ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/matt_papers/canidacy_talk/canidacy_slides.tex
Revision: 52
Committed: Sat Jul 27 18:12:14 2002 UTC (22 years, 9 months ago) by mmeineke
Content type: application/x-tex
File size: 6290 byte(s)
Log Message:
Skeletons of most every slide

File Contents

# Content
1 % temporary preamble
2
3 \documentclass{seminar}
4 \usepackage{color}
5 \usepackage{amsmath}
6 \usepackage{amssymb}
7 \usepackage{epsf}
8
9 % ----------------------
10 % | Title |
11 % ----------------------
12
13 \title{A Coarse Grain Model for Phospholipid MD Simulations}
14
15 \author{Matthew A. Meineke\\
16 Department of Chemistry and Biochemistry\\
17 University of Notre Dame\\
18 Notre Dame, Indiana 46556}
19
20 \date{\today}
21
22 %-------------------------------------------------------------------
23 % Begin Document
24
25 \begin{document}
26 \maketitle
27
28
29
30 % Slide 1
31 \begin{slide} {Talk Outline}
32 \begin{itemize}
33
34 \item Discussion of the research motivation and goals
35
36 \item Methodology
37
38 \item Discussion of current research and preliminary results
39
40 \item Future research
41
42 \end{itemize}
43 \end{slide}
44
45
46 % Slide 2
47
48 \begin{slide}{Motivation}
49 \begin{itemize}
50
51 % make sure to come back and talk about the need for long time and length
52 % scales
53
54 \item Drug diffusion
55
56 \item ripple phase
57
58 \item bilayer formation dynamics
59
60 \end{itemize}
61 \end{slide}
62
63
64 % Slide 3
65
66 \begin{slide}{Research Goals}
67 \begin{itemize}
68
69 \item
70 To develop a coarse-grain simulation model with which to simulate
71 phospholipid bilayers.
72
73 \item To use the model to observe:
74
75 \begin{itemize}
76
77 \item Phospholipid properties with long length scales
78
79 \begin{itemize}
80 \item The ripple phase.
81 \end{itemize}
82
83 \item Long time scale dynamics of biological relevance
84
85 \begin{itemize}
86 \item Trans-membrane diffusion of drug molecules
87 \end{itemize}
88 \end{itemize}
89 \end{itemize}
90 \end{slide}
91
92
93 % Slide 4
94
95 \begin{slide}{Length Scale Simplification}
96 \begin{itemize}
97
98 \item
99 Replace any charged interactions of the system with dipoles.
100
101 \begin{itemize}
102 \item Allows for computational scaling aproximately by $N$ for
103 dipole-dipole interactions.
104 \item In contrast, the Ewald sum scales aproximately by $N \log N$.
105 \end{itemize}
106
107 \item
108 Use unified models for the water and the lipid chain.
109
110 \begin{itemize}
111 \item Drastically reduces the number of atoms to simulate.
112 \item Number of water interactions alone reduced by $\frac{1}{3}$.
113 \end{itemize}
114 \end{itemize}
115 \end{slide}
116
117
118 % Slide 5
119
120 \begin{slide}{Time Scale Simplification}
121 \begin{itemize}
122
123 \item
124 No explicit hydrogens
125
126 \begin{itemize}
127 \item Hydrogen bond vibration is normally one of the fastest time
128 events in a simulation.
129 \end{itemize}
130
131 \item
132 Constrain all bonds to be of fixed length.
133
134 \begin{itemize}
135 \item As with the hydrgoens, bond vibrations are the fastest motion in
136 asimulation
137 \end{itemize}
138
139 \item
140 Allows time steps of up to 3 fs with the current integrator.
141
142 \end{itemize}
143 \end{slide}
144
145
146 % Slide 6
147 \begin{slide}{Molecular Dynamics}
148
149 All of our simulations will be carried out using molcular
150 dymnamics. This involves solving Newton's equations of motion using
151 the classical \emph{Hamiltonian} as follows:
152
153 \begin{equation}
154 H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q})
155 \end{equation}
156
157 Here $T(\vec{p})$ is the kinetic energy of the system which is a
158 function of momentum. In cartesian space, $T(\vec{p})$ can be
159 written as:
160
161 \begin{equation}
162 T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}}
163 \end{equation}
164
165 \end{slide}
166
167
168 % Slide 7
169 \begin{slide}{The Potential}
170
171 The main part of the simulation is then the calculation of forces from
172 the potential energy.
173
174 \begin{equation}
175 \vec{F}(\vec{q}) = - \nabla V(\vec{q})
176 \end{equation}
177
178 The potential itself is made of several parts.
179
180 \begin{equation}
181 V_{tot} =
182 \overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} +
183 \overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}}
184 \end{equation}
185
186 Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are
187 the bond, bend, and torsion potentials, and the non-bonded
188 interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the
189 lenard-jones, dipole-dipole, and sticky potential interactions.
190
191 \end{slide}
192
193
194 % Slide 8
195
196 \begin{slide}{Soft Sticky Dipole Model}
197
198 The Soft-Sticky model for water is a reduced model.
199
200 \begin{itemize}
201
202 \item
203 The model is represented by a single point mass at the water's center
204 of mass.
205
206 \item
207 The point mass contains a fixed dipole of 2.35 D pointing from the
208 oxegens toward the hydrogens.
209
210 \end{itemize}
211
212 \color{red}
213 !!!!!!!!!!!!!SSD image goes here.!!!!!!!!!!!!!!!!
214 \color{black}
215
216
217 It's potential is as follows:
218
219 \begin{equation}
220 V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
221 + V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j})
222 \end{equation}
223 \end{slide}
224
225
226 % Slide 9
227 \begin{slide}{Hydrogen Bonding in SSD}
228
229 It is important to note that SSD has a potential specifically to
230 recreate the hydrogen bonfding network of water.
231
232 \color{red}
233 ICE SSD
234
235 ICE point Dipole
236 \color{black}
237
238 The importance of the hydrogen bond network is it's signifigant
239 contribution to the hydrophobic driving force of bilayer formation.
240 \end{slide}
241
242
243 % Slide 10
244
245 \begin{slide}{The Lipid Model}
246
247 \color{red}
248
249 Look at me, I'm a lipid.!!!!!!!!
250
251 YAY!!!!!!!!!!!!!!!!!!!!!
252 \color{black}
253
254 \end{slide}
255
256
257 % Slide 11
258
259 \begin{slide}{Initial Runs: 25 Lipids in water}
260
261 \color{red}
262 5x5 parameters
263 \color{black}
264
265 \end{slide}
266
267
268 % Slide 12
269
270 \begin{slide}{5x5: Initial and Final}
271
272 \color{red}
273 picture of initial
274
275 picture of final
276 \color{black}
277
278 \end{slide}
279
280
281 % Slide 13
282
283 \begin{slide}{5x5: $g(r)$}
284
285 \color{red}
286
287 GofR's baby
288
289 \color{black}
290
291 \end{slide}
292
293
294 % Slide 14
295
296 \begin{slide}{5x5: $\cos$ correlations}
297
298 \color{red}
299 Cosine correlation functions
300 \color{black}
301
302 \end{slide}
303
304
305 % Slide 15
306
307 \begin{slide}{Initial Runs: 50 Lipids radomly arrangend in water}
308
309 \color{red}
310 R-50 parameters
311 \color{black}
312
313 \end{slide}
314
315
316 % Slide 16
317
318 \begin{slide}{R-50: Initial and Final}
319
320 \color{red}
321 picture of initial
322
323 picture of final
324 \color{black}
325
326 \end{slide}
327
328
329 % Slide 17
330
331 \begin{slide}{R-50: $g(r)$}
332
333 \color{red}
334
335 GofR's baby
336
337 \color{black}
338
339 \end{slide}
340
341
342 % Slide 18
343
344 \begin{slide}{R-50: $\cos$ correlations}
345
346 \color{red}
347 Cosine correlation functions
348 \color{black}
349
350 \end{slide}
351
352
353 % Slide 19
354
355 \begin{slide}{Future Directions}
356
357 \color{red}
358 THe future is wide open
359 \color{black}
360
361 \end{slide}
362
363
364 % Slide 20
365
366 \begin{slide}{Acknowledgements}
367
368 \color{red}
369 Mad Props to all my homies
370
371 I'll mourn ya till I join Ya.
372 \color{black}
373
374 \end{slide}
375
376
377
378
379
380
381
382
383 %%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
384
385 \end{document}