplification algorithms,
319 ie. neighbor lists.
320 \end{itemize}
321
322 \item In contrast, the Ewald sum, needed for calculating charge - charge
323 interactions, scales approximately by $N \log N$.
324 \end{itemize}
325 \end{slide}
326
327 \begin{slide}{\LARGE Length Scale Simplification II}
328
329 Use unified models for the water and the lipid chain.
330
331 \begin{itemize}
332 \item
333 Drastically reduces the number of atoms to simulate.
334
335 \end{itemize}
336
337 \begin{center}
338
339 \begin{figure}
340 \epsfxsize=30mm
341 \epsfbox[angle=-90]{reduction.epsi}
342 \end{figure}
343 \end{center}
344
345 \end{slide}
346
347
348 % Slide 5
349
350 \begin{slide}{Time Scale Simplification}
351 \begin{itemize}
352
353 \item
354 No explicit hydrogens
355
356 \begin{itemize}
357 \item Hydrogen bond vibration is normally one of the fastest time
358 events in a simulation.
359 \end{itemize}
360
361 \item
362 Constrain all bonds to be of fixed length.
363
364 \begin{itemize}
365 \item As with the hydrogens, bond vibrations are the fastest motion in
366 a simulation
367 \end{itemize}
368
369 \item
370 Allows time steps of up to 3 fs with the current integrator.
371
372 \end{itemize}
373 \end{slide}
374
375
376 % Slide 6
377 \begin{slide}{Molecular Dynamics}
378
379 All of our simulations will be carried out using molecular
380 dynamics. This involves solving Newton's equations of motion using
381 the classical \emph{Hamiltonian} as follows:
382
383 \begin{equation}
384 H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
385 \end{equation}
386
387 Here $T(\vec{p})$ is the kinetic energy of the system which is a
388 function of momentum. In Cartesian space, $T(\vec{p})$ can be
389 written as:
390
391 \begin{equation}
392 T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
393 \end{equation}
394
395 \end{slide}
396
397
398 % Slide 7
399 \begin{slide}{The Potential}
400
401 The main part of the simulation is then the calculation of forces from
402 the potential energy.
403
404 \begin{equation}
405 \vec{F}(\vec{q}) = - \nabla V(\vec{q})
406 \end{equation}
407
408 The potential itself is made of several parts.
409
410 \begin{equation}
411 V_{tot} =
412 \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
413 \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
414 \end{equation}
415
416 Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
417 the bond, bend, and torsion potentials, and the non-bonded
418 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
419 lenard-jones, dipole-dipole, and sticky potential interactions.
420
421 \end{slide}
422
423
424 % Slide 8
425
426 \begin{slide}{Soft Sticky Dipole Model}
427
428 The Soft-Sticky model for water is a reduced model.
429
430 \begin{itemize}
431
432 \item
433 The model is represented by a single point mass at the water's center
434 of mass.
435
436 \item
437 The point mass contains a fixed dipole of 2.35 D pointing from the
438 oxygens toward the hydrogens.
439
440 \end{itemize}
441
442 It's potential is as follows:
443
444 \begin{equation}
445 V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
446 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
447 \end{equation}
448 \end{slide}
449
450 % Slide 8b
451
452 \begin{slide}{SSD Diagram}
453
454 \begin{center}
455 \begin{figure}
456 \epsfxsize=50mm
457 \epsfbox{ssd.epsi}
458 \end{figure}
459 \end{center}
460
461 A Diagram of the SSD model.
462 \end{slide}
463
464 % Slide 9
465 \begin{slide}{Hydrogen Bonding in SSD}
466
467 It is important to note that SSD has a potential specifically to
468 recreate the hydrogen bonding network of water.
469
470
471 ICE SSD
472
473 ICE point Dipole
474
475
476 The importance of the hydrogen bond network is it's significant
477 contribution to the hydrophobic driving force of bilayer formation.
478 \end{slide}
479
480
481 % Slide 10
482
483 \begin{slide}{The Lipid Model}
484
485 To eliminate the need for charge-charge interactions, our lipid model
486 replaces the phospholipid head group with a single large head group
487 atom containing a freely oriented dipole. The tail is a simple alkane chain.
488
489 Lipid Properties:
490 \begin{itemize}
491 \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$
492 \item $m_{\text{HEAD}} = 196\ \text{amu}$
493 \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms
494 \begin{itemize}
495 \item Alkane forcefield parameters taken from TraPPE
496 \end{itemize}
497 \end{itemize}
498
499 \end{slide}
500
501
502 % Slide 11
503
504 \begin{slide}{Lipid Model}
505
506
507
508 \end{slide}
509
510
511 % Slide 12
512
513 \begin{slide}{Initial Runs: 25 Lipids in water}
514
515 \textbf{Simulation Parameters:}
516
517 \begin{itemize}
518
519 \item Starting Configuration:
520 \begin{itemize}
521 \item 25 lipid molecules arranged in a 5 x 5 square
522 \item square was surrounded by a sea of 1386 waters
523 \begin{itemize}
524 \item final water to lipid ratio was 55.4:1
525 \end{itemize}
526 \end{itemize}
527
528 \item Lipid had only a single saturated chain of 16 carbons
529
530 \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$
531
532 \item dt = 2.0 - 3.0 fs
533
534 \item T = 300 K
535
536 \item NVE ensemble
537
538 \item Periodic boundary conditions
539 \end{itemize}
540
541 \end{slide}
542
543
544 % Slide 13
545
546 \begin{slide}{5x5: Initial}
547
548 \begin{center}
549 \begin{figure}
550 \epsfxsize=50mm
551 \epsfbox{5x5-initial.eps}
552 \end{figure}
553 \end{center}
554
555 The initial configuration
556
557 \end{slide}
558
559 \begin{slide}{5x5: Final}
560
561 \begin{center}
562 \begin{figure}
563 \epsfxsize=60mm
564 \epsfbox{5x5-1.7ns.eps}
565 \end{figure}
566 \end{center}
567
568 The final configuration at 1.7 ns.
569
570 \end{slide}
571
572
573 % Slide 14
574
575 \begin{slide}{5x5: $g(r)$}
576
577 \begin{center}
578 \begin{figure}
579 \epsfxsize=60mm
580 \epsfbox{all5x5-HEAD-HEAD-gr.eps}
581 \end{figure}
582 \end{center}
583
584
585 \end{slide}
586
587 \begin{slide}{5x5: $g(r)$}
588
589 \begin{center}
590 \begin{figure}
591 \epsfxsize=60mm
592 \epsfbox{all5x5-HEAD-X-gr.eps}
593 \end{figure}
594 \end{center}
595
596
597 \end{slide}
598
599
600 % Slide 15
601
602 \begin{slide}{5x5: $\cos$ correlations}
603
604 \begin{center}
605 \begin{figure}
606 \epsfxsize=60mm
607 \epsfbox{all5x5-HEAD-HEAD-cr.eps}
608 \end{figure}
609 \end{center}
610
611 \end{slide}
612
613 \begin{slide}{5x5: $\cos$ correlations}
614
615 \begin{center}
616 \begin{figure}
617 \epsfxsize=60mm
618 \epsfbox{all5x5-HEAD-X-cr.eps}
619 \end{figure}
620 \end{center}
621
622 \end{slide}
623
624
625 % Slide 16
626
627 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
628
629 \textbf{Simulation Parameters:}
630
631 \begin{itemize}
632
633 \item Starting Configuration:
634 \begin{itemize}
635 \item 50 lipid molecules arranged randomly in a rectangular box
636 \item The box was then filled with 1384 waters
637 \begin{itemize}
638 \item final water to lipid ratio was 27:1
639 \end{itemize}
640 \end{itemize}
641
642 \item Lipid had only a single saturated chain of 16 carbons
643
644 \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
645
646 \item dt = 2.0 - 3.0 fs
647
648 \item T = 300 K
649
650 \item NVE ensemble
651
652 \item Periodic boundary conditions
653
654 \end{itemize}
655
656 \end{slide}
657
658
659 % Slide 17
660
661 \begin{slide}{R-50: Initial}
662
663 \begin{center}
664 \begin{figure}
665 \epsfxsize=100mm
666 \epsfbox{r50-initial.eps}
667 \end{figure}
668 \end{center}
669
670 The initial configuration
671
672 \end{slide}
673
674 \begin{slide}{R-50: Final}
675
676 \begin{center}
677 \begin{figure}
678 \epsfxsize=100mm
679 \epsfbox{r50-521ps.eps}
680 \end{figure}
681 \end{center}
682
683 The fianl configuration at 521 ps
684
685 \end{slide}
686
687
688 % Slide 18
689
690 \begin{slide}{R-50: $g(r)$}
691
692
693 \begin{center}
694 \begin{figure}
695 \epsfxsize=60mm
696 \epsfbox{r50-HEAD-HEAD-gr.eps}
697 \end{figure}
698 \end{center}
699
700 \end{slide}
701
702
703 \begin{slide}{R-50: $g(r)$}
704
705
706 \begin{center}
707 \begin{figure}
708 \epsfxsize=60mm
709 \epsfbox{r50-HEAD-X-gr.eps}
710 \end{figure}
711 \end{center}
712
713 \end{slide}
714
715
716 % Slide 19
717
718 \begin{slide}{R-50: $\cos$ correlations}
719
720
721 \begin{center}
722 \begin{figure}
723 \epsfxsize=60mm
724 \epsfbox{r50-HEAD-HEAD-cr.eps}
725 \end{figure}
726 \end{center}
727
728 \end{slide}
729
730 \begin{slide}{R-50: $\cos$ correlations}
731
732
733 \begin{center}
734 \begin{figure}
735 \epsfxsize=60mm
736 \epsfbox{r50-HEAD-X-cr.eps}
737 \end{figure}
738 \end{center}
739
740 \end{slide}
741
742
743 % Slide 20
744
745 \begin{slide}{Future Directions}
746
747 \begin{itemize}
748
749 \item
750 Simulation of a lipid with 2 chains, or perhaps expand the current
751 unified chain atoms to take up greater steric bulk.
752
753 \item
754 Incorporate constant pressure and constant temperature into the ensemble.
755
756 \item
757 Parrellize the code.
758
759 \end{itemize}
760 \end{slide}
761
762
763 % Slide 21
764
765 \begin{slide}{Acknowledgements}
766
767 \begin{itemize}
768
769 \item Dr. J. Daniel Gezelter
770 \item Christopher Fennel
771 \item Charles Vardeman
772 \item Teng Lin
773 \item Megan Sprauge
774 \item Patrick Conforti
775 \item Dan Combest
776
777 \end{itemize}
778
779 Funding by:
780 \begin{itemize}
781 \item Dreyfus New Faculty Award
782 \end{itemize}
783
784 \end{slide}
785
786
787
788
789
790
791
792
793 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
794
795 \end{document}