| 1 |
mmeineke |
49 |
% temporary preamble |
| 2 |
|
|
|
| 3 |
|
|
\documentclass{seminar} |
| 4 |
mmeineke |
52 |
\usepackage{color} |
| 5 |
mmeineke |
49 |
\usepackage{amsmath} |
| 6 |
mmeineke |
52 |
\usepackage{amssymb} |
| 7 |
mmeineke |
49 |
\usepackage{epsf} |
| 8 |
|
|
|
| 9 |
|
|
% ---------------------- |
| 10 |
|
|
% | Title | |
| 11 |
|
|
% ---------------------- |
| 12 |
|
|
|
| 13 |
|
|
\title{A Coarse Grain Model for Phospholipid MD Simulations} |
| 14 |
|
|
|
| 15 |
|
|
\author{Matthew A. Meineke\\ |
| 16 |
|
|
Department of Chemistry and Biochemistry\\ |
| 17 |
|
|
University of Notre Dame\\ |
| 18 |
|
|
Notre Dame, Indiana 46556} |
| 19 |
|
|
|
| 20 |
|
|
\date{\today} |
| 21 |
|
|
|
| 22 |
|
|
%------------------------------------------------------------------- |
| 23 |
|
|
% Begin Document |
| 24 |
|
|
|
| 25 |
|
|
\begin{document} |
| 26 |
|
|
\maketitle |
| 27 |
|
|
|
| 28 |
|
|
|
| 29 |
|
|
|
| 30 |
|
|
% Slide 1 |
| 31 |
|
|
\begin{slide} {Talk Outline} |
| 32 |
|
|
\begin{itemize} |
| 33 |
|
|
|
| 34 |
|
|
\item Discussion of the research motivation and goals |
| 35 |
|
|
|
| 36 |
|
|
\item Methodology |
| 37 |
|
|
|
| 38 |
|
|
\item Discussion of current research and preliminary results |
| 39 |
|
|
|
| 40 |
|
|
\item Future research |
| 41 |
|
|
|
| 42 |
|
|
\end{itemize} |
| 43 |
|
|
\end{slide} |
| 44 |
|
|
|
| 45 |
|
|
|
| 46 |
|
|
% Slide 2 |
| 47 |
|
|
|
| 48 |
|
|
\begin{slide}{Motivation} |
| 49 |
|
|
\begin{itemize} |
| 50 |
|
|
|
| 51 |
|
|
% make sure to come back and talk about the need for long time and length |
| 52 |
|
|
% scales |
| 53 |
|
|
|
| 54 |
|
|
\item Drug diffusion |
| 55 |
|
|
|
| 56 |
|
|
\item ripple phase |
| 57 |
|
|
|
| 58 |
|
|
\item bilayer formation dynamics |
| 59 |
|
|
|
| 60 |
|
|
\end{itemize} |
| 61 |
|
|
\end{slide} |
| 62 |
|
|
|
| 63 |
|
|
|
| 64 |
|
|
% Slide 3 |
| 65 |
|
|
|
| 66 |
|
|
\begin{slide}{Research Goals} |
| 67 |
|
|
\begin{itemize} |
| 68 |
|
|
|
| 69 |
|
|
\item |
| 70 |
|
|
To develop a coarse-grain simulation model with which to simulate |
| 71 |
|
|
phospholipid bilayers. |
| 72 |
|
|
|
| 73 |
|
|
\item To use the model to observe: |
| 74 |
|
|
|
| 75 |
|
|
\begin{itemize} |
| 76 |
|
|
|
| 77 |
|
|
\item Phospholipid properties with long length scales |
| 78 |
|
|
|
| 79 |
|
|
\begin{itemize} |
| 80 |
|
|
\item The ripple phase. |
| 81 |
|
|
\end{itemize} |
| 82 |
|
|
|
| 83 |
|
|
\item Long time scale dynamics of biological relevance |
| 84 |
|
|
|
| 85 |
|
|
\begin{itemize} |
| 86 |
|
|
\item Trans-membrane diffusion of drug molecules |
| 87 |
|
|
\end{itemize} |
| 88 |
|
|
\end{itemize} |
| 89 |
|
|
\end{itemize} |
| 90 |
|
|
\end{slide} |
| 91 |
|
|
|
| 92 |
|
|
|
| 93 |
|
|
% Slide 4 |
| 94 |
|
|
|
| 95 |
|
|
\begin{slide}{Length Scale Simplification} |
| 96 |
|
|
\begin{itemize} |
| 97 |
|
|
|
| 98 |
|
|
\item |
| 99 |
|
|
Replace any charged interactions of the system with dipoles. |
| 100 |
|
|
|
| 101 |
|
|
\begin{itemize} |
| 102 |
|
|
\item Allows for computational scaling aproximately by $N$ for |
| 103 |
|
|
dipole-dipole interactions. |
| 104 |
|
|
\item In contrast, the Ewald sum scales aproximately by $N \log N$. |
| 105 |
|
|
\end{itemize} |
| 106 |
|
|
|
| 107 |
|
|
\item |
| 108 |
|
|
Use unified models for the water and the lipid chain. |
| 109 |
|
|
|
| 110 |
|
|
\begin{itemize} |
| 111 |
|
|
\item Drastically reduces the number of atoms to simulate. |
| 112 |
|
|
\item Number of water interactions alone reduced by $\frac{1}{3}$. |
| 113 |
|
|
\end{itemize} |
| 114 |
|
|
\end{itemize} |
| 115 |
|
|
\end{slide} |
| 116 |
|
|
|
| 117 |
|
|
|
| 118 |
|
|
% Slide 5 |
| 119 |
|
|
|
| 120 |
|
|
\begin{slide}{Time Scale Simplification} |
| 121 |
|
|
\begin{itemize} |
| 122 |
|
|
|
| 123 |
|
|
\item |
| 124 |
|
|
No explicit hydrogens |
| 125 |
|
|
|
| 126 |
|
|
\begin{itemize} |
| 127 |
|
|
\item Hydrogen bond vibration is normally one of the fastest time |
| 128 |
|
|
events in a simulation. |
| 129 |
|
|
\end{itemize} |
| 130 |
|
|
|
| 131 |
|
|
\item |
| 132 |
|
|
Constrain all bonds to be of fixed length. |
| 133 |
|
|
|
| 134 |
|
|
\begin{itemize} |
| 135 |
|
|
\item As with the hydrgoens, bond vibrations are the fastest motion in |
| 136 |
|
|
asimulation |
| 137 |
|
|
\end{itemize} |
| 138 |
|
|
|
| 139 |
|
|
\item |
| 140 |
|
|
Allows time steps of up to 3 fs with the current integrator. |
| 141 |
|
|
|
| 142 |
|
|
\end{itemize} |
| 143 |
|
|
\end{slide} |
| 144 |
|
|
|
| 145 |
|
|
|
| 146 |
|
|
% Slide 6 |
| 147 |
|
|
\begin{slide}{Molecular Dynamics} |
| 148 |
|
|
|
| 149 |
|
|
All of our simulations will be carried out using molcular |
| 150 |
|
|
dymnamics. This involves solving Newton's equations of motion using |
| 151 |
|
|
the classical \emph{Hamiltonian} as follows: |
| 152 |
|
|
|
| 153 |
|
|
\begin{equation} |
| 154 |
|
|
H(\vec{q},\vec{p}) = T(\vec{p}) + V(\vec{q}) |
| 155 |
|
|
\end{equation} |
| 156 |
|
|
|
| 157 |
|
|
Here $T(\vec{p})$ is the kinetic energy of the system which is a |
| 158 |
|
|
function of momentum. In cartesian space, $T(\vec{p})$ can be |
| 159 |
|
|
written as: |
| 160 |
|
|
|
| 161 |
|
|
\begin{equation} |
| 162 |
|
|
T(\vec{p}) = \sum_{i=1}^{N} \sum_{\alpha = x,y,z} \frac{p^{2}_{i\alpha}}{2m_{i}} |
| 163 |
|
|
\end{equation} |
| 164 |
|
|
|
| 165 |
|
|
\end{slide} |
| 166 |
|
|
|
| 167 |
|
|
|
| 168 |
|
|
% Slide 7 |
| 169 |
|
|
\begin{slide}{The Potential} |
| 170 |
|
|
|
| 171 |
|
|
The main part of the simulation is then the calculation of forces from |
| 172 |
|
|
the potential energy. |
| 173 |
|
|
|
| 174 |
|
|
\begin{equation} |
| 175 |
|
|
\vec{F}(\vec{q}) = - \nabla V(\vec{q}) |
| 176 |
|
|
\end{equation} |
| 177 |
|
|
|
| 178 |
|
|
The potential itself is made of several parts. |
| 179 |
|
|
|
| 180 |
|
|
\begin{equation} |
| 181 |
|
|
V_{tot} = |
| 182 |
|
|
\overbrace{V_{l} + V_{\theta} + V_{\omega}}^{\mbox{bonded}} + |
| 183 |
|
|
\overbrace{V_{l\!j} + V_{d\!p} + V_{s\!s\!d}}^{\mbox{non-bonded}} |
| 184 |
|
|
\end{equation} |
| 185 |
|
|
|
| 186 |
|
|
Where the bond interactions $V_{l}$, $V_{\theta}$, and $V_{\omega}$ are |
| 187 |
|
|
the bond, bend, and torsion potentials, and the non-bonded |
| 188 |
mmeineke |
51 |
interactions $V_{l\!j}$, $V_{d\!p}$, and $V_{s\!p}$ are the |
| 189 |
|
|
lenard-jones, dipole-dipole, and sticky potential interactions. |
| 190 |
mmeineke |
49 |
|
| 191 |
|
|
\end{slide} |
| 192 |
|
|
|
| 193 |
|
|
|
| 194 |
mmeineke |
51 |
% Slide 8 |
| 195 |
mmeineke |
49 |
|
| 196 |
mmeineke |
51 |
\begin{slide}{Soft Sticky Dipole Model} |
| 197 |
mmeineke |
49 |
|
| 198 |
mmeineke |
52 |
The Soft-Sticky model for water is a reduced model. |
| 199 |
mmeineke |
49 |
|
| 200 |
mmeineke |
52 |
\begin{itemize} |
| 201 |
mmeineke |
49 |
|
| 202 |
mmeineke |
52 |
\item |
| 203 |
|
|
The model is represented by a single point mass at the water's center |
| 204 |
|
|
of mass. |
| 205 |
mmeineke |
49 |
|
| 206 |
mmeineke |
52 |
\item |
| 207 |
|
|
The point mass contains a fixed dipole of 2.35 D pointing from the |
| 208 |
|
|
oxegens toward the hydrogens. |
| 209 |
mmeineke |
51 |
|
| 210 |
mmeineke |
52 |
\end{itemize} |
| 211 |
mmeineke |
51 |
|
| 212 |
mmeineke |
52 |
\color{red} |
| 213 |
|
|
!!!!!!!!!!!!!SSD image goes here.!!!!!!!!!!!!!!!! |
| 214 |
|
|
\color{black} |
| 215 |
mmeineke |
51 |
|
| 216 |
|
|
|
| 217 |
mmeineke |
52 |
It's potential is as follows: |
| 218 |
|
|
|
| 219 |
|
|
\begin{equation} |
| 220 |
|
|
V_{s\!s\!d} = V_{l\!j}(r_{i\!j}) + V_{d\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 221 |
|
|
+ V_{s\!p}(r_{i\!j},\Omega_{i},\Omega_{j}) |
| 222 |
|
|
\end{equation} |
| 223 |
|
|
\end{slide} |
| 224 |
|
|
|
| 225 |
|
|
|
| 226 |
|
|
% Slide 9 |
| 227 |
|
|
\begin{slide}{Hydrogen Bonding in SSD} |
| 228 |
|
|
|
| 229 |
|
|
It is important to note that SSD has a potential specifically to |
| 230 |
|
|
recreate the hydrogen bonfding network of water. |
| 231 |
|
|
|
| 232 |
|
|
\color{red} |
| 233 |
|
|
ICE SSD |
| 234 |
|
|
|
| 235 |
|
|
ICE point Dipole |
| 236 |
|
|
\color{black} |
| 237 |
|
|
|
| 238 |
|
|
The importance of the hydrogen bond network is it's signifigant |
| 239 |
|
|
contribution to the hydrophobic driving force of bilayer formation. |
| 240 |
|
|
\end{slide} |
| 241 |
|
|
|
| 242 |
|
|
|
| 243 |
|
|
% Slide 10 |
| 244 |
|
|
|
| 245 |
|
|
\begin{slide}{The Lipid Model} |
| 246 |
|
|
|
| 247 |
|
|
\color{red} |
| 248 |
|
|
|
| 249 |
|
|
Look at me, I'm a lipid.!!!!!!!! |
| 250 |
|
|
|
| 251 |
|
|
YAY!!!!!!!!!!!!!!!!!!!!! |
| 252 |
|
|
\color{black} |
| 253 |
|
|
|
| 254 |
|
|
\end{slide} |
| 255 |
|
|
|
| 256 |
|
|
|
| 257 |
|
|
% Slide 11 |
| 258 |
|
|
|
| 259 |
|
|
\begin{slide}{Initial Runs: 25 Lipids in water} |
| 260 |
|
|
|
| 261 |
|
|
\color{red} |
| 262 |
|
|
5x5 parameters |
| 263 |
|
|
\color{black} |
| 264 |
|
|
|
| 265 |
|
|
\end{slide} |
| 266 |
|
|
|
| 267 |
|
|
|
| 268 |
|
|
% Slide 12 |
| 269 |
|
|
|
| 270 |
|
|
\begin{slide}{5x5: Initial and Final} |
| 271 |
|
|
|
| 272 |
|
|
\color{red} |
| 273 |
|
|
picture of initial |
| 274 |
|
|
|
| 275 |
|
|
picture of final |
| 276 |
|
|
\color{black} |
| 277 |
|
|
|
| 278 |
|
|
\end{slide} |
| 279 |
|
|
|
| 280 |
|
|
|
| 281 |
|
|
% Slide 13 |
| 282 |
|
|
|
| 283 |
|
|
\begin{slide}{5x5: $g(r)$} |
| 284 |
|
|
|
| 285 |
|
|
\color{red} |
| 286 |
|
|
|
| 287 |
|
|
GofR's baby |
| 288 |
|
|
|
| 289 |
|
|
\color{black} |
| 290 |
|
|
|
| 291 |
|
|
\end{slide} |
| 292 |
|
|
|
| 293 |
|
|
|
| 294 |
|
|
% Slide 14 |
| 295 |
|
|
|
| 296 |
|
|
\begin{slide}{5x5: $\cos$ correlations} |
| 297 |
|
|
|
| 298 |
|
|
\color{red} |
| 299 |
|
|
Cosine correlation functions |
| 300 |
|
|
\color{black} |
| 301 |
|
|
|
| 302 |
|
|
\end{slide} |
| 303 |
|
|
|
| 304 |
|
|
|
| 305 |
|
|
% Slide 15 |
| 306 |
|
|
|
| 307 |
|
|
\begin{slide}{Initial Runs: 50 Lipids radomly arrangend in water} |
| 308 |
|
|
|
| 309 |
|
|
\color{red} |
| 310 |
|
|
R-50 parameters |
| 311 |
|
|
\color{black} |
| 312 |
|
|
|
| 313 |
|
|
\end{slide} |
| 314 |
|
|
|
| 315 |
|
|
|
| 316 |
|
|
% Slide 16 |
| 317 |
|
|
|
| 318 |
|
|
\begin{slide}{R-50: Initial and Final} |
| 319 |
|
|
|
| 320 |
|
|
\color{red} |
| 321 |
|
|
picture of initial |
| 322 |
|
|
|
| 323 |
|
|
picture of final |
| 324 |
|
|
\color{black} |
| 325 |
|
|
|
| 326 |
|
|
\end{slide} |
| 327 |
|
|
|
| 328 |
|
|
|
| 329 |
|
|
% Slide 17 |
| 330 |
|
|
|
| 331 |
|
|
\begin{slide}{R-50: $g(r)$} |
| 332 |
|
|
|
| 333 |
|
|
\color{red} |
| 334 |
|
|
|
| 335 |
|
|
GofR's baby |
| 336 |
|
|
|
| 337 |
|
|
\color{black} |
| 338 |
|
|
|
| 339 |
|
|
\end{slide} |
| 340 |
|
|
|
| 341 |
|
|
|
| 342 |
|
|
% Slide 18 |
| 343 |
|
|
|
| 344 |
|
|
\begin{slide}{R-50: $\cos$ correlations} |
| 345 |
|
|
|
| 346 |
|
|
\color{red} |
| 347 |
|
|
Cosine correlation functions |
| 348 |
|
|
\color{black} |
| 349 |
|
|
|
| 350 |
|
|
\end{slide} |
| 351 |
|
|
|
| 352 |
|
|
|
| 353 |
|
|
% Slide 19 |
| 354 |
|
|
|
| 355 |
|
|
\begin{slide}{Future Directions} |
| 356 |
|
|
|
| 357 |
|
|
\color{red} |
| 358 |
|
|
THe future is wide open |
| 359 |
|
|
\color{black} |
| 360 |
|
|
|
| 361 |
|
|
\end{slide} |
| 362 |
|
|
|
| 363 |
|
|
|
| 364 |
|
|
% Slide 20 |
| 365 |
|
|
|
| 366 |
|
|
\begin{slide}{Acknowledgements} |
| 367 |
|
|
|
| 368 |
|
|
\color{red} |
| 369 |
|
|
Mad Props to all my homies |
| 370 |
|
|
|
| 371 |
|
|
I'll mourn ya till I join Ya. |
| 372 |
|
|
\color{black} |
| 373 |
|
|
|
| 374 |
|
|
\end{slide} |
| 375 |
|
|
|
| 376 |
|
|
|
| 377 |
|
|
|
| 378 |
|
|
|
| 379 |
|
|
|
| 380 |
|
|
|
| 381 |
|
|
|
| 382 |
|
|
|
| 383 |
mmeineke |
49 |
%%%%%%%%%%%%%%%%%%%%%%%%%% END %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 384 |
|
|
|
| 385 |
|
|
\end{document} |