1 |
% temporary preamble |
2 |
|
3 |
%\documentclass[ps,frames,final,nototal,slideColor,colorBG]{prosper} |
4 |
|
5 |
\documentclass[letter,portrait]{seminar} |
6 |
\usepackage[usenames,dvips]{pstcol} |
7 |
\usepackage{semcolor} |
8 |
\usepackage[dvips]{color} |
9 |
%\usepackage[dvips]{graphicx} |
10 |
\usepackage{amsmath} |
11 |
\usepackage{amssymb} |
12 |
\usepackage{wrapfig} |
13 |
\usepackage{epsf} |
14 |
|
15 |
\usepackage[citefull=first]{jurabib} |
16 |
|
17 |
|
18 |
\jurabibsetup{bibformat={tabular,ibidem,numbered}} |
19 |
\centerslidesfalse |
20 |
|
21 |
% ----------------------------- |
22 |
% | preamble + macros and crap | |
23 |
% ----------------------------- |
24 |
|
25 |
|
26 |
% Basic Color Defs used within this file |
27 |
\definecolor{lightblue}{rgb}{0.3296, 0.6648, 0.8644} % Sky Blue |
28 |
\definecolor{shadowcolor}{rgb}{0.0000, 0.0000, 0.6179} % Midnight Blue |
29 |
\definecolor{bulletcolor}{rgb}{ 0.8441, 0.1582, 0.0000} % Orange-Red |
30 |
\definecolor{bordercolor}{rgb}{0,0,.2380} % Midnight Blue |
31 |
|
32 |
%\psset{shadowcolor=shadowcolor} % Set all shadowdrops to same color |
33 |
|
34 |
% Change itemize environment to use funky color bullets |
35 |
\renewcommand\labelitemi{\textcolor{bulletcolor}{\textbullet}} |
36 |
\renewcommand\labelitemii{\textcolor{bulletcolor}{\textbullet}} |
37 |
\renewcommand\labelitemiii{\textcolor{bulletcolor}{\textbullet}} |
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
% Input corrections to 'seminar' |
44 |
|
45 |
\input{seminar.bug} |
46 |
\input{seminar.bg2} |
47 |
|
48 |
% Slides parameters: general setup |
49 |
|
50 |
\centerslidesfalse % Text not centered |
51 |
\slideframe{none} % No frame borders |
52 |
\raggedslides[2em] % Semi-ragged-right text |
53 |
\slidestyle{empty} % No labels |
54 |
\rotateheaderstrue % Header and slide orientation synchronized |
55 |
|
56 |
% Slides dimensions and header placement |
57 |
|
58 |
\addtolength{\slidewidth}{25mm} |
59 |
\addtolength{\slideheight}{10mm} |
60 |
\renewcommand{\slideleftmargin}{10mm} |
61 |
\renewcommand{\sliderightmargin}{10mm} |
62 |
\renewcommand{\slidetopmargin}{10mm} |
63 |
\renewcommand{\slidebottommargin}{15mm} |
64 |
|
65 |
% Landscape printing sequence (for dvips) |
66 |
|
67 |
\renewcommand{\printlandscape}{\special{landscape}} |
68 |
|
69 |
|
70 |
% My-itemize environment (3 levels): essentially not indented from |
71 |
% the left margin. New second- and third-level item markers. |
72 |
|
73 |
\newenvironment{myt} |
74 |
{\begin{list}{$\bullet$}% |
75 |
{\setlength{\labelwidth}{9pt}% |
76 |
\setlength{\labelsep}{4pt}% |
77 |
\setlength{\leftmargin}{13pt}% |
78 |
\setlength{\topsep}{\parskip}% |
79 |
\setlength{\partopsep}{\parskip}% |
80 |
\setlength{\itemsep}{0pt}}}% |
81 |
{\end{list}} |
82 |
|
83 |
|
84 |
\newenvironment{myt1} |
85 |
{\begin{list}{$\star$}% |
86 |
{\setlength{\labelwidth}{9pt}% |
87 |
\setlength{\labelsep}{4pt}% |
88 |
\setlength{\leftmargin}{13pt}% |
89 |
\setlength{\topsep}{0pt}% |
90 |
\setlength{\partopsep}{\parskip}% |
91 |
\setlength{\itemsep}{0pt}}}% |
92 |
{\end{list}} |
93 |
|
94 |
\newenvironment{myt2} |
95 |
{\begin{list}{$\rightsquigarrow$}% |
96 |
{\setlength{\labelwidth}{9pt}% |
97 |
\setlength{\labelsep}{4pt}% |
98 |
\setlength{\leftmargin}{13pt}% |
99 |
\setlength{\topsep}{0pt}% |
100 |
\setlength{\partopsep}{\parskip}% |
101 |
\setlength{\itemsep}{0pt}}}% |
102 |
{\end{list}} |
103 |
|
104 |
|
105 |
% Colors |
106 |
|
107 |
\definecolor{Red}{rgb}{1,0,0} % Text |
108 |
\definecolor{Green}{rgb}{0,1,0} |
109 |
\definecolor{Blue}{rgb}{0,0,1} |
110 |
\definecolor{SaddleBrown}{rgb}{0.55,0.27,0.07} % Page borders |
111 |
\definecolor{Blue2}{rgb}{0,0,0.93} |
112 |
\definecolor{Gold}{rgb}{1,0.84,0} |
113 |
%\definecolor{MintCream}{rgb}{0.96,1,0.98} % Page background |
114 |
\definecolor{NavyBlue}{rgb}{0,0,0.5} % Title page |
115 |
\definecolor{Green3}{rgb}{0,0.8,0} |
116 |
\definecolor{DarkSlateGray}{rgb}{0.18,0.31,0.31} |
117 |
\definecolor{Purple2}{rgb}{0.57,0.17,0.93} |
118 |
|
119 |
% Page and slides parameters |
120 |
|
121 |
\newpagestyle{slidot} |
122 |
{\color{Gold}\rule{10mm}{1.5pt}% |
123 |
\lower.22ex\hbox{% |
124 |
\textcolor{Blue2}{~~University of Notre Dame~~}}% |
125 |
\leavevmode\leaders\hrule height1.5pt\hfil} |
126 |
{\color{Gold}\rule{5mm}{1.5pt}% |
127 |
\lower.22ex\hbox{% |
128 |
\textcolor{SaddleBrown}{~~Matthew Meineke~~}}% |
129 |
\leavevmode\leaders\hrule height1.5pt\hfil% |
130 |
\lower.32ex\hbox{% |
131 |
\textcolor{Blue2}{~~\thepage~~}}% |
132 |
\rule{5mm}{1.5pt}} |
133 |
|
134 |
\pagestyle{slidot} |
135 |
|
136 |
|
137 |
|
138 |
|
139 |
% A couple of new counters for slide sequences |
140 |
|
141 |
\newcounter{sliq} |
142 |
\newcounter{slisup} |
143 |
\renewcommand{\thesliq}{\Roman{sliq}} |
144 |
\renewcommand{\theslisup}{\Roman{slisup}} |
145 |
|
146 |
% Set the background color of every slide |
147 |
|
148 |
\special{!userdict begin /bop-hook {gsave |
149 |
0.96 1 0.98 setrgbcolor clippath fill |
150 |
grestore} def end |
151 |
} |
152 |
|
153 |
% And here we are... |
154 |
|
155 |
\setcounter{slide}{-1} |
156 |
%\includeonly{slide10} |
157 |
|
158 |
|
159 |
|
160 |
|
161 |
|
162 |
|
163 |
% ---------------------- |
164 |
% | Title | |
165 |
% ---------------------- |
166 |
|
167 |
\title{A Mezzoscale Model for Phospholipid MD Simulations} |
168 |
|
169 |
\author{Matthew A. Meineke\\ |
170 |
Department of Chemistry and Biochemistry\\ |
171 |
University of Notre Dame\\ |
172 |
Notre Dame, Indiana 46556} |
173 |
|
174 |
\date{\today} |
175 |
|
176 |
%------------------------------------------------------------------- |
177 |
% Begin Document |
178 |
|
179 |
\begin{document} |
180 |
|
181 |
%\maketitle |
182 |
|
183 |
|
184 |
|
185 |
|
186 |
|
187 |
\nobibliography{canidacy_slides} |
188 |
\bibliographystyle{jurabib} |
189 |
|
190 |
|
191 |
% Slide 0 Title slide |
192 |
\begin{slide} |
193 |
\begin{center} |
194 |
\bfseries |
195 |
\fontsize{24pt}{30pt}\selectfont \color{Black} |
196 |
A Mezzoscale Model for Phospholipid MD Simulations \par |
197 |
\fontsize{16pt}{20pt}\selectfont \color{Green3} |
198 |
Matthew A. Meineke\par |
199 |
\fontsize{12pt}{15pt}\selectfont \color{Purple2} |
200 |
Department of Chemistry and Biochemisty \par |
201 |
University of Notre Dame \par |
202 |
Notre Dame, IN 46556 \par |
203 |
\fontsize{12pt}{15pt}\selectfont \color{Red} \date{today} \par |
204 |
\end{center} |
205 |
\end{slide} |
206 |
|
207 |
% Slide 1 |
208 |
\begin{slide} {Talk Outline} |
209 |
\begin{itemize} |
210 |
|
211 |
\item Discussion of the research motivation and goals |
212 |
|
213 |
\item Methodology |
214 |
|
215 |
\item Discussion of current research and preliminary results |
216 |
|
217 |
\item Future research |
218 |
|
219 |
\end{itemize} |
220 |
\end{slide} |
221 |
|
222 |
|
223 |
% Slide 2 |
224 |
|
225 |
\begin{slide} |
226 |
|
227 |
\centerline{\LARGE Motivation A: |
228 |
Long Length Scales} |
229 |
\begin{wrapfigure}{r}{60mm} |
230 |
|
231 |
\epsfxsize=45mm |
232 |
\epsfbox{ripple.epsi} |
233 |
|
234 |
\end{wrapfigure} |
235 |
|
236 |
|
237 |
|
238 |
|
239 |
%\epsfbox{ripple.epsi} |
240 |
%\begin{floatingfigure}{0.45\linewidth} |
241 |
% \incffig{ripple.epsi} |
242 |
%\end{floatingfigure} |
243 |
|
244 |
|
245 |
|
246 |
\mbox{} |
247 |
Ripple phase: |
248 |
\begin{itemize} |
249 |
|
250 |
\item |
251 |
The ripple (~$P_{\beta'}$~) phase lies in the transition from the gel |
252 |
to fluid phase. |
253 |
|
254 |
\item |
255 |
Periodicity of 100 - 200 $\mbox{\AA}$\footcite{Berne90} |
256 |
|
257 |
\end{itemize} |
258 |
\vspace{30mm} |
259 |
\end{slide} |
260 |
|
261 |
|
262 |
|
263 |
|
264 |
|
265 |
|
266 |
\begin{slide}{Motivation} |
267 |
|
268 |
There is a strong need in phospholipid bilayer simulations for the |
269 |
capability to simulate both long time and length scales. Consider the |
270 |
following: |
271 |
|
272 |
\begin{itemize} |
273 |
|
274 |
\item Drug diffusion |
275 |
\begin{itemize} |
276 |
\item Some drug molecules may spend an appreciable time in the |
277 |
membrane. Long time scale dynamics are needed to observe and |
278 |
characterize their actions. |
279 |
\end{itemize} |
280 |
|
281 |
\item Ripple phase |
282 |
\begin{itemize} |
283 |
\item Between the bilayer gel and fluid phase there exists a ripple |
284 |
phase. This phase has a period of about 100 - 200 $\mbox{\AA}$. |
285 |
\end{itemize} |
286 |
|
287 |
\item Bilayer formation dynamics |
288 |
\begin{itemize} |
289 |
\item Initial simulations show that bilayers can take upwards of |
290 |
20 ns to form completely. |
291 |
\end{itemize} |
292 |
|
293 |
\end{itemize} |
294 |
\end{slide} |
295 |
|
296 |
|
297 |
% Slide 4 |
298 |
|
299 |
\begin{slide}{Length Scale Simplification} |
300 |
\begin{itemize} |
301 |
|
302 |
\item |
303 |
Replace any charged interactions of the system with dipoles. |
304 |
|
305 |
\begin{itemize} |
306 |
\item Allows for computational scaling approximately by $N$ for |
307 |
dipole-dipole interactions. |
308 |
\item In contrast, the Ewald sum scales approximately by $N \log N$. |
309 |
\end{itemize} |
310 |
|
311 |
\item |
312 |
Use unified models for the water and the lipid chain. |
313 |
|
314 |
\begin{itemize} |
315 |
\item Drastically reduces the number of atoms to simulate. |
316 |
\item Number of water interactions alone reduced by $\frac{1}{3}$. |
317 |
\end{itemize} |
318 |
\end{itemize} |
319 |
\end{slide} |
320 |
|
321 |
|
322 |
% Slide 5 |
323 |
|
324 |
\begin{slide}{Time Scale Simplification} |
325 |
\begin{itemize} |
326 |
|
327 |
\item |
328 |
No explicit hydrogens |
329 |
|
330 |
\begin{itemize} |
331 |
\item Hydrogen bond vibration is normally one of the fastest time |
332 |
events in a simulation. |
333 |
\end{itemize} |
334 |
|
335 |
\item |
336 |
Constrain all bonds to be of fixed length. |
337 |
|
338 |
\begin{itemize} |
339 |
\item As with the hydrogens, bond vibrations are the fastest motion in |
340 |
a simulation |
341 |
\end{itemize} |
342 |
|
343 |
\item |
344 |
Allows time steps of up to 3 fs with the current integrator. |
345 |
|
346 |
\end{itemize} |
347 |
\end{slide} |
348 |
|
349 |
|
350 |
% Slide 6 |
351 |
\begin{slide}{Molecular Dynamics} |
352 |
|
353 |
All of our simulations will be carried out using molecular |
354 |
dynamics. This involves solving Newton's equations of motion using |
355 |
the classical \emph{Hamiltonian} as follows: |
356 |
|
357 |
\begin{equation} |
358 |
H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q}) |
359 |
\end{equation} |
360 |
|
361 |
Here $T(\vec{p})$ is the kinetic energy of the system which is a |
362 |
function of momentum. In Cartesian space, $T(\vec{p})$ can be |
363 |
written as: |
364 |
|
365 |
\begin{equation} |
366 |
T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}} |
367 |
\end{equation} |
368 |
|
369 |
\end{slide} |
370 |
|
371 |
|
372 |
% Slide 7 |
373 |
\begin{slide}{The Potential} |
374 |
|
375 |
The main part of the simulation is then the calculation of forces from |
376 |
the potential energy. |
377 |
|
378 |
\begin{equation} |
379 |
\vec{F}(\vec{q}) = - \nabla V(\vec{q}) |
380 |
\end{equation} |
381 |
|
382 |
The potential itself is made of several parts. |
383 |
|
384 |
\begin{equation} |
385 |
V_{tot} = |
386 |
\overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} + |
387 |
\overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}} |
388 |
\end{equation} |
389 |
|
390 |
Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are |
391 |
the bond, bend, and torsion potentials, and the non-bonded |
392 |
interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the |
393 |
lenard-jones, dipole-dipole, and sticky potential interactions. |
394 |
|
395 |
\end{slide} |
396 |
|
397 |
|
398 |
% Slide 8 |
399 |
|
400 |
\begin{slide}{Soft Sticky Dipole Model} |
401 |
|
402 |
The Soft-Sticky model for water is a reduced model. |
403 |
|
404 |
\begin{itemize} |
405 |
|
406 |
\item |
407 |
The model is represented by a single point mass at the water's center |
408 |
of mass. |
409 |
|
410 |
\item |
411 |
The point mass contains a fixed dipole of 2.35 D pointing from the |
412 |
oxygens toward the hydrogens. |
413 |
|
414 |
\end{itemize} |
415 |
|
416 |
It's potential is as follows: |
417 |
|
418 |
\begin{equation} |
419 |
V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
420 |
+ V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
421 |
\end{equation} |
422 |
\end{slide} |
423 |
|
424 |
% Slide 8b |
425 |
|
426 |
\begin{slide}{SSD Diagram} |
427 |
|
428 |
\begin{center} |
429 |
\begin{figure} |
430 |
\epsfxsize=50mm |
431 |
\epsfbox{ssd.epsi} |
432 |
\end{figure} |
433 |
\end{center} |
434 |
|
435 |
A Diagram of the SSD model. |
436 |
\end{slide} |
437 |
|
438 |
% Slide 9 |
439 |
\begin{slide}{Hydrogen Bonding in SSD} |
440 |
|
441 |
It is important to note that SSD has a potential specifically to |
442 |
recreate the hydrogen bonding network of water. |
443 |
|
444 |
|
445 |
ICE SSD |
446 |
|
447 |
ICE point Dipole |
448 |
|
449 |
|
450 |
The importance of the hydrogen bond network is it's significant |
451 |
contribution to the hydrophobic driving force of bilayer formation. |
452 |
\end{slide} |
453 |
|
454 |
|
455 |
% Slide 10 |
456 |
|
457 |
\begin{slide}{The Lipid Model} |
458 |
|
459 |
To eliminate the need for charge-charge interactions, our lipid model |
460 |
replaces the phospholipid head group with a single large head group |
461 |
atom containing a freely oriented dipole. The tail is a simple alkane chain. |
462 |
|
463 |
Lipid Properties: |
464 |
\begin{itemize} |
465 |
\item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$ |
466 |
\item $m_{\text{HEAD}} = 196\ \text{amu}$ |
467 |
\item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms |
468 |
\begin{itemize} |
469 |
\item Alkane forcefield parameters taken from TraPPE |
470 |
\end{itemize} |
471 |
\end{itemize} |
472 |
|
473 |
\end{slide} |
474 |
|
475 |
|
476 |
% Slide 11 |
477 |
|
478 |
\begin{slide}{Lipid Model} |
479 |
|
480 |
|
481 |
|
482 |
\end{slide} |
483 |
|
484 |
|
485 |
% Slide 12 |
486 |
|
487 |
\begin{slide}{Initial Runs: 25 Lipids in water} |
488 |
|
489 |
\textbf{Simulation Parameters:} |
490 |
|
491 |
\begin{itemize} |
492 |
|
493 |
\item Starting Configuration: |
494 |
\begin{itemize} |
495 |
\item 25 lipid molecules arranged in a 5 x 5 square |
496 |
\item square was surrounded by a sea of 1386 waters |
497 |
\begin{itemize} |
498 |
\item final water to lipid ratio was 55.4:1 |
499 |
\end{itemize} |
500 |
\end{itemize} |
501 |
|
502 |
\item Lipid had only a single saturated chain of 16 carbons |
503 |
|
504 |
\item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ |
505 |
|
506 |
\item dt = 2.0 - 3.0 fs |
507 |
|
508 |
\item T = 300 K |
509 |
|
510 |
\item NVE ensemble |
511 |
|
512 |
\item Periodic boundary conditions |
513 |
\end{itemize} |
514 |
|
515 |
\end{slide} |
516 |
|
517 |
|
518 |
% Slide 13 |
519 |
|
520 |
\begin{slide}{5x5: Initial} |
521 |
|
522 |
\begin{center} |
523 |
\begin{figure} |
524 |
\epsfxsize=50mm |
525 |
\epsfbox{5x5-initial.eps} |
526 |
\end{figure} |
527 |
\end{center} |
528 |
|
529 |
The initial configuration |
530 |
|
531 |
\end{slide} |
532 |
|
533 |
\begin{slide}{5x5: Final} |
534 |
|
535 |
\begin{center} |
536 |
\begin{figure} |
537 |
\epsfxsize=60mm |
538 |
\epsfbox{5x5-1.7ns.eps} |
539 |
\end{figure} |
540 |
\end{center} |
541 |
|
542 |
The final configuration at 1.7 ns. |
543 |
|
544 |
\end{slide} |
545 |
|
546 |
|
547 |
% Slide 14 |
548 |
|
549 |
\begin{slide}{5x5: $g(r)$} |
550 |
|
551 |
\begin{center} |
552 |
\begin{figure} |
553 |
\epsfxsize=60mm |
554 |
\epsfbox{all5x5-HEAD-HEAD-gr.eps} |
555 |
\end{figure} |
556 |
\end{center} |
557 |
|
558 |
|
559 |
\end{slide} |
560 |
|
561 |
\begin{slide}{5x5: $g(r)$} |
562 |
|
563 |
\begin{center} |
564 |
\begin{figure} |
565 |
\epsfxsize=60mm |
566 |
\epsfbox{all5x5-HEAD-X-gr.eps} |
567 |
\end{figure} |
568 |
\end{center} |
569 |
|
570 |
|
571 |
\end{slide} |
572 |
|
573 |
|
574 |
% Slide 15 |
575 |
|
576 |
\begin{slide}{5x5: $\cos$ correlations} |
577 |
|
578 |
\begin{center} |
579 |
\begin{figure} |
580 |
\epsfxsize=60mm |
581 |
\epsfbox{all5x5-HEAD-HEAD-cr.eps} |
582 |
\end{figure} |
583 |
\end{center} |
584 |
|
585 |
\end{slide} |
586 |
|
587 |
\begin{slide}{5x5: $\cos$ correlations} |
588 |
|
589 |
\begin{center} |
590 |
\begin{figure} |
591 |
\epsfxsize=60mm |
592 |
\epsfbox{all5x5-HEAD-X-cr.eps} |
593 |
\end{figure} |
594 |
\end{center} |
595 |
|
596 |
\end{slide} |
597 |
|
598 |
|
599 |
% Slide 16 |
600 |
|
601 |
\begin{slide}{Initial Runs: 50 Lipids randomly arranged in water} |
602 |
|
603 |
\textbf{Simulation Parameters:} |
604 |
|
605 |
\begin{itemize} |
606 |
|
607 |
\item Starting Configuration: |
608 |
\begin{itemize} |
609 |
\item 50 lipid molecules arranged randomly in a rectangular box |
610 |
\item The box was then filled with 1384 waters |
611 |
\begin{itemize} |
612 |
\item final water to lipid ratio was 27:1 |
613 |
\end{itemize} |
614 |
\end{itemize} |
615 |
|
616 |
\item Lipid had only a single saturated chain of 16 carbons |
617 |
|
618 |
\item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$ |
619 |
|
620 |
\item dt = 2.0 - 3.0 fs |
621 |
|
622 |
\item T = 300 K |
623 |
|
624 |
\item NVE ensemble |
625 |
|
626 |
\item Periodic boundary conditions |
627 |
|
628 |
\end{itemize} |
629 |
|
630 |
\end{slide} |
631 |
|
632 |
|
633 |
% Slide 17 |
634 |
|
635 |
\begin{slide}{R-50: Initial} |
636 |
|
637 |
\begin{center} |
638 |
\begin{figure} |
639 |
\epsfxsize=100mm |
640 |
\epsfbox{r50-initial.eps} |
641 |
\end{figure} |
642 |
\end{center} |
643 |
|
644 |
The initial configuration |
645 |
|
646 |
\end{slide} |
647 |
|
648 |
\begin{slide}{R-50: Final} |
649 |
|
650 |
\begin{center} |
651 |
\begin{figure} |
652 |
\epsfxsize=100mm |
653 |
\epsfbox{r50-521ps.eps} |
654 |
\end{figure} |
655 |
\end{center} |
656 |
|
657 |
The fianl configuration at 521 ps |
658 |
|
659 |
\end{slide} |
660 |
|
661 |
|
662 |
% Slide 18 |
663 |
|
664 |
\begin{slide}{R-50: $g(r)$} |
665 |
|
666 |
|
667 |
\begin{center} |
668 |
\begin{figure} |
669 |
\epsfxsize=60mm |
670 |
\epsfbox{r50-HEAD-HEAD-gr.eps} |
671 |
\end{figure} |
672 |
\end{center} |
673 |
|
674 |
\end{slide} |
675 |
|
676 |
|
677 |
\begin{slide}{R-50: $g(r)$} |
678 |
|
679 |
|
680 |
\begin{center} |
681 |
\begin{figure} |
682 |
\epsfxsize=60mm |
683 |
\epsfbox{r50-HEAD-X-gr.eps} |
684 |
\end{figure} |
685 |
\end{center} |
686 |
|
687 |
\end{slide} |
688 |
|
689 |
|
690 |
% Slide 19 |
691 |
|
692 |
\begin{slide}{R-50: $\cos$ correlations} |
693 |
|
694 |
|
695 |
\begin{center} |
696 |
\begin{figure} |
697 |
\epsfxsize=60mm |
698 |
\epsfbox{r50-HEAD-HEAD-cr.eps} |
699 |
\end{figure} |
700 |
\end{center} |
701 |
|
702 |
\end{slide} |
703 |
|
704 |
\begin{slide}{R-50: $\cos$ correlations} |
705 |
|
706 |
|
707 |
\begin{center} |
708 |
\begin{figure} |
709 |
\epsfxsize=60mm |
710 |
\epsfbox{r50-HEAD-X-cr.eps} |
711 |
\end{figure} |
712 |
\end{center} |
713 |
|
714 |
\end{slide} |
715 |
|
716 |
|
717 |
% Slide 20 |
718 |
|
719 |
\begin{slide}{Future Directions} |
720 |
|
721 |
\begin{itemize} |
722 |
|
723 |
\item |
724 |
Simulation of a lipid with 2 chains, or perhaps expand the current |
725 |
unified chain atoms to take up greater steric bulk. |
726 |
|
727 |
\item |
728 |
Incorporate constant pressure and constant temperature into the ensemble. |
729 |
|
730 |
\item |
731 |
Parrellize the code. |
732 |
|
733 |
\end{itemize} |
734 |
\end{slide} |
735 |
|
736 |
|
737 |
% Slide 21 |
738 |
|
739 |
\begin{slide}{Acknowledgements} |
740 |
|
741 |
\begin{itemize} |
742 |
|
743 |
\item Dr. J. Daniel Gezelter |
744 |
\item Christopher Fennel |
745 |
\item Charles Vardeman |
746 |
\item Teng Lin |
747 |
|
748 |
\end{itemize} |
749 |
|
750 |
Funding by: |
751 |
\begin{itemize} |
752 |
\item Dreyfus New Faculty Award |
753 |
\end{itemize} |
754 |
|
755 |
\end{slide} |
756 |
|
757 |
|
758 |
|
759 |
|
760 |
|
761 |
|
762 |
|
763 |
|
764 |
%%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
765 |
|
766 |
\end{document} |