ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 64
Committed: Fri Aug 9 21:23:42 2002 UTC (22 years, 8 months ago) by mmeineke
Content type: application/x-tex
File size: 15698 byte(s)
Log Message:
fixed the citations. continueing to clean up the slides.

File Contents

# Content
1 % temporary preamble
2
3 %\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper}
4
5 \documentclass[portrait]{seminar}
6 \usepackage[usenames,dvips]{pstcol}
7 \usepackage{semcolor}
8 \usepackage[dvips]{color}
9 %\usepackage[dvips]{graphicx}
10 \usepackage{amsmath}
11 \usepackage{amssymb}
12 \usepackage{wrapfig}
13 \usepackage{epsf}
14
15 \usepackage[citefull=first, chicago, pages=always]{jurabib}
16
17
18 \jurabibsetup{bibformat={tabular,ibidem,numbered}}
19 \centerslidesfalse
20
21 % -----------------------------
22 % | preamble + macros and crap |
23 % -----------------------------
24
25
26 % Basic Color Defs used within this file
27 \definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue
28 \definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue
29 \definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red
30 \definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue
31
32 %\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color
33
34 % Change itemize environment to use funky color bullets
35 \renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}}
36 \renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}}
37 \renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}}
38
39
40
41
42
43 % Input corrections to 'seminar'
44
45 \input{seminar.bug}
46 \input{seminar.bg2}
47
48 % Slides parameters: general setup
49
50 \centerslidesfalse % Text not centered
51 \slideframe{none} % No frame borders
52 \raggedslides[2em] % Semi-ragged-right text
53 \slidestyle{empty} % No labels
54 \rotateheaderstrue % Header and slide orientation synchronized
55
56 % Slides dimensions and header placement
57
58 \addtolength{\slidewidth}{10mm}
59 \addtolength{\slideheight}{10mm}
60 \renewcommand{\slideleftmargin}{10mm}
61 \renewcommand{\sliderightmargin}{10mm}
62 \renewcommand{\slidetopmargin}{10mm}
63 \renewcommand{\slidebottommargin}{15mm}
64
65 % Landscape printing sequence (for dvips)
66
67 \renewcommand{\printlandscape}{\special{landscape}}
68
69
70 % My-itemize environment (3 levels): essentially not indented from
71 % the left margin. New second- and third-level item markers.
72
73 \newenvironment{myt}
74 {\begin{list}{$\bullet$}%
75 {\setlength{\labelwidth}{9pt}%
76 \setlength{\labelsep}{4pt}%
77 \setlength{\leftmargin}{13pt}%
78 \setlength{\topsep}{\parskip}%
79 \setlength{\partopsep}{\parskip}%
80 \setlength{\itemsep}{0pt}}}%
81 {\end{list}}
82
83
84 \newenvironment{myt1}
85 {\begin{list}{$\star$}%
86 {\setlength{\labelwidth}{9pt}%
87 \setlength{\labelsep}{4pt}%
88 \setlength{\leftmargin}{13pt}%
89 \setlength{\topsep}{0pt}%
90 \setlength{\partopsep}{\parskip}%
91 \setlength{\itemsep}{0pt}}}%
92 {\end{list}}
93
94 \newenvironment{myt2}
95 {\begin{list}{$\rightsquigarrow$}%
96 {\setlength{\labelwidth}{9pt}%
97 \setlength{\labelsep}{4pt}%
98 \setlength{\leftmargin}{13pt}%
99 \setlength{\topsep}{0pt}%
100 \setlength{\partopsep}{\parskip}%
101 \setlength{\itemsep}{0pt}}}%
102 {\end{list}}
103
104
105 % Colors
106
107 \definecolor{Red}{rgb}{1,0,0} % Text
108 \definecolor{Green}{rgb}{0,1,0}
109 \definecolor{Blue}{rgb}{0,0,1}
110 \definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders
111 \definecolor{Blue2}{rgb}{0,0,0.93}
112 \definecolor{Gold}{rgb}{1,0.84,0}
113 %\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background
114 \definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page
115 \definecolor{Green3}{rgb}{0,0.8,0}
116 \definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31}
117 \definecolor{Purple2}{rgb}{0.57,0.17,0.93}
118
119 % Page and slides parameters
120
121 \newpagestyle{slidot}
122 {\color{Gold}\rule{10mm}{1.5pt}%
123 \lower.22ex\hbox{%
124 \textcolor{Blue2}{~~University of Notre Dame~~}}%
125 \leavevmode\leaders\hrule height1.5pt\hfil}
126 {\color{Gold}\rule{5mm}{1.5pt}%
127 \lower.22ex\hbox{%
128 \textcolor{SaddleBrown}{~~Matthew Meineke~~}}%
129 \leavevmode\leaders\hrule height1.5pt\hfil%
130 \lower.32ex\hbox{%
131 \textcolor{Blue2}{~~\thepage~~}}%
132 \rule{5mm}{1.5pt}}
133
134 \pagestyle{slidot}
135
136
137
138
139 % A couple of new counters for slide sequences
140
141 \newcounter{sliq}
142 \newcounter{slisup}
143 \renewcommand{\thesliq}{\Roman{sliq}}
144 \renewcommand{\theslisup}{\Roman{slisup}}
145
146 % Set the background color of every slide
147
148 \special{!userdict begin /bop-hook {gsave
149 1.0 1.0 1.0 setrgbcolor clippath fill
150 grestore} def end
151 }
152
153 % And here we are...
154
155 \setcounter{slide}{-1}
156 %\includeonly{slide10}
157
158
159 % setup the jurabib style
160
161 \renewcommand{\jbbtasep}{; } % bta = between two authors sep
162 \renewcommand{\jbbfsasep}{; } % bfsa = between first and second author sep
163 \renewcommand{\jbbstasep}{; } % bsta = between second and third author sep
164 %\renewcommand{\bibansep}{. } % seperator after name
165
166 \renewcommand{\bibtfont}{\textit} % change book title to italics
167 \renewcommand{\bibjtfont}{\textit} % change journal title to italics
168 \renewcommand{\bibapifont}[1]{} % gets rid of the article title in citation
169
170
171
172
173
174
175 % ----------------------
176 % | Title |
177 % ----------------------
178
179 \title{A Mezzoscale Model for Phospholipid MD Simulations}
180
181 \author{Matthew A. Meineke\\
182 Department of Chemistry and Biochemistry\\
183 University of Notre Dame\\
184 Notre Dame, Indiana 46556}
185
186 \date{\today}
187
188 %-------------------------------------------------------------------
189 % Begin Document
190
191 \begin{document}
192
193 %\maketitle
194
195
196
197
198
199 \nobibliography{canidacy_slides}
200 \bibliographystyle{jurabib}
201
202
203 % Slide 0 Title slide
204 \begin{slide}
205 \begin{center}
206 \bfseries
207 \fontsize{24pt}{30pt}\selectfont \color{Black}
208 A Mezzoscale Model for Phospholipid MD Simulations \par
209 \fontsize{16pt}{20pt}\selectfont \color{Green3}
210 Matthew A. Meineke\par
211 \fontsize{12pt}{15pt}\selectfont \color{Purple2}
212 Department of Chemistry and Biochemisty \par
213 University of Notre Dame \par
214 Notre Dame, IN 46556 \par
215 \fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par
216 \end{center}
217 \end{slide}
218
219
220 % Slide 1
221 \begin{slide} {\LARGE Talk Outline}
222 \begin{itemize}
223
224 \item Discussion of the research motivation and goals
225
226 \item Methodology
227
228 \item Discussion of current research and preliminary results
229
230 \item Future research
231
232 \end{itemize}
233 \end{slide}
234
235
236 % Slide 2
237
238 \begin{slide}
239
240 \centerline{\LARGE Motivation A: Long Length Scales}
241
242 \begin{wrapfigure}{r}{60mm}
243
244 \epsfxsize=45mm
245 \epsfbox{ripple.epsi}
246
247 \end{wrapfigure}
248
249
250
251
252 %\epsfbox{ripple.epsi}
253 %\begin{floatingfigure}{0.45\linewidth}
254 % \incffig{ripple.epsi}
255 %\end{floatingfigure}
256
257
258
259 \mbox{}
260 Ripple phase:
261 \begin{itemize}
262
263 \item
264 The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel
265 to fluid phase.
266
267 \item
268 Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Cevc87}
269
270 \item
271 Current simulations have box sizes ranging from 50 - 100 $\mbox{\AA}$
272 on a side.\footcite{Venable93}\footcite{Heller93}
273
274 \end{itemize}
275 \vspace{10mm}
276 \end{slide}
277
278
279 \begin{slide}{\LARGE Motivation B: Long Time Scales}
280
281 \begin{itemize}
282
283 \item
284 Drug Diffussion
285 \begin{itemize}
286 \item
287 Some drug molecules may spend appreciable amountsd of time in the
288 membrane
289
290 \item
291 Long time scale dynamics are need to observe and charecterize their
292 actions
293 \end{itemize}
294
295 \item
296 Bilayer Formation Dynamics
297 \begin{itemize}
298 \item
299 Current bilayer simulations indicate that lipids can take nearly
300 20 ns to form completely.\footcite{Marrink01}
301 \end{itemize}
302 \end{itemize}
303 \end{slide}
304
305
306 % Slide 4
307
308 \begin{slide}{\LARGE Length Scale Simplification I}
309
310
311 Replace any charged interactions of the system with dipoles.
312
313 \begin{itemize}
314 \item Allows for computational scaling approximately by $N$ for
315 dipole-dipole interactions.
316 \begin{itemize}
317 \item Relatively short range, $\frac{1}{r^3}$, interactions allow
318 the application of computational simplification algorithms,
319 ie. neighbor lists.
320 \end{itemize}
321
322 \item In contrast, the Ewald sum, needed for calculating charge - charge
323 interactions, scales approximately by $N \log N$.
324 \end{itemize}
325 \end{slide}
326
327 \begin{slide}{\LARGE Length Scale Simplification II}
328
329 Use unified models for the water and the lipid chain.
330
331 \begin{itemize}
332 \item
333 Drastically reduces the number of atoms to simulate.
334
335 \item
336 Number of water - water interactions alone reduced by $\frac{1}{9}$.
337
338 \end{itemize}
339
340 ADD FIGURE HERE
341
342
343 \end{slide}
344
345
346 % Slide 5
347
348 \begin{slide}{Time Scale Simplification}
349 \begin{itemize}
350
351 \item
352 No explicit hydrogens
353
354 \begin{itemize}
355 \item Hydrogen bond vibration is normally one of the fastest time
356 events in a simulation.
357 \end{itemize}
358
359 \item
360 Constrain all bonds to be of fixed length.
361
362 \begin{itemize}
363 \item As with the hydrogens, bond vibrations are the fastest motion in
364 a simulation
365 \end{itemize}
366
367 \item
368 Allows time steps of up to 3 fs with the current integrator.
369
370 \end{itemize}
371 \end{slide}
372
373
374 % Slide 6
375 \begin{slide}{Molecular Dynamics}
376
377 All of our simulations will be carried out using molecular
378 dynamics. This involves solving Newton's equations of motion using
379 the classical \emph{Hamiltonian} as follows:
380
381 \begin{equation}
382 H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
383 \end{equation}
384
385 Here $T(\vec{p})$ is the kinetic energy of the system which is a
386 function of momentum. In Cartesian space, $T(\vec{p})$ can be
387 written as:
388
389 \begin{equation}
390 T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
391 \end{equation}
392
393 \end{slide}
394
395
396 % Slide 7
397 \begin{slide}{The Potential}
398
399 The main part of the simulation is then the calculation of forces from
400 the potential energy.
401
402 \begin{equation}
403 \vec{F}(\vec{q}) = - \nabla V(\vec{q})
404 \end{equation}
405
406 The potential itself is made of several parts.
407
408 \begin{equation}
409 V_{tot} =
410 \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
411 \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
412 \end{equation}
413
414 Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
415 the bond, bend, and torsion potentials, and the non-bonded
416 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
417 lenard-jones, dipole-dipole, and sticky potential interactions.
418
419 \end{slide}
420
421
422 % Slide 8
423
424 \begin{slide}{Soft Sticky Dipole Model}
425
426 The Soft-Sticky model for water is a reduced model.
427
428 \begin{itemize}
429
430 \item
431 The model is represented by a single point mass at the water's center
432 of mass.
433
434 \item
435 The point mass contains a fixed dipole of 2.35 D pointing from the
436 oxygens toward the hydrogens.
437
438 \end{itemize}
439
440 It's potential is as follows:
441
442 \begin{equation}
443 V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
444 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
445 \end{equation}
446 \end{slide}
447
448 % Slide 8b
449
450 \begin{slide}{SSD Diagram}
451
452 \begin{center}
453 \begin{figure}
454 \epsfxsize=50mm
455 \epsfbox{ssd.epsi}
456 \end{figure}
457 \end{center}
458
459 A Diagram of the SSD model.
460 \end{slide}
461
462 % Slide 9
463 \begin{slide}{Hydrogen Bonding in SSD}
464
465 It is important to note that SSD has a potential specifically to
466 recreate the hydrogen bonding network of water.
467
468
469 ICE SSD
470
471 ICE point Dipole
472
473
474 The importance of the hydrogen bond network is it's significant
475 contribution to the hydrophobic driving force of bilayer formation.
476 \end{slide}
477
478
479 % Slide 10
480
481 \begin{slide}{The Lipid Model}
482
483 To eliminate the need for charge-charge interactions, our lipid model
484 replaces the phospholipid head group with a single large head group
485 atom containing a freely oriented dipole. The tail is a simple alkane chain.
486
487 Lipid Properties:
488 \begin{itemize}
489 \item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$
490 \item $m_{\text{HEAD}} = 196\ \text{amu}$
491 \item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms
492 \begin{itemize}
493 \item Alkane forcefield parameters taken from TraPPE
494 \end{itemize}
495 \end{itemize}
496
497 \end{slide}
498
499
500 % Slide 11
501
502 \begin{slide}{Lipid Model}
503
504
505
506 \end{slide}
507
508
509 % Slide 12
510
511 \begin{slide}{Initial Runs: 25 Lipids in water}
512
513 \textbf{Simulation Parameters:}
514
515 \begin{itemize}
516
517 \item Starting Configuration:
518 \begin{itemize}
519 \item 25 lipid molecules arranged in a 5 x 5 square
520 \item square was surrounded by a sea of 1386 waters
521 \begin{itemize}
522 \item final water to lipid ratio was 55.4:1
523 \end{itemize}
524 \end{itemize}
525
526 \item Lipid had only a single saturated chain of 16 carbons
527
528 \item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$
529
530 \item dt = 2.0 - 3.0 fs
531
532 \item T = 300 K
533
534 \item NVE ensemble
535
536 \item Periodic boundary conditions
537 \end{itemize}
538
539 \end{slide}
540
541
542 % Slide 13
543
544 \begin{slide}{5x5: Initial}
545
546 \begin{center}
547 \begin{figure}
548 \epsfxsize=50mm
549 \epsfbox{5x5-initial.eps}
550 \end{figure}
551 \end{center}
552
553 The initial configuration
554
555 \end{slide}
556
557 \begin{slide}{5x5: Final}
558
559 \begin{center}
560 \begin{figure}
561 \epsfxsize=60mm
562 \epsfbox{5x5-1.7ns.eps}
563 \end{figure}
564 \end{center}
565
566 The final configuration at 1.7 ns.
567
568 \end{slide}
569
570
571 % Slide 14
572
573 \begin{slide}{5x5: $g(r)$}
574
575 \begin{center}
576 \begin{figure}
577 \epsfxsize=60mm
578 \epsfbox{all5x5-HEAD-HEAD-gr.eps}
579 \end{figure}
580 \end{center}
581
582
583 \end{slide}
584
585 \begin{slide}{5x5: $g(r)$}
586
587 \begin{center}
588 \begin{figure}
589 \epsfxsize=60mm
590 \epsfbox{all5x5-HEAD-X-gr.eps}
591 \end{figure}
592 \end{center}
593
594
595 \end{slide}
596
597
598 % Slide 15
599
600 \begin{slide}{5x5: $\cos$ correlations}
601
602 \begin{center}
603 \begin{figure}
604 \epsfxsize=60mm
605 \epsfbox{all5x5-HEAD-HEAD-cr.eps}
606 \end{figure}
607 \end{center}
608
609 \end{slide}
610
611 \begin{slide}{5x5: $\cos$ correlations}
612
613 \begin{center}
614 \begin{figure}
615 \epsfxsize=60mm
616 \epsfbox{all5x5-HEAD-X-cr.eps}
617 \end{figure}
618 \end{center}
619
620 \end{slide}
621
622
623 % Slide 16
624
625 \begin{slide}{Initial Runs: 50 Lipids randomly arranged in water}
626
627 \textbf{Simulation Parameters:}
628
629 \begin{itemize}
630
631 \item Starting Configuration:
632 \begin{itemize}
633 \item 50 lipid molecules arranged randomly in a rectangular box
634 \item The box was then filled with 1384 waters
635 \begin{itemize}
636 \item final water to lipid ratio was 27:1
637 \end{itemize}
638 \end{itemize}
639
640 \item Lipid had only a single saturated chain of 16 carbons
641
642 \item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$
643
644 \item dt = 2.0 - 3.0 fs
645
646 \item T = 300 K
647
648 \item NVE ensemble
649
650 \item Periodic boundary conditions
651
652 \end{itemize}
653
654 \end{slide}
655
656
657 % Slide 17
658
659 \begin{slide}{R-50: Initial}
660
661 \begin{center}
662 \begin{figure}
663 \epsfxsize=100mm
664 \epsfbox{r50-initial.eps}
665 \end{figure}
666 \end{center}
667
668 The initial configuration
669
670 \end{slide}
671
672 \begin{slide}{R-50: Final}
673
674 \begin{center}
675 \begin{figure}
676 \epsfxsize=100mm
677 \epsfbox{r50-521ps.eps}
678 \end{figure}
679 \end{center}
680
681 The fianl configuration at 521 ps
682
683 \end{slide}
684
685
686 % Slide 18
687
688 \begin{slide}{R-50: $g(r)$}
689
690
691 \begin{center}
692 \begin{figure}
693 \epsfxsize=60mm
694 \epsfbox{r50-HEAD-HEAD-gr.eps}
695 \end{figure}
696 \end{center}
697
698 \end{slide}
699
700
701 \begin{slide}{R-50: $g(r)$}
702
703
704 \begin{center}
705 \begin{figure}
706 \epsfxsize=60mm
707 \epsfbox{r50-HEAD-X-gr.eps}
708 \end{figure}
709 \end{center}
710
711 \end{slide}
712
713
714 % Slide 19
715
716 \begin{slide}{R-50: $\cos$ correlations}
717
718
719 \begin{center}
720 \begin{figure}
721 \epsfxsize=60mm
722 \epsfbox{r50-HEAD-HEAD-cr.eps}
723 \end{figure}
724 \end{center}
725
726 \end{slide}
727
728 \begin{slide}{R-50: $\cos$ correlations}
729
730
731 \begin{center}
732 \begin{figure}
733 \epsfxsize=60mm
734 \epsfbox{r50-HEAD-X-cr.eps}
735 \end{figure}
736 \end{center}
737
738 \end{slide}
739
740
741 % Slide 20
742
743 \begin{slide}{Future Directions}
744
745 \begin{itemize}
746
747 \item
748 Simulation of a lipid with 2 chains, or perhaps expand the current
749 unified chain atoms to take up greater steric bulk.
750
751 \item
752 Incorporate constant pressure and constant temperature into the ensemble.
753
754 \item
755 Parrellize the code.
756
757 \end{itemize}
758 \end{slide}
759
760
761 % Slide 21
762
763 \begin{slide}{Acknowledgements}
764
765 \begin{itemize}
766
767 \item Dr. J. Daniel Gezelter
768 \item Christopher Fennel
769 \item Charles Vardeman
770 \item Teng Lin
771 \item Megan Sprauge
772 \item Patrick Conforti
773 \item Dan Combest
774
775 \end{itemize}
776
777 Funding by:
778 \begin{itemize}
779 \item Dreyfus New Faculty Award
780 \end{itemize}
781
782 \end{slide}
783
784
785
786
787
788
789
790
791 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
792
793 \end{document}