1 |
% temporary preamble |
2 |
|
3 |
\documentclass{seminar} |
4 |
\usepackage{color} |
5 |
\usepackage{amsmath} |
6 |
\usepackage{amssymb} |
7 |
\usepackage{epsf} |
8 |
|
9 |
% ---------------------- |
10 |
% | Title | |
11 |
% ---------------------- |
12 |
|
13 |
\title{A Coarse Grain Model for Phospholipid MD Simulations} |
14 |
|
15 |
\author{Matthew A. Meineke\\ |
16 |
Department of Chemistry and Biochemistry\\ |
17 |
University of Notre Dame\\ |
18 |
Notre Dame, Indiana 46556} |
19 |
|
20 |
\date{\today} |
21 |
|
22 |
%------------------------------------------------------------------- |
23 |
% Begin Document |
24 |
|
25 |
\begin{document} |
26 |
\maketitle |
27 |
|
28 |
|
29 |
|
30 |
% Slide 1 |
31 |
\begin{slide} {Talk Outline} |
32 |
\begin{itemize} |
33 |
|
34 |
\item Discussion of the research motivation and goals |
35 |
|
36 |
\item Methodology |
37 |
|
38 |
\item Discussion of current research and preliminary results |
39 |
|
40 |
\item Future research |
41 |
|
42 |
\end{itemize} |
43 |
\end{slide} |
44 |
|
45 |
|
46 |
% Slide 2 |
47 |
|
48 |
\begin{slide}{Motivation} |
49 |
\begin{itemize} |
50 |
|
51 |
% make sure to come back and talk about the need for long time and length |
52 |
% scales |
53 |
|
54 |
\item Drug diffusion |
55 |
|
56 |
\item ripple phase |
57 |
|
58 |
\item bilayer formation dynamics |
59 |
|
60 |
\end{itemize} |
61 |
\end{slide} |
62 |
|
63 |
|
64 |
% Slide 3 |
65 |
|
66 |
\begin{slide}{Research Goals} |
67 |
\begin{itemize} |
68 |
|
69 |
\item |
70 |
To develop a coarse-grain simulation model with which to simulate |
71 |
phospholipid bilayers. |
72 |
|
73 |
\item To use the model to observe: |
74 |
|
75 |
\begin{itemize} |
76 |
|
77 |
\item Phospholipid properties with long length scales |
78 |
|
79 |
\begin{itemize} |
80 |
\item The ripple phase. |
81 |
\end{itemize} |
82 |
|
83 |
\item Long time scale dynamics of biological relevance |
84 |
|
85 |
\begin{itemize} |
86 |
\item Trans-membrane diffusion of drug molecules |
87 |
\end{itemize} |
88 |
\end{itemize} |
89 |
\end{itemize} |
90 |
\end{slide} |
91 |
|
92 |
|
93 |
% Slide 4 |
94 |
|
95 |
\begin{slide}{Length Scale Simplification} |
96 |
\begin{itemize} |
97 |
|
98 |
\item |
99 |
Replace any charged interactions of the system with dipoles. |
100 |
|
101 |
\begin{itemize} |
102 |
\item Allows for computational scaling approximately by $N$ for |
103 |
dipole-dipole interactions. |
104 |
\item In contrast, the Ewald sum scales approximately by $N \log N$. |
105 |
\end{itemize} |
106 |
|
107 |
\item |
108 |
Use unified models for the water and the lipid chain. |
109 |
|
110 |
\begin{itemize} |
111 |
\item Drastically reduces the number of atoms to simulate. |
112 |
\item Number of water interactions alone reduced by $\frac{1}{3}$. |
113 |
\end{itemize} |
114 |
\end{itemize} |
115 |
\end{slide} |
116 |
|
117 |
|
118 |
% Slide 5 |
119 |
|
120 |
\begin{slide}{Time Scale Simplification} |
121 |
\begin{itemize} |
122 |
|
123 |
\item |
124 |
No explicit hydrogens |
125 |
|
126 |
\begin{itemize} |
127 |
\item Hydrogen bond vibration is normally one of the fastest time |
128 |
events in a simulation. |
129 |
\end{itemize} |
130 |
|
131 |
\item |
132 |
Constrain all bonds to be of fixed length. |
133 |
|
134 |
\begin{itemize} |
135 |
\item As with the hydrogens, bond vibrations are the fastest motion in |
136 |
a simulation |
137 |
\end{itemize} |
138 |
|
139 |
\item |
140 |
Allows time steps of up to 3 fs with the current integrator. |
141 |
|
142 |
\end{itemize} |
143 |
\end{slide} |
144 |
|
145 |
|
146 |
% Slide 6 |
147 |
\begin{slide}{Molecular Dynamics} |
148 |
|
149 |
All of our simulations will be carried out using molecular |
150 |
dynamics. This involves solving Newton's equations of motion using |
151 |
the classical \emph{Hamiltonian} as follows: |
152 |
|
153 |
\begin{equation} |
154 |
H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q}) |
155 |
\end{equation} |
156 |
|
157 |
Here $T(\vec{p})$ is the kinetic energy of the system which is a |
158 |
function of momentum. In Cartesian space, $T(\vec{p})$ can be |
159 |
written as: |
160 |
|
161 |
\begin{equation} |
162 |
T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}} |
163 |
\end{equation} |
164 |
|
165 |
\end{slide} |
166 |
|
167 |
|
168 |
% Slide 7 |
169 |
\begin{slide}{The Potential} |
170 |
|
171 |
The main part of the simulation is then the calculation of forces from |
172 |
the potential energy. |
173 |
|
174 |
\begin{equation} |
175 |
\vec{F}(\vec{q}) = - \nabla V(\vec{q}) |
176 |
\end{equation} |
177 |
|
178 |
The potential itself is made of several parts. |
179 |
|
180 |
\begin{equation} |
181 |
V_{tot} = |
182 |
\overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} + |
183 |
\overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}} |
184 |
\end{equation} |
185 |
|
186 |
Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are |
187 |
the bond, bend, and torsion potentials, and the non-bonded |
188 |
interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the |
189 |
lenard-jones, dipole-dipole, and sticky potential interactions. |
190 |
|
191 |
\end{slide} |
192 |
|
193 |
|
194 |
% Slide 8 |
195 |
|
196 |
\begin{slide}{Soft Sticky Dipole Model} |
197 |
|
198 |
The Soft-Sticky model for water is a reduced model. |
199 |
|
200 |
\begin{itemize} |
201 |
|
202 |
\item |
203 |
The model is represented by a single point mass at the water's center |
204 |
of mass. |
205 |
|
206 |
\item |
207 |
The point mass contains a fixed dipole of 2.35 D pointing from the |
208 |
oxygens toward the hydrogens. |
209 |
|
210 |
\end{itemize} |
211 |
|
212 |
\color{red} |
213 |
!!!!!!!!!!!!!SSD image goes here.!!!!!!!!!!!!!!!! |
214 |
\color{black} |
215 |
|
216 |
|
217 |
It's potential is as follows: |
218 |
|
219 |
\begin{equation} |
220 |
V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
221 |
+ V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
222 |
\end{equation} |
223 |
\end{slide} |
224 |
|
225 |
|
226 |
% Slide 9 |
227 |
\begin{slide}{Hydrogen Bonding in SSD} |
228 |
|
229 |
It is important to note that SSD has a potential specifically to |
230 |
recreate the hydrogen bonding network of water. |
231 |
|
232 |
\color{red} |
233 |
ICE SSD |
234 |
|
235 |
ICE point Dipole |
236 |
\color{black} |
237 |
|
238 |
The importance of the hydrogen bond network is it's significant |
239 |
contribution to the hydrophobic driving force of bilayer formation. |
240 |
\end{slide} |
241 |
|
242 |
|
243 |
% Slide 10 |
244 |
|
245 |
\begin{slide}{The Lipid Model} |
246 |
|
247 |
To eliminate the need for charge-charge interactions, our lipid model |
248 |
replaces the phospholipid head group with a single large head group |
249 |
atom containing a freely oriented dipole. The tail is a simple alkane chain. |
250 |
|
251 |
Lipid Properties: |
252 |
\begin{itemize} |
253 |
\item $|\vec{\mu}_{\text{HEAD}}| = 20.6\ \text{D}$ |
254 |
\item $m_{\text{HEAD}} = 196\ \text{amu}$ |
255 |
\item Tail atoms are unified CH, $\text{CH}_2$, and $\text{CH}_3$ atoms |
256 |
\begin{itemize} |
257 |
\item Alkane forcefield parameters taken from TraPPE |
258 |
\end{itemize} |
259 |
\end{itemize} |
260 |
|
261 |
\end{slide} |
262 |
|
263 |
|
264 |
% Slide 11 |
265 |
|
266 |
\begin{slide}{Lipid Model} |
267 |
|
268 |
\color{red} |
269 |
|
270 |
Look at me, I'm a lipid.!!!!!!!! |
271 |
|
272 |
YAY!!!!!!!!!!!!!!!!!!!!! |
273 |
\color{black} |
274 |
|
275 |
\end{slide} |
276 |
|
277 |
|
278 |
% Slide 12 |
279 |
|
280 |
\begin{slide}{Initial Runs: 25 Lipids in water} |
281 |
|
282 |
\textbf{Simulation Parameters:} |
283 |
|
284 |
\begin{itemize} |
285 |
|
286 |
\item Starting Configuration: |
287 |
\begin{itemize} |
288 |
\item 25 lipid molecules arranged in a 5 x 5 square |
289 |
\item square was surrounded by a sea of 1386 waters |
290 |
\begin{itemize} |
291 |
\item final water to lipid ratio was 55.4:1 |
292 |
\end{itemize} |
293 |
\end{itemize} |
294 |
|
295 |
\item Lipid had only a single saturated chain of 16 carbons |
296 |
|
297 |
\item Box Size: 34.5 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ x 39.4 $\mbox{\AA}$ |
298 |
|
299 |
\item dt = 2.0 - 3.0 fs |
300 |
|
301 |
\item T = 300 K |
302 |
|
303 |
\item NVE ensemble |
304 |
|
305 |
\item Periodic boundary conditions |
306 |
\end{itemize} |
307 |
|
308 |
\end{slide} |
309 |
|
310 |
|
311 |
% Slide 13 |
312 |
|
313 |
\begin{slide}{5x5: Initial and Final} |
314 |
|
315 |
\color{red} |
316 |
picture of initial |
317 |
|
318 |
picture of final |
319 |
\color{black} |
320 |
|
321 |
\end{slide} |
322 |
|
323 |
|
324 |
% Slide 14 |
325 |
|
326 |
\begin{slide}{5x5: $g(r)$} |
327 |
|
328 |
\color{red} |
329 |
|
330 |
GofR's baby |
331 |
|
332 |
\color{black} |
333 |
|
334 |
\end{slide} |
335 |
|
336 |
|
337 |
% Slide 15 |
338 |
|
339 |
\begin{slide}{5x5: $\cos$ correlations} |
340 |
|
341 |
\color{red} |
342 |
Cosine correlation functions |
343 |
\color{black} |
344 |
|
345 |
\end{slide} |
346 |
|
347 |
|
348 |
% Slide 16 |
349 |
|
350 |
\begin{slide}{Initial Runs: 50 Lipids randomly arranged in water} |
351 |
|
352 |
\textbf{Simulation Parameters:} |
353 |
|
354 |
\begin{itemize} |
355 |
|
356 |
\item Starting Configuration: |
357 |
\begin{itemize} |
358 |
\item 50 lipid molecules arranged randomly in a rectangular box |
359 |
\item The box was then filled with 1384 waters |
360 |
\begin{itemize} |
361 |
\item final water to lipid ratio was 27:1 |
362 |
\end{itemize} |
363 |
\end{itemize} |
364 |
|
365 |
\item Lipid had only a single saturated chain of 16 carbons |
366 |
|
367 |
\item Box Size: 26.6 $\mbox{\AA}$ x 26.6 $\mbox{\AA}$ x 108.4 $\mbox{\AA}$ |
368 |
|
369 |
\item dt = 2.0 - 3.0 fs |
370 |
|
371 |
\item T = 300 K |
372 |
|
373 |
\item NVE ensemble |
374 |
|
375 |
\item Periodic boundary conditions |
376 |
|
377 |
\end{itemize} |
378 |
|
379 |
\end{slide} |
380 |
|
381 |
|
382 |
% Slide 17 |
383 |
|
384 |
\begin{slide}{R-50: Initial and Final} |
385 |
|
386 |
\color{red} |
387 |
picture of initial |
388 |
|
389 |
picture of final |
390 |
\color{black} |
391 |
|
392 |
\end{slide} |
393 |
|
394 |
|
395 |
% Slide 18 |
396 |
|
397 |
\begin{slide}{R-50: $g(r)$} |
398 |
|
399 |
\color{red} |
400 |
|
401 |
GofR's baby |
402 |
|
403 |
\color{black} |
404 |
|
405 |
\end{slide} |
406 |
|
407 |
|
408 |
% Slide 19 |
409 |
|
410 |
\begin{slide}{R-50: $\cos$ correlations} |
411 |
|
412 |
\color{red} |
413 |
Cosine correlation functions |
414 |
\color{black} |
415 |
|
416 |
\end{slide} |
417 |
|
418 |
|
419 |
% Slide 20 |
420 |
|
421 |
\begin{slide}{Future Directions} |
422 |
|
423 |
\begin{itemize} |
424 |
|
425 |
\item |
426 |
Simulation of a lipid with 2 chains, or perhaps expand the current |
427 |
unified chain atoms to take up greater steric bulk. |
428 |
|
429 |
\item |
430 |
Incorporate constant pressure and constant temperature into the ensemble. |
431 |
|
432 |
\item |
433 |
Parrellize the code. |
434 |
|
435 |
\end{itemize} |
436 |
\end{slide} |
437 |
|
438 |
|
439 |
% Slide 21 |
440 |
|
441 |
\begin{slide}{Acknowledgements} |
442 |
|
443 |
\begin{itemize} |
444 |
|
445 |
\item Dr. J. Daniel Gezelter |
446 |
\item Christopher Fennel |
447 |
\item Charles Vardeman |
448 |
\item Teng Lin |
449 |
|
450 |
\end{itemize} |
451 |
|
452 |
Funding by: |
453 |
\begin{itemize} |
454 |
\item Dreyfus New Faculty Award |
455 |
\end{itemize} |
456 |
|
457 |
\end{slide} |
458 |
|
459 |
|
460 |
|
461 |
|
462 |
|
463 |
|
464 |
|
465 |
|
466 |
%%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
467 |
|
468 |
\end{document} |